
SF1624 Algebra och geometri
Lösningsf̈orslag till tentamen 2011-01-10

DEL A

(1) De tre totalmatriserna




1 0 3 −1 3 4
0 1 3 −1 2 1
0 0 0 1 1 0



,





1 0 3 0 4 4
0 1 3 0 3 1
0 0 0 1 1 0



 och





1 0 3 1 0 4
0 1 3 −3 0 1
0 0 0 1 1 0





svarar mot linjära ekvationssystem i fem obekantax1, x2, x3, x4, x5.
(a) En av matriserna är påreducerad trappstegsform1. Vilken? (1)
(b) Välj någon av matriserna och använd denna för att bestämma lösningsmängden till

motsvarande ekvationssystem. (2)
(c) Avgör om någon av de andra två matriserna svarar mot ett linjärt ekvationssystem

med samma lösningsmängd. (1)

Lösning.
(a) Det är den mittersta matrisen som är på reducerad trappstegsform. Alla tre är på

trappstegsform med ledande ettor i första, andra och fjärde kolonnen, men den första
och den tredje är inte eliminerade ovanför den ledande ettan i fjärde kolonnen.

(b) I och med att den mittersta matrisen är på reducerad trappstegsform är det lättast
att använda den. Vi inför en parameter för de båda fria variablerna som svarar mot
kolonnerna utan ledande etta. Vi fårx3 = s ochx5 = t. Därefter kan vi använda de
tre ekvationerna för att lösa ut de bundna variablerna ochfår

x1 = 4 − 3x3 − 4x5 = 4 − 3s − 3t,
x2 = 1 − 3x3 − 3x5 = 1 − 3s − 3t,
x4 = −x5 = −t

Därmed ges lösningsmängden av

(x1, x2, x3, x4, x5) = (4 − 3s − 4t, 1 − 3s − 3t, s,−t, t)

därs ocht är reella parametrar.

1eng.reduced row-echelon form
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(c) VI kan fortsätta eliminera den första och den tredje matrisen till reducerad trapp-
stegsform och får då





1 0 3 −1 3 4
0 1 3 −1 2 1
0 0 0 1 1 0



 ∼





r1 + r3

r2 + r3

r3



 ∼





1 0 3 0 4 4
0 1 3 0 3 1
0 0 0 1 1 0





och




1 0 3 1 0 4
0 1 3 −3 0 1
0 0 0 1 1 0



 ∼





r1 − r3

r2 + 3r3

r3



 ∼





1 0 3 0 −1 4
0 1 3 0 3 1
0 0 0 1 1 0





I det första fallet får vi samma reducerade trappstegsform, och lösningsmängden
är därmed lika med den från del (b). I det andra fallet fårvi en annan reducerad
trappstegsform och lösningsmängden är därmed en annan.

�

Svar:
(a) Den mittersta är på reducerad trappstegsform.
(b) Lösningsmängden ges av(x1, x2, x3, x4, x5) = (4 − 3s − 4t, 1 − 3s − 3t, s,−t, t),

är s ocht är reella parametrar.
(c) Den första matrisen svarar mot ett ekvationssystem medsamma lösningsmängd, me-

dan den tredje inte gör det.
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(2) Den linjära avbildningenT : R
2 −→ R

3 uppfyller att

T (1, 2) = (3, 1, 4) och T (1, 1) = (2, 1, 3).

(a) Bestäm standardmatrisen för avbildningenT . (3)
(b) Bestäm en bas förbildrummet2 till T . (1)

Lösning. (a) För att bestämma standardmatrisen förT behöver vi beräkna värdena på
standardbasvektorernae1 = (1, 0) och e2 = (0, 1). Vi kan göra det genom att ut-
trycka standardbasvektorerna i de givna vektorernau1 = (1, 2) ochu3 = (1, 1). Det
går att se att

(1, 0) = 2(1, 1) − (1, 2) och (0, 1) = (1, 2) − (1, 1).

Därmed får vi att

T (1, 0) = 2T (1, 1) − T (1, 2) = 2(2, 1, 3) − (3, 1, 4) = (1, 1, 2)

och

T (0, 1) = T (1, 2) − T (1, 1) = (3, 1, 4) − (2, 1, 3) = (1, 0, 1).

Värdena på standardbasvektorerna utgör kolonnerna i standardmatrisen som därmed
är

A =





1 1
1 0
2 1



 .

