
1

BEHAVIOUR MODELING WITH STATE
MACHINE AND ACTIVITY DIAGRAMS

2

Objectives
Describe system behavior and show how to

capture it in a model.
Demonstrate how to read and interpret:
A state machine diagram
An activity diagram

3

Agenda
How to describe behavior?
Modelling with state machine diagrams
Modelling with Activity diagrams

4

Where are we?
How to describe behavior?
Modelling with State machine diagrams
Modelling with Activity diagrams

5

What Is System Behavior?
System behavior is how a system acts and reacts.
It comprises the actions and activities of a system.

6

What is a Behavior Model?
 A view of a system that emphasizes the behavior of the

system as a whole (as it appears to outside users)
 Uses:
Activity Diagrams
State machine Diagrams
Sequence Diagrams
Interaction Overview Diagrams

 The system/object is regarded as a black box and the
functionalities are expressed from a user’s perspective

 Behavior modeling during development:
In the analysis phases:
 The model must capture the requirements of the system, not

the implementation solution
In the design & implementation phases:
 The model must capture the implementation solution.

7

Types of behavior
Behavior can be simple:
Simple behavior does not depend on the object’s

history.

Behavior can be continuous:
Continuous behavior depends on the object’s history but

in a smooth, continuous fashion.

Behavior can be state-driven:
State-driven behavior means that the object’s behavior

can be divided into disjoint sets.

8

Simple behavior
 Simple behavior is not affected by the object’s

history:
cos(x)
getTemperature()
setVoltage(v)
Max(a,b)


An activity diagram can
be used to represent
simple behaviour.

9

 Object’s behavior depends on history in a continuous way

PID control loop:

Digital filter:

Fuzzy logic:
 Uses partial set membership to compute a smooth, continuous

output

Continuous behavior

Ka

Xn Yn
-+ Delay

Wn

Kb

++Vn
Zn

UML is not very good
at describing
continuous behavior.

10

Useful when an object
Exhibits discontinuous modes of behavior
Is reactive – waits for and responds to incoming events

 For example a Light can be :

Off

On

Flashing

State behavior

 A light can be characterized as
having 3 states – On, Off &
Flashing.
The system can only reside in

one of these states at a given
time.

A state machine can be
used to represent state
behaviour.

11

Where are we?
How to describe behavior?
 Introduction to State machine diagrams
 Introduction to Activity diagrams

12

Quick picture of a state machine

idleidle

busybusy

13

Example: Professor
 There are a sequence of events before an instructor

becomes a University professor.
Assistant professor (achieves tenure by producing a

number of quality publications)
Tenure/Associate professor
Professor (based on seniority)

Assistant
Professor Tenured Professor Retired

14

What is a State Machine?
A state machine models dynamic behavior of a

element (system, component, class, operation, etc.)
State machines are ideal to describe reactive, event-

driven behavior.
 It specifies
the sequence of states in which an object can exist in.
 a finite number of states

The events and conditions that cause transitions
between those states.
The actions that take place when those states are reached

States can be
Composite
Orthogonal

15

Why use state machines?
 State machines are executable
Because state machines are formally defined, they form executable

models.

 State machines can be visualized graphically.

 State machines can be animated - their dynamic behavior
shown graphically:
Standard debugging can be done, such as setting breakpoints, step

through, step into, and so on.

 You can focus on the abstract behavior:
Was the door locked with a card or a code?
Rather than, is some variable 0 or 1?

 State Machines provide for easy testing.

16

What is a State Machine Diagram?
 A state machine

diagram visualizes a
state machine
State symbol
Transition lines

between the states

17

State Machine Diagram – Basic Syntax

Initial
state

State

Self transition

Transition

Final
state

18

What is a state?

What is a transition?

What is an event?

What is an action?

States / transitions / events / actions

A transition is a response
to an event of interest moving
the object from a state to a state.

A state is a distinguishable, disjoint,
orthogonal condition of existence of an
object that persists for a significant period
of time.

