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Fredagen den 28 januari, 2011

UPPGIFT

(1) LåtV vara mängden av vektorer(x1, x2, x3) i R
3 som uppfyllerx1 + x2 + x3 = 0, dvs är

ortogonala mot vektorn(1, 1, 1).
(a) Visa attV är ett underrum1 i R

3. (2)
(b) En bas förV ges avB = { (1, 0,−1), (1,−1, 0) }. Bestäm koordinaterna för vek-

tornv = (1,−2, 1) med avseende på basenB. (2)

(2) I denna uppgift ärA =

[

1 −1 2
−3 3 −6

]

.

(a) Bestäm en bas för nollrummet2 till A och en bas för radrummet3 till A. (Kontrollera
gärna räkningarna genom att se att de båda rummens basvektorer är ortogonala mot
varandra.) (2)

(b) Bestäm en bas för kolonnrummet4 till A och en bas för nollrummet tillAT. (Även
här kan räkningarna kontrolleras på samma sätt som ovan.) (2)

(3) Den här uppgiften handlar om linjära avbildningar fr˚anR
2 till R

2 och deras standardma-
triser. Låt(x, y) vara koordinaterna i ett rätvinkligt koordinatsystem iR

2.
(a) LåtT1 : R

2 → R
2 vara rotationen kring origo med en vinkel på90◦ (π/2 radianer)

moturs. Bestäm standardmatrisen,A, för T1. (1)
(b) Låt T2 : R

2 → R
2 vara speglingen i linjeny = −x. Bestäm standardmatrisen,B,

för T2. (1)
(c) Bestäm standardmatrisen,C, för sammansättningenT2 ◦ T1. (1)
(d) AvbildningenT2 ◦ T1 är en spegling. I vilken linje? Motivera ditt svar. (1)

1eng.subspace, kallas ocksådelrum på svenska.
2eng.null space
3eng.row space
4eng.column space
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L ÖSNINGSF̈ORSLAG

(1) (a) MängdenV , som är en delmängd avR3, är ettunderrum (eller delrum) i R
3 om det

för varje par av vektoreru ochv i V och varje skalärk gäller att de båda vektorerna
u + v ochk · u ligger i V .
Antag alltså attu = (u1, u2, u3) och v = (v1, v2, v3) är två vektorer som båda
ligger i V , dvs uppfylleru1 + u2 + u3 = 0 ochv1 + v2 + v3 = 0, samt attk är en
skalär (reellt tal). Låtw = u + v ochq = k · u. Vi ska visa att bådew ochq ligger
i V .
Vi har att

w = (w1, w2, w3) = (u1, u2, u3) + (v1, v2, v3) = (u1 + v1, u2 + v2, u3 + v3)

, så vi får att

w1 + w2 + w3 = u1 + v1 + u2 + v2 + u3 + v3 = (u1 + u2 + u3) + (v1 + v2 + v3) = 0 + 0 = 0,

vilket visar attw ligger i V .
Vidare har vi har att

q = (q1, q2, q3) = k · (u1, u2, u3) = (ku1, ku2, ku3),

så vi får att

q1 + q2 + q3 = ku1 + ku2 + ku3 = k(u1 + u2 + u3) = k 0 = 0,

vilket visar att ävenq ligger i V .
Därmed ärV ett underrum.

(b) Att B = {u1, u2 } = { (1, 0,−1), (1,−1, 0) } är enbas till underrummetV
innebär att varje vektorv som ligger iV på ett entydigt sätt kan skrivas på formen
v = c1 · u1 + c2 · u2, där skalärernac1 och c2 är koordinaterna för v i den givna
basenB.
Speciellt bestäms koordinaternac1 ochc2 för vektornv = (1,−2, 1) ur villkoret
(1,−2, 1) = c1 · (1, 0,−1) + c2 · (1,−1, 0).
Detta är ett linjärt ekvationssystem, i de obekantac1 ochc2, med totalmatrisen





1 1 1
0 −1 −2

−1 0 1



 ,

som med några elementära radoperationer överförs till




1 0 −1
0 1 2
0 0 0



 .