Vi kan också lösa problemet genom att se attA uppfyller att

A

(

1 1
2 1

)

=





3 2
1 1
4 3





och vi får framA som

A =





3 2
1 1
4 3





(

1 1
2 1

)

−1

=





3 2
1 1
4 3





(

−1 1
2 −1

)

=





3 · (−1) + 2 · 2 3 · 1 + 2 · (−1)
1 · (−1) + 1 · 2 1 · 1 + 1 · (−1)
4 · (−1) + 3 · 2 4 · 1 + 3 · (−1)



 =





1 1
1 0
2 1



 ,

där vi beräknat inversen genom Gausselimination:
(

1 1 1 0
2 1 0 1

)

∼
[

r1

r2 − 2r1

]

∼
(

1 1 1 0
0 −1 −2 1

)

∼
[

r1 + r2

−r2

]

∼
(

1 0 −1 1
0 1 2 −1

)

.

(b) Eftersom(1, 2) och(1, 1) spänner upp domänen,R
2, kommer deras bilder att spänna

upp bildrummet. Bilderna av dessa båda vektorer är inte parallella och därmed linjärt
oberoende. Alltså bildar(3, 1, 4) och(2, 1, 3) en bas för bildrummet.
Vi kan också se bildrummet som kolonnrummet för standardmatrisen och eftersom
kolonnerna är linjärt oberoende utgör dessa en bas för kolonnrummet.

�

2eng.range
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Svar:

(a) Standardmatrisen för avbildningen ärA =





1 1
1 0
2 1



.

(b) En bas för bildrummet ges av exempelvis{(3, 1, 4), (2, 1, 3)}.
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(3) Vektorernav = (1, 1, 0) ochw = (0,−1, 1) spänner upp ett planW i R
3.

(a) Bestäm en vektoru1 som är parallell medv, och som har längd1. (1)
(b) Bestäm en vektoru2 så att{u1,u2} utgör en ortonormal bas för planetW . (2)
(c) När vi beräknar kryssproduktenu1 × u2 får vi en normalvektor tillW som redan är

normerad, dvs som har längd1. Varför? (1)

Lösning. (a) Vi har attu1 = av dära är en konstant. Längden, ellernormen, avu1 blir
då |a||v| = |a|

√
12 + 12 + 02 = |a|

√
2. Alltså kan vi väljaa som±1/

√
2 och får

texu1 = (1/
√

2, 1/
√

2, 0).
(b) Vi kan använda Gram-Schmidts metod för att bestämma den andra vektorn och får

v2 = w − w · u1

u1 · u1

u1

= (0,−1, 1) − (0,−1, 1) ·
(

1√
2
,

1√
2
, 0

)(

1√
2
,

1√
2
, 0

)

= (0,−1, 1) +
1√
2

(

1√
2
,

1√
2
, 0

)

= (0,−1, 1) +

(

1

2
,
1

2
, 0

)

=

(

1

2
,−1

2
, 1

)

För att få en ortonormal bas förW behöver vi också normerav2 och får som i del (a)

u2 =
1

|v2|
v2

=
1

√

(1/2)2 + (−1/2)2 + 12

(

1

2
,−1

2
, 1

)

=
1

√

3/2

(

1

2
,−1

2
, 1

)

=

(

1√
6
,− 1√

6
,

2√
6

)

Alltså utgör 1
√

2
(1, 1, 0) och 1

√

6
(1,−1, 2) tillsammans en ortogonal bas förW .

(c) När vi bildar kryssprodukten av de två vektorerna fårvi en vektor som är ortogonal
mot bägge och därmed ortogonal mot planet. Längden av vektorn ges av arean av
parallellogrammen som spänns upp avu1 ochu2. Eftersom dessa utgör en ortogonal
bas för planet spänner de upp en kvadrat med sidan1, vars area också är1 areaenhet.

�

Svar:
(a) u1 = (1/

√
2, 1/

√
2, 0) är parallell medv och har längd ett.

(b) u2 = (1/
√

6,−1/
√

6, 2/
√

6) utgör tillsammans medu1 en ortogonal bas för planet
W .
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DEL B

(4) En linjey = kx + m ska anpassas till punkterna(−2, 1), (1, 2), (4, 2) och(7, 6).
(a) Bestäm de värden på konstanternak och m som ger bäst anpassning i minsta-

kvadratmening. (3)
(b) Rita ut linjen tillsammans med punkterna i ett koordinatsystem och illustrera vad det

är som har minimerats för dessa värden på konstanterna. (1)

Lösning. (a) Vi sätter in de fyra värdena i ekvationenkx + m = y och får då ett
överbestämt ekvationssystem















−2k + m = 1,
1k + m = 2,
4k + m = 2,
7k + m = 6.