An action is a run-to-completion behavior.
The object does not accept or process any
new events until the actions associated
with the current event are complete.

An event is an occurrence of a stimulus
that can trigger a state transition.

19

What is a state? (details)
Represents the mode of operation of an activity.

idleidle

busybusy

20

What is a state? (details)
 The state machine is either in a stable state or is

executing the actions specified on a transition

 A state is also a memory:
Use states to memorize a sequence of received input
States may be used instead of variables / attributes –

if it improves the state machine structure, readability or
maintainability

idleidle

busybusy

Red Yellow Green

21

What is a state? (details)
 The system must always be in exactly one state at a

given level of abstraction.
 The object must be in either off or on or delay – it cannot

be in more than one or none.

22

What is a state? (details)
Pseudostates
Initial

Final (return)

History state
 Shallow
 Deep

23

What is a transition? (details)
 A transition is
the journey from one state to another
the placeholder for behavior
activated when a event that matches the

trigger is selected from a event pool (e.g. signal
queue)

 Transitions may end in the original state
 A transition ends in
a state
Final state

 A Transition may be split using
a junction

Dialing

updateId(id)/ack();

WaitNotificationWaitNotification

24

What is a transition? (details)

action

WaitDoorClosed

doorClosed() [passed==1]

userCardOK() / ^openDoor();

[door.Status == open]

guard only

Trigger (no guard)

event and guard

WaitDoorOpened

Idle

Transition syntax
trigger [guard] / action list

Dialing

Connected

digit(n) [number complete] / connect(number);

digit(n) [number incomplete] / store digit();

trigger

parameter-list

guard

25

 A guard is some condition that must be met for the transition to be
taken.
 Guards are evaluated prior to the execution of any action.
 Guards can be:
Variable range specification, for example: [cost<50]
Concurrent state machine is in some state [IS_IN(fault)]

What is a transition? (details)

If two guards are likely to
be true at the same time,
then it is a good idea to
chain condition
connectors, so that the
order in which the guards
are tested is known.

What are guards?

26

Problem 3
Define the proper transition label based on the

following criteria:
1. The variable failure_msg is set to true and x is set to 5/y

when the event abort occurs.

2. Five time units after STATE_1 is entered, system_status is
set to level1.

STATE_1 STATE_2

STATE_1 STATE_2

27

Problem 3 (continued)
Define the proper transition label based on the

following criteria:
3. If the event start_testing occurs and power is true, the

variable light_cmd is set to true.

4. When the value of X changes, then set Z to the absolute
value of X.

STATE_1 STATE_2

STATE_1 STATE_2

28

Problem 3 - Solution
Define the proper transition label based upon the

following criteria:
1. The variable failure_msg is set to true and x is set to 5/y

when the event abort occurs.

2. Five time units after STATE_1 is entered, system_status is
set to level1.

STATE_1 STATE_2

STATE_1 STATE_2
ABORT/FAILURE_MSG=true;X=5/Y;

dly(5)/SYSTEM_STATUS=LEVEL1;

29

Problem 3 - Solution (continued)
Define the proper transition label based on the

following criteria:
3. If the event start_testing occurs and power is true, the

variable light_cmd is set to true.

4. When the value of X changes, then set Z to the absolute
value of X.

STATE_1 STATE_2

STATE_1 STATE_2

START_TESTING and [POWER]/
LIGHT_CMD=true;

ch(X)/Z=ABS(X);

30

What is a transition? (details)

 If an object is in a state S that responds to an event
evX, then it acts upon that event.

It transitions to the specified state, if the event triggers a
transition and the guard (if any) on that transition
evaluates to TRUE.
It executes any actions associated with that transition.

Events are quietly discarded if:
A transition is triggered, but the transition’s guard

evaluates to FALSE.
A transition to a conditional pseudostate is triggered, but

all exiting transition guards evaluate to FALSE.
The event does not explicitly trigger a transition or

reaction.

How are transitions handled?

