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Måndagen den 29 november, 2010

UPPGIFT

(1) Betrakta det linjära ekvationssystemet






x1 + x2 + x3 = 7,
x1 − x3 + x4 = 8,

x2 + 2x3 + x4 = 9.

(a) Använd Gausselimination för att överföra totalmatrisen för ekvationssystemet till
reducerad trappstegsform1. (2)

(b) Ange lösningmängden för ekvationssystemet med hjälp av den reducerade totalma-
trisen. (1)

(c) Förklara hur det kommer sig att det finns lösningar tillsystemet även om man ändrar
högerledet. (1)

(2) Betrakta triangelnABC med hörn i punkternaA = (1, 0, 1), B = (2,−3, 2) ochC =
(4, 1, 0) i R

3.
(a) Beräkna koordinaterna för vektorernau = AB ochv = AC. (1)
(b) Använd kryssprodukten för att beräkna arean av triangelnABC. (2)
(c) Använd skalärprodukten för att beräkna cosinus för vinkeln vid hörnetA. (1)

(3) Bestäm alla talt så att punkterna(1, 2, 3), (2, 3, 2), (t + 1, 3, t + 2) och (t, 2t, 2t + 5)
ligger i samma plan iR3 och ange en ekvation för detta plan för något av dessa värden
för t. (4)

1reduced row-echelon form
1
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L ÖSNINGSF̈ORSLAG

(1) (a) Totalmatrisen för systemet ges av




1 1 1 0 7
1 0 −1 1 8
0 1 2 1 9





och med hälp av Gauss-Jordans metod kan vi överföra den till övertriangulär form:




1 1 1 0 7
1 0 −1 1 8
0 1 2 1 9



 ∼





r1

r2 − r1

r3



 ∼





1 1 1 0 7
0 −1 −2 1 1
0 1 2 1 9



 ∼





r1 + r2

−r2

r3 + r2





∼





1 0 −1 1 8
0 1 2 −1 −1
0 0 0 2 10



 ∼





r1 − 1

2
r3

r2 + 1

2
r3

1

2
r3



 ∼





1 0 −1 0 3
0 1 2 0 4
0 0 0 1 5





(b) Eftersom det är en av kolonnerna i koefficientmatrisen som inte har en ledande ett
får vi införa en parametert och sättax3 = t. De övriga variablerna kan nu direkt
lösas ut från de tre ekvationerna som motsvarar raderna i matrisen:

x1 = 3 + x3 = 3 + t, x2 = 4 − 2x3 = 4 − 2t och x4 = 5.

Lösningsmängden ges därmed av

(x1, x2, x3, x4) = (3 + t, 4 − 2t, t, 5)

därt är en reell parameter.
(c) Eftersom det finns en ledande etta i varje rad i koefficientmatrisen kan det aldrig bli

en ledande etta i högerledet, oavsätt hur det ser ut. Vi kandärmed finna lösningar för
alla möjliga högerled precis som för högerledet(7, 8, 9).

(2) (a) Ortsvektorerna för punkterna ges av vektorerna fr˚an origo till respektive punkt, dvs
OA = (1, 0, 1), OB = (2,−3, 2) ochOC = (4, 1, 0). EftersomOA + AB = OB
får vi

u = AB = OB − OA = (2,−3, 2) − (1, 0, 1) = (1,−3, 1)

och på motsvarande sätt

v = AC = OC − OA = (4, 1, 0) − (1, 0, 1) = (3, 1,−1)

(b) För att beräkna arean med hjälp av kryssprodukten använder vi att triangelns area är
hälften av arean av den parallellogram som spänns upp avu ochv. Arean av denna
parallellogram ges av normen av kryssproduktenu×v. VI beräknar kryssprodukten
till

u× v = (1,−3, 1) × (3, 1,−1) =

(∣

∣

∣

∣

−3 1
1 −1

∣

∣

∣

∣

,−
∣

∣

∣

∣

1 1
3 −1

∣

∣

∣

∣

,

∣

∣

∣

∣

1 −3
3 1

∣

∣

∣

∣

)

= ((−3) · (−1) − 1 · 1,−1 · (−1) + 1 · 3, 1 · 1 − (−3) · 3) = (2, 4, 10)

Normen av denna ges av|(2, 4, 10)| =
√

22 + 42 + 102 =
√

120 = 2
√

30. Alltså ges
arean av triangeln av

√
30 areaenheter.
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(c) VI kan beräkna cosinus för vinkelnα vid hörnetA genom

cos α =
u · v

|u| · |v| =
(1,−3, 1) · (3, 1,−1)

√

12 + 32 + (−1)2
√

32 + 12 + (−1)2

=
1 · 3 + (−3) · 1 + 1 · (−1)

11
= − 1

11
.

(3) Om de fyra punkterna ligger i samma plan finns det en nollskild ekvationax + by +
cz + d = 0 som alla punkter uppfyller. Detta ger oss ett homogent linj¨art ekvationssy-
stem med fyra ekvationer och fyra obekanta, vilket har icketriviala lösningar precis om
ekvationerna är linjärt beroende.