För att hitta den lösning som är bäst i minsta-kvadratmening ser vi på när skillna-
den mellan högerled och vänsterled är så liten som möjligt, vilket händer när denna
vektor är ortogonal mot kolonnrummet till koefficientmatrisen. Vi leds därmed till
normalevationenATAx = AT

b, dvs

(

−2 1 4 7
1 1 1 1

)









−2 1
1 1
4 1
7 1









(

k
m

)

=

(

−2 1 4 7
1 1 1 1

)









1
2
2
6









vilket är ekvivalent med
(

70 10
10 4

) (

k
m

)

=

(

50
11

)

Vi kan lösa detta ekvationssystem med hjälp av Gausselimination på totalmatrisen
(

70 10 50
10 4 11

)

och får
(

70 10 50
10 4 11

)

∼
[

1

70
r1

r2 − 1

7
r1

]

∼
(

1 1

7

5

7

0 18

7

27

7

)

∼
[

r1 − 1

18
r2

7

18
r2

]

∼
(

1 0 1

2

0 1 3

2

)

Alltså ges minsta kvadratlösningen avk = 1/2 och m = 3/2, dvs linjeny =
x/2 + 3/2 passar bäst till punkterna.

(b)
Det är summan av kvadraterna av de vertikala avvikelserna som har minimerats för

just denna linje, vilket i det här fallet är(1/2)2 + 02 + (3/2)2 + 12 = 7/2 = 3,5. �

Svar:
(a) k = 1/2 ochm = 3/2.
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y

x

FIGUR 1. Linjen tillsammans med de fyra punkterna.

(b) Summan av kvadraterna av avvikelserna, i detta fall är det minsta värdet7/2 = 3,5.
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(5) (a) Förklara varför matrisen

A =





2 0 4
0 8 0
4 a 2





är ortogonalt diagonaliserbar precis bara oma = 0. (1)
(b) Bestäm dåa = 0 en ortogonal matrisP sådan attP TAP blir diagonal. (3)

Lösning. (a) En kvadratisk matris har en ortogonal bas av egenvektorer om och endast
om den är symmetrisk enligt en sats ur boken. AttA = AT betyder i vårt fall pre-
cis atta = 0, eftersom resten av matrisen är symmetrisk. Alltså kommer den vara
ortogonalt diagonaliserbar oma = 0.

(b) Vi behöver först bestämma egenvärden och egenvektorer. Den karaktäristiska ekva-
tionen ges avdet(A − λI) = 0. Vi har att

det(A − λI) =

∣

∣

∣

∣

∣

∣

2 − λ 0 4
0 8 − λ 0
4 0 2 − λ

∣

∣

∣

∣

∣

∣

= (8 − λ)

∣

∣

∣

∣

2 − λ 4
4 2 − λ

∣

∣

∣

∣

= (8 − λ)((2 − λ)2 − 42) = (8 − λ)(2 − λ − 4)(2 − λ + 4)
= (8 − λ)(−2 − λ)(6 − λ).

Egenvärdena, som är rötterna till den karaktäristiskaekvationen, är därmedλ = −2,
λ = 6 ochλ = 8.
Vi får motsvarande egenvektorer genom att lösa det homogena ekvationssystemet
med koefficientmatrisA − λ för dessa värden påλ. Vi får för λ = −2





2 − (−2) 0 4 0
0 8 − (−2) 0 0
4 0 2 − (−2) 0



 ∼





1

4
r1

1

10
r2

r3 − r1



 ∼





1 0 1 0
0 1 0 0
0 0 0 0





och lösningen ges av(x1, x2, x3) = (−t, 0, t), därt är en parameter.
Förλ = 6 får vi





2 − 6 0 4 0
0 8 − 6 0 0
4 0 2 − 6 0



 ∼





−1

4
r1

1

2
r2

r3 + r1



 ∼





1 0 −1 0
0 1 0 0
0 0 0 0





och lösningen ges av(x1, x2, x3) = (t, 0, t), därt är en parameter.
Förλ = 8 får vi