31

Actions are run to completion:
 Normally actions take an insignificant amount of time to

perform

 They may occur when:
 A transition is taken
 A reaction occurs
 A state is entered
 A state is exited

What is an action? (details)

32

What is an action? (details)

Note the order of
execution of the actions
and that the guard gets
checked before any
actions are taken.

Entry actions

Exit actions

Entry / exit actions

33

What is an Event? (details)
An event is an occurrence of a stimulus that can

trigger a state transition.
Example: Successful publication of numerous papers

TenuredAssistant
Professor

Event

34

What is an Event? (details)
UML defines 4 kinds of events:
Signal Event
 Asynchronous signal received for example, evOn,

evOff
Call Event
 Operation call received, for example, opCall(a,b,c)
 This is known as a Triggered Operation in

Rational Rhapsody
Change Event
 Change in value occurred

Time Event
 Absolute time arrived
 Relative time elapsed, for example,

tm(PulseWidthTime)

35

Time event
When an object enters a state, any Timeout from

that state is started. When the Timeout expires, the
state machine receives the expiration as an event.
When an object leaves a state, any timeout that was

started on entry to that state is cancelled.
Only one timeout can be used per state; nested

states can be used if several timeouts are needed.

Entry action
Time event

Exit action

36

tm(delayTime)
 tm(delayTime) is specific to

Rational Rhapsody and
code is automatically
generated to start and stop
the timeout.
 This is equivalent to the

second state-chart where a
timer is started on entering
the state and stopped on
exiting the state. If the timer
expires, then it would send
the requested event, for
example, evDelay.

UML actually defines the
keyword after(Delay)
instead of tm(Delay).

37

Exercise: luggage belt system
Draw the state machine for a luggage belt system.

The belt is started when the start button is pressed
and runs until either the stop button is pressed or
until there is no luggage on the belt. This condition
is when no luggage has been detected in the
previous 60 seconds.

38

Exercise: Luggage belt system (Solution)

39

Hierarchy & concurrency in state machines

 Simple State Machine

 Concurrent state machine

 Hierarchical state machine

40

Concurrency
What happens when you want to look at the behavior

of two lights simultaneously?

L1OFF_L2ON

L1ON_L2OFF

L1ON_L2ON

L1OFF_L2OFF

41

Concurrency
 Allows the behavior of two lights to be viewed simultaneously.

When using concurrent states it is recommended that the states
do not interact or broadcast data.

L1ON

L1OFF
L2OFF

L2ON

TWO_LIGHTS

LIGHT_ONE LIGHT_TWO

42

concurrent state communication
 concurrent states may communicate via:
Broadcast events
 All active concurrent states receive their own copy of each

received event and are free to act on it or discard it.
Propagated events
 A transition in one concurrent state can send an event that affects

another.
Guards
 [IS_IN(state)] uses the substate of a concurrent state in a guard.

Attributes
 Since the concurrent states are of the same object, they “see” all

the attributes of the object.
IS_IN is a Rational Rhapsody C
macro that can be used to test to
see if an object is in a particular
state.

43

Composition

A substate
of armed

If the event evDisarm is received when the
object is in state armed, then irrespective of
which nested state is active, the transition will
be taken and the object will go into the off
state.

A composite state is a state which is composed of other states.
The states contained within a composite state are called substates.

A composite
state

44

Exercise: LED
Draw the state machine for an LED class that can

be in one of three modes: on, off and flashing at
1Hz.

45

Exercise: LED (Solution)

46

State machine design guidelines

 Identify and define states of
the System

 Identify and define transitions

 Identify and define events
and actions

47

Poorly formed state machine

Overlapping
guards

No default
state

Race condition

Conflicting
transitions

Use before initialization

Must be same event History not initialized

48

Exercise: mouse
Draw the state machine for the following

mouse that has three extra buttons:
One of these buttons allows the Mouse to

magnify the area around the mouse. This
magnify mode is invoked and exited by
pressing the magnify button (evMagnify).