Totalmatrisen för ekvationssystemet ges av








1 2 3 1 0
2 3 2 1 0

t + 1 3 t + 2 1 0
t 2t 2t + 5 1 0









och vi kan använda Gausselimination för att se när det finns icke-triviala lösningar:








1 2 3 1 0
2 3 2 1 0

t + 1 3 t + 2 1 0
t 2t 2t + 5 1 0









∼









r1

r2 − 2r1

r3 − (t + 1)r1

r4 − tr1









∼









1 2 3 1 0
0 −1 −4 −1 0
0 1 − 2t −1 − 2t −t 0
0 0 5 − t 1 − t 0









∼









r1

−r2

r3 + (1 − 2t)r2

r4









∼

∼









1 2 3 1 0
0 1 4 1 0
0 0 −5 + 6t t − 1 0
0 0 5 − t 1 − t 0









Vi kan i det här läget se att det finns icke-triviala lösningar om och endast om de två sista
raderna är linjärt beroende eftersom det redan finns ledande ettor i det två första raderna
och motsvarande positioner är noll i de sista två.

Alltså kan vi avgöra detta genom att se på determinanten av 2 × 2-matrisen
(

6t − 5 t − 1
5 − t 1 − t

)

som ges av(6t − 5)(1 − t) − (t − 1)(5 − t) = −5t(t − 1).
Därmed ligger de fyra punkterna i samma plan precis omt = 0 eller t = 1. Vi kan

sätta in dessa värden påt i totalmatrisen ovan för att beräkna lösningen till systemet. För
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t = 0 får vi








1 2 3 1 0
0 1 4 1 0
0 0 −5 −1 0
0 0 5 1 0









∼









1 2 3 1 0
0 1 4 1 0
0 0 1 1

5
0

0 0 0 0 0









med lösningd = s, c = −1

5
s, b = −s + 4

5
s = −1

5
s ocha = −s + 3

5
s + 2

5
s = 0, därs är

en reell parameter. Meds = 5 får vi planets ekvartion till−y−z +5 = 0, dvsy + z = 5.
Med t = 1 får vi









1 2 3 1 0
0 1 4 1 0
0 0 1 0 0
0 0 4 0 0









∼









1 2 3 1 0
0 1 4 1 0
0 0 1 0 0
0 0 0 0 0









vilket ger lösningd = s, c = 0, b = −s− 4 · 0 = −s ocha = −s − 3 · 0− 2 · (−s) = s.
Med s = 1 får vi planets ekvation tillx − y + 1 = 0, dvsx − y = −1.

Det går också att lösa uppgiften på flera andra sätt, exempelvis genom att använda
kryssprodukten mellan vektorer mellan punkterna för att få normalriktningen till ett plan
som innehåller tre av de fyra punkterna. Vi får fyra möjliga sätt att välja ut tre av punk-
terna och alla punkter ligger i samma plan om dessa fyra normalvektorer är parallella.

Vi får då exempelvis kravet att(1, 1,−1) × (t, 1, t − 1) = (t, 1 − 2t, 1 − t) ska vara
parallell med(1, 1,−1)× (t− 1, 2t− 2, 2t + 2) = (4t,−1− 3t, t− 1). Vi ser att kvoten
i den första positionen är4 om inte t = 0, vilket i den sista positionen leder till att
(t − 1) = 4(1 − t). Alltså måstet = 0 eller t = 1 för att de ska vara parallella. Vi får nu
direkt normalvektorerna för planen genom att sätta int = 0 ocht = 1, vilket ger(0, 1, 1)
respektive(1,−1, 0). För att få reda på konstanttermen i ekvationen sätter vi in någon av
punkterna, tex(1, 2, 3) och fåry + z = 5 respektivex − y = −1.

Svar:
(1) (a) Den reducerade trappstegsformen är





1 0 −1 0 3
0 1 2 0 4
0 0 0 1 5





(b) Lösningarna ges av(x1, x2, x3, x4) = (3+ t, 4− 2t, t, 5), därt är en reell parameter.
(c) Det finns lösning för alla högerled eftersom varje radhar en ledande etta i koeffici-

entmatrisen.
(2) (a) Koordinaterna ges avu = (1,−3, 1) ochv = (3, 1,−1).

(b) Arean av triangeln är
√

30 areaenheter.
(c) Cosinus för vinkeln är−1/11.

(3) Punkterna ligger i ett plan precis omt = 0 eller t = 1. I det första fallet ges planet av
y + z = 5 och i det andra avy − z = −1.
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PRELIMIN ÄRA BEDÖMNINGSKRITERIER

Mindre räknefel ger i allmänhet inget avdrag om de inte väsentligt ändrar uppgiftens karaktär.
(1) (a) • Korrekt påbörjad Gausselimination,1 poäng.

• Korrekt slutförd Gauss-Jordanelimination,1 poäng.
(b) Korrekt användning av den reducerade totalmarisen för att bestämma lösningmänden,

1 poäng.
(c) Korrekt motivering till att systemet är lösbart ävenom högerledet ändras,1 poäng.

(2) (a) Korrekt beräkning av koordinaterna för bägge vektorer,1 poäng.
(b) • Korrekt beräknad kryssrprodukt,1 poäng.

• Korrekt användning av kryssprodukten för att beräkna arean,1 poäng.
(c) Korrekt beräkning av cosinus för vinkeln mha skalärprodukten,1 poäng.

(3) • Korrekt princip för att avgöra om de fyra punkterna liggeri ett plan,1 poäng.
• Korrekt uppställt villkor påt för att de ska ligga i ett plan,1 poäng.
• Korrekt motiverade värden påt, 1 poäng.
• Korrekt motiverad ekvation för planets ekvation fört = 0 eller för t = 1, 1 poäng.