2 − 8 0 4 0
0 8 − 8 0 0
4 0 2 − 8 0



 ∼





−1

6
r1

r3 + 2

3
r1

r2



 ∼





1 0 −2

3
0

0 0 −10

3
0

0 0 0 0





och lösningen ges av(x1, x2, x3) = (0, t, 0), därt är en parameter.
De tre egenvektorerna(1, 0, 1), (1, 0,−1) och (0, 1, 0) tillhör olika egenvärden och
är därmed automatiskt ortogonala. För att hitta en ortogonal basbytesmatrisP som
diagonaliserarA behöver vi nu bara normera egenvektorerna. Vi har att|(1, 0, 1)| =
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|(1, 0,−1)| =
√

2 och|(0, 1, 0)| = 1. Alltså får vi en ortogonal matris som diagona-
liserarA som

P =





1
√

2

1
√

2
0

0 0 1
1
√

2
− 1

√

2
0





och

PTAP = P−1AP =





6 0 0
0 −2 0
0 0 8



 .

�

Svar:

(b) MatrisenP =





1
√

2

1
√

2
0

0 0 1
1
√

2
− 1

√

2
0



 gör attPTAP är diagonal.
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(6) För alla heltaln ≥ 2, låt An varan × n-matrisen som man får om man skriver upp talen
1, 2, . . . , n2 i ordning, rad för rad. Till exempel är

A2 =

(

1 2
3 4

)

och A3 =





1 2 3
4 5 6
7 8 9



 .

(a) Beräknadet A2. (1)
(b) Beräknadet A3 med hjälp av radoperationer. (1)
(c) Visa attdet An = 0 för n > 3 genom att påvisa ett linjärt beroende mellan kolon-

nerna. (2)

Lösning. (a) Vi beräknardet A2, exempelvis med kofaktorutveckling, eller med den
kända formeln och får

det

(

1 2
3 4

)

= 1 · 4 − 2 · 3 = 4 − 6 = −2.

(b) Vi kan beräknadet A3 med radoperationer genom

det





1 2 3
4 5 6
7 8 9



 = det





r1

r2 − 4r1

r3 − 7r1



 = det





1 2 3
0 −3 −6
0 −6 −12





= det





r1

r2

r3 − 2r2



 = det





1 2 3
0 −3 −6
0 0 0



 = 0

eftersom determinanten av en matris med en nollrad alltid är noll.
(c) Eftersom elementen i varje rad växer med ett från kolonn till kolonn kommer varje

kolonn utom de två yttersta att vara lika med medelvärdet av de båda närstående.
Därmed har vi linjära relationer

ci − 2ci+1 + ci+2 = 0

för i = 1, 2, . . . , n−2, omn ≥ 3. Om kolonnerna är linjärt beroende är determinan-
ten alltid noll enligt känd sats.

�

Svar:
(a) det A2 = −2.
(b) det A3 = 0.

Var god v̈and!
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DEL C

(7) Bestäm kortaste avståndet mellan punkten(7, 6, 5) och skärningslinjen mellan planen
2x − z = −1 ochy = 2 i R

3. (4)

Lösning.Vi skriver linjens ekvation på parameterform. Vi ser att(x, y, z) = (1, 2, 3) är
en punkt på linjen. Vektorprodukten (kryssprodukten) av planens normaler ger linjens
riktning:

(2, 0,−1) × (0, 1, 0) = (1, 0, 2).

Alltså har linjen ekvationen

(x, y, z) = (1, 2, 3) + t(1, 0, 2).

Kortaste vägen från punkten(7, 6, 5) till den givna linjen är att gå ortogonalt mot lin-
jens riktningsvektor(1, 0, 2). Vi vill alltså hitta t så att(1, 0, 2) är ortogonal mot

(1, 2, 3) + t(1, 0, 2) − (7, 6, 5) = (t − 6,−4, 2t− 2).

Nu är
(1, 0, 2) · (t − 6,−4, 2t− 2) = t − 6 + 4t − 4 = 5t − 10,

vilket är noll om och endast omt = 2. Avståndet ges av längden på vektorn(t −
6,−4, 2t − 2) = (−4,−4, 2), vilken är

√

(−4)2 + (−4)2 + 22 =
√

16 + 16 + 4 =
√

36 = 6.

�
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(8) Låt V vara vektorrummet av symmetriska2 × 2-matriser, och låtT : V → V vara
avbildningen som som ges avT (A) = PAP för allaA i V , där

P =

(

0 1
−1 0

)

.