When in the magnify mode, if the magnify
button is held (evMagnifyHeld), then the up
(evUp) and down (evDown) buttons control the
magnification, invoking operations
incMagnification() and decMagnification(). It
remains in this mode until the magnify button is
released (evMagnifyReleased).

When the magnify button is not held, the up
(evUp) and down (evDown) buttons invoke
operations up() and down().

49

Exercise: Mouse (Solution)

50

Exercise: Battery charger
 Draw the state machine for a simple Battery

Charger that can charge two batteries in
parallel. The charger has three modes: idle,
discharging, and charging.
 A button can be pressed (evStart) to start

charging the batteries. However, before each
battery can be charged, it must be
discharged.
 When each battery is discharged, it sends an

event (evBatteryA_Discharged or
evBatteryB_Discharged) to the Battery
Charger.
 When each battery is charged, it sends an

event (evBatteryA_Full or evBatteryB_Full) to
the Battery Charger.
 When both batteries are charged, the Battery

Charger returns to the idle mode.

51

Exercise: Battery charger (Solution)

52

Where are we?
How to describe behavior?
Modelling with State machine diagrams
Modelling with Activity diagrams

53

What Is an Activity Diagram?
 Describe the workflow behavior of a system
An activity diagram captures the activities and actions performed.

 It is essentially a flow chart, showing flow of control from one
activity or action to another.
 Show activities that are conditional or parallel.
 Useful for:
analyzing a use case by describing what actions need to take place

and when they should occur
describing a complicated sequential algorithm
modeling applications with parallel processes
modeling bussiness workflow

'Enter Departure Airport''Enter Departure Airport'

'Departure Airport''Departure Airport'

'Lookup city''Lookup city'

[found 0 flights][found 0 flights]

'List of alternatives''List of alternatives'

[found 1 f light][found 1 f light]

[found > 1 f light][found > 1 f light]

'Select f light''Select f light'

54

Example: Student course selection

Synchronization
Bar (Fork)

Guard
Condition

Synchronization
Bar (Join)

Decision

Concurrent
Threads

Transition

Select Course

[add course]

Check
Schedule

Check
Pre-requisites

Assign to
Course

Resolve
Conflicts

Update
Schedule

Delete Course

[checks completed] [checks failed]

[delete course]

Activity/Action

55

Activity Diagram – Basic Syntax

Fork Join

Decision Node

Object Node

Action Node

Initial Node

Activity Final

Guard

56

Activity Diagram Symbols - 1
 Initial node
 Starting point for invoking other activities. An activity may have several

starting points.

Action/Activity

 An action is an executable unit. Can also refer to a new activity diagram
- sub-activity

Activity2
if (a)
 {
 x = 7;
 }

57

Activity Diagram Symbols - 2

UpdateOrderUpdateOrder

CustomerOrderCustomerOrder

PrepareInvoice

PrepareInvoice

Class3

Object node
Used to show input to or output from an action.

object flow shows objects
being generated or used by
actions or activities in
activity diagrams

58

Activity Diagram Symbols - 3
 Decision node
 A decision node is a control node that chooses between outgoing flows.
 Each branch has its own guard condition
 “Else” may be defined for at most one outgoing transition

x

 Fork/join symbol
 Divides a flow into multiple concurrent flows. Flows can be split and

synchronized again.

true

 Guard
 Alternative from a decision node that is mutually exclusive from

the other alternatives

59

Activity Diagram Symbols - 4

Signal12

 Accept event symbol
Represents an input action.

 Send signal symbol
Represents an output action.

60

Exercise
Write an activity diagram to describe the process of

writing and posting a letter. You might or might not
have a stamp.

61

Exercise - Solution

Find Pen

Write Letter

Buy stamp

Find Paper

Address envelope Post Letter

[else]

[haveStamp]

Afix stamp

62

Review

What is system behavior?
What is a state machine diagram?

Describe the different parts of the
diagram.
Define state.
What is an activity diagram?
What kind of behavior is best suited to

be modeled with state machine
Diagrams? What kind of behavior is
best suited to be modeled with Activity
Diagrams?