.
Ur denna totalmatris på reducerade trappstegsformen kan vi läsa av attc1 = −1 och
c2 = 2, vilket alltså är de sökta koordinaterna förv.
Anmärkning: Vi kunde (och borde kanske) ha börjat med att kontrollera att den givna
vektornv ligger i V , genom att konstatera attv1 + v2 + v3 = 1 − 2 + 1 = 0. Men
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eftersom ekvationssystemet ovan hade lösning kan vi änd˚a dra slutsatsen attv ligger
i V . Om vi hade försökt bestämma koordinaterna för en vektor som inte ligger iV ,
t ex (1,−1, 1), så hade tredje högerledet i den sista totalmatrisen ovanblivit 6= 0.

(2) Vi ska lösa uppgiften med en generell metodik, även om det för denna lilla matris går att
hitta vissa av baserna på ett enklare sätt.
(a) Vi startar med att medelst elementära radoperationer ¨overföra den givna matrisenA

till reducerad trappstegsform. (Gauss-Jordans metod.)

A =

[

1 −1 2
−3 3 −6

]

−→

[

1 −1 2
0 0 0

]

= R

R har erhållit genom att 3 gånger första raden iA har adderat till andra raden iA.
MatrisenR är på reducerad trappstegsform med enbart en trappstegsetta.
Nollrummet till en matris påverkas inte av elementära radoperationer, så nollrum-
men till A och R är desamma. Den fullständiga lösningen till systemetRx = 0

erhålls genom att sätta de “fria” variablernax2 ochx3 till t respektives, och sedan
uttrycka den “bundna” variabelnx1 i t ochs. Detta ger att
(x1, x2, x3) = (t − 2s, t, s) = t · (1, 1, 0) + s · (−2, 0, 1).
Ur detta följer att de båda vektorerna(1, 1, 0) och(−2, 0, 1) utgör en bas för nollrum-
met till matrisenR, och därmed utgör de en bas även för nollrummet till matrisen
A.
Radrummet till en matris påverkar inte heller av elementära radoperationer, så rad-
rummen till de bägge matrisernaA och R är desamma. De nollskilda raderna i
matrisenR (som är på trappstegsform) är alltid linjärt oberoendeoch utgör en bas
till radrummet förR, och därmed även till radrummet förA. I detta fall utgör alltså
den ensamma vektorn(1,−1, 2) en bas för radrummet tillA
Man kan konstatera att denna basvektor(1,−1, 2) för radrummet tillA är ortogonal
mot var och en av de bägge basvektorerna(1, 1, 0) och(−2, 0, 1) för nollrummet till
A. Detta är som det ska, eftersom nollrum och radrum är ortogonala komplement
till varandra. (Radrummet består av alla linjärkombinationer av raderna iA medan
nollrummet består av alla vektorer som är vinkelräta motalla rader iA).

(b) Nu överför vi, medelst elementära radoperationer, matrisenAT till reducerad trapp-
stegsform.

AT =





1 −3
−1 3

2 −6



 −→





1 −3
0 0
0 0



 = R̃

R̃ har erhållit genom att första raden iAT har adderat till andra raden iAT och (-
2) gånger första raden iAT har adderat till tredje raden iAT. R̃ är på reducerad
trappstegsform med enbart en trappstegsetta.
Nollrummen till AT och R̃ är desamma. Den fullständiga lösningen tillR̃u = 0

erhålls genom att sätta den “fria” variabelnu2 till t och sedan uttrycka den “bundna”
variabelnu1 i t. Detta ger att(u1, u2) = (3t, t) = t · (3, 1), ur vilket följer att
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vektorn(3, 1) utgör en bas för nollrummet till̃R, och därmed även för nollrummet
till AT.
Radrummen tillAT ochR̃ är också desamma. De nollskilda raderna iR̃ utgör en bas
till radrummet förR̃, och därmed även för radrummet tillAT. I detta fall utgör alltså
den ensamma vektorn(1,−3) en bas för radrummet tillAT. Men radrummet förAT

är ekvivalent med kolonnrummet förA, vilket innebär att vektorn(1,−3) utgör en
bas även för kolonnrummet tillA.
Man kan konstatera att denna basvektor(1,−3) för radrummet tillAT (och kolonn-
rummet till A) är ortogonal mot basvektorn(3, 1) för nollrummet till AT. Detta är
igen som det ska. (Kolonnrummet tillA består av alla linjärkombinationer av kolon-
nerna iA medan nollrummet tillAT består av alla vektorer som är vinkelräta mot
alla kolonner iA).
Anmärkning: Ett alternativt sätt att bestämma en bas för kolonnrummet tillA är att
välja ut de kolonner iA som svarar mot “trappstegsettor” iR från (a)-uppgiften. Det
leder till att första kolonnen iA utgör en bas för kolonnrummet tillA, med samma
svar som ovan. På motsvarande sätt kan man bestämma en basför kolonnrummet till
AT (och därmed även för radrummet tillA) genom att välja ut de kolonner iAT som
svarar mot trappstegsettor iR̃. Även det ger samma svar som ovan (i detta exempel).

(3) (a) Eftersom rotationen är en linjär avbildning kan viskriva upp standardmatrisen för
avbildningen om vi känner till bilden av standardbasvektorerna. I detta fall kommer
ex att roteras tilley ochey till −ex, förutsatt att koordinatsystemet är högerorienterat.
Alltså ges första kolonnen av(0, 1) och andra av(−1, 0). Standardmatrisen ges av

A =

(

0 −1
1 0

)

.

(b) På samma sätt som i första deluppgiften behöver vi bestämma bilderna av basvek-
torerna. Denna gång speglasex till −ey ochey speglas till−ex. Vi får därmed stan-
dardmatrisen

B =

(

0 −1
−1 0

)

.

(c) Standardmatrisen för sammansättningen ges av matrisprodukten av de båda stan-
dardmatriserna förT1 ochT2. Vi får därmed standardmatrisen

C = BA =

(

0 −1
−1 0

) (

0 −1
1 0

)

=

(

0 · 0 − 1 · 1 0 · (−1) − 1 · 0
−1 · 0 + 0 · 1 −1 · (−1) + 0 · 0

)

=

(

−1 0
0 1

)

.

(d) Eftersom den andra basvektorn bevaras är det en spegling i y-axeln.

Svar:
(1) (b) Koordinaterna förv är (−1, 2).
(2) (a) {(1, 1, 0), (−2, 0, 1)} är en bas för nollrummet tillA och{(1,−1, 2)} är en bas för

radrummet tillA.
(b) {(3, 1)} är en bas för nollrummet tillAT och{(1,−3)} utgör en bas för kolonnrum-

met till A.
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(3) (a) Standardmatrisen förT1 ärA =

(

0 −1
1 0

)

.

(b) Standardmatrise förT2 ärB =

(

0 −1
−1 0

)

.

(c) Standardmatrisen förT2 ◦ T1 ärC =

(

−1 0
0 1

)

.

(d) Det är en spegling iy-axeln.
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PRELIMIN ÄRA BEDÖMNINGSKRITERIER

Mindre räknefel ger i allmänhet inget avdrag, om de inte v¨asentligen förändrar karaktären hos
uppgiften.

(1) • Korrekt kontroll av attV är slutet under addtion eller multiplikation med skalär,1
poäng.

• Korrekt slutförd kontroll av attV är ett delrum iR3. , 1 poäng.
• Korrekt uppställda villkor på koordinaterna,1 poäng.
• Korrekt bestämda koordinater,1 poäng.

(2) • Korrekt bestämd bas för nollrummet tillA, 1 poäng.
• Korrekt bestämd bas för radrummet tillA, 1 poäng.
• Korrekt bestämd bas för kolonnrummet tillA, 1 poäng.
• Korrekt bestämd bas för nollrummet tillAT, 1 poäng.

(3) (a) Korrekt motiverad standardmatris,A, 1 poäng.
(b) Korrekt motiverad standardmatris,B, 1 poäng.
(c) Korrekt motiverad standardmatris,C, 1 poäng.
(d) Korrekt motiverat svar,1 poäng.