(a) Visa att

B =

{(

1 0
0 0

)

,

(

0 1
1 0

)

,

(

0 0
0 1

)}

är en bas förV . (1)
(b) Visa attT är en linjär avbildning frånV till V . (1)
(c) Bestäm matrisen förT med avseende på basenB. (2)

Lösning. (a) VektorrummetV består av alla symmetriska2×2-matriser. Varje symmet-
risk 2 × 2-matris kan skrivas som

(

a b
b c

)

för några reella tala, b ochc. Detta betyder att den kan skrivas som

a

(

1 0
0 0

)

+ b

(

0 1
1 0

)

+ c

(

0 0
0 1

)

.

Dessutom bestämmer talena, b ochc matrisen fullständigt och därmed är uttrycket
unikt. Detta är detsamma som att de tre matrisernaB utgör en bas förV .

(b) Att T är en linj är avbildning innebär attT (A1 + A2) = T (A1) + T (A2) och att
T (kA) = k(A), för alla matriserA1, A2, A i V och alla skalärerk.
Vi kontrollerar att

T (A1 + A2) = P (A1 + A2)P = PA1P + PA2P = T (A1) + T (A2)

där vi utnyttjat den distributiva lagen för matrismultiplikationen.
Vidare ser vi att

T (kA) = P (kA)P = kPAP = kT (A)

där vi utnyttjat att mulitplikation med skalär kan görasföre eller efter matrismulti-
plikationen.
Vi behöver också kolla attT (A) verkligen ligger iV för alla A i V . Detta ser vi
genom att

(PAP )T = PTATPT = (−P )A(−P ) = PAP

omA = AT eftersomP är antisymmetrisk och uppfyllerPT = −P .
(c) För att bestämma matrisen förT med avseende på basenB behöver vi beräkna

bilderna av de tre basvektorerna och uttrycka dessa i den givna basen.
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Vi får att

T

(

1 0
0 0

)

=

(

0 1
−1 0

) (

1 0
0 0

) (

0 1
−1 0

)

=

(

0 1
−1 0

) (

0 1
0 0

)

=

(

0 0
0 −1

)

= −
(

0 0
0 1

)

T

(

0 1
1 0

)

=

(

0 1
−1 0

) (

0 1
1 0

) (

0 1
−1 0

)

=

(

0 1
−1 0

) (

−1 0
0 1

)

=

(

0 1
1 0

)

och

T

(

0 0
0 1

)

=

(

0 1
−1 0

) (

0 0
0 1

) (

0 1
−1 0

)

=

(

0 1
−1 0

) (

0 0
−1 0

)

=

(

−1 0
0 0

)

= −
(

1 0
0 0

)

Eftersom bilderna av basvektorerna omedelbart blev uttryckta med samma basvek-
torer får vi direkt matrisen





0 0 −1
0 1 0

−1 0 0





för avbildningenT med avseende på basenB.
�

Svar:

(c) Matrisen för avbildningenT relativt basenB ges avA =





0 0 −1
0 1 0

−1 0 0



.
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(9) Betrakta matrisekvationen
A3 = 2A2 − A.

(a) Ge ett exempel på en3 × 3-matris som uppfyller ekvationen och som varken är
nollmatrisen eller identitetsmatrisen. (1)

(b) Visa att0 och1 är de enda möjliga egenvärdena för kvadratiska matriser som upp-
fyller ekvationen oavsett storlek. (3)

Lösning. (a) Om vi ser på diagonalmatriser uppfyller dessa ekvationen om och endast
om alla dess diagonalelement uppfyller ekvationen. Vi har att x3 = 2x2 − x är
ekvivalent medx(x2 − 2x + 1) = 0, dvsx(x − 1)2 = 0. Alltså kan vi välja en
diagonalmatris med ettor och nollor på diagonalen, exempelvis

A =





1 0 0
0 1 0
0 0 0





som varken är nollmatrisen eller identitetsmatrisen. (Det finns sex olika sådana ma-
triser.)

(b) Låtv vara en egenvektor tillA ochλ motsvarande egenvärde. Då gäller attAv = λv.
EftersomA3 = 2A2 − A, får vi att0 = A3v − 2A2v + Av = λ3v − 2λ2v + λv =
λ(λ − 1)2v. Eftersomv 6= 0, ärλ = 0 ellerλ = 1.

�


