BEHAVIOUR MODELING WITH STATE
MACHINE AND ACTIVITY DIAGRAMS

Objectives

» Describe system behavior and show how to
capture it in a model.

» Demonstrate how to read and interpret:
» A state machine diagram
» An activity diagram

®

Agenda

* How to describe behavior?
* Modelling with state machine diagrams
» Modelling with Activity diagrams

®

Where are we?

= How to describe behavior?

What Is System Behavior?

» System behavior iIs how a system acts and reacts.
» It comprises the actions and activities of a system.

What Is a Behavior Model?

» A view of a system that emphasizes the behavior of the
system as a whole (as it appears to outside users)

= Uses:
» Activity Diagrams
» State machine Diagrams
» Sequence Diagrams
» Interaction Overview Diagrams

* The system/object is regarded as a black box and the
functionalities are expressed from a user’s perspective

» Behavior modeling during development:
» In the analysis phases:

= The model must capture the requirements of the system, not
the implementation solution

» In the design & implementation phases:
* The model must capture the implementation solution.

6

®

Types of behavior

» Behavior can be simple:

» Simple behavior does not depend on the object’s
history.

= Behavior can be continuous:

» Continuous behavior depends on the object’s history but
In a smooth, continuous fashion.

= Behavior can be state-driven:

» State-driven behavior means that the object’s behavior
can be divided into disjoint sets.

Simple behavior

» Simple behavior is not affected by the object’s

history:
» cCOS(X))
» getTemperature()
» setVoltage(V)
» Max(a,b)

g .[: e dx

An activity diagram can
be used to represent
simple behaviour.

FlowchartOfScale_counts) «FlowCharts
unsigned long max_count;
int i;
max_count = 0;
i=0;

[else]

[i < 256]

counts| i] > max_count]

max_count = counts[i];
[else]

Continuous behavior

» Object’'s behavior depends on history in a continuous way

» PID control loop: X_n.KaL,®Wn Ielay)
[py)
» Digital filter: dd; - +dj - 2+d; -3
J= A
» Fuzzy logic:

= Uses partial set membership to compute a smooth, continuous

output

/OO

UML is not very good
at describing
continuous behavior.

— — — 1 —

State behavior

» Useful when an object
» Exhibits discontinuous modes of behavior
» IS reactive — waits for and responds to incoming events

* For example a Light can be :

"A light can be characterized as
» Off a having 3 states — On, Off &
Flashing.
"“a’ The ﬁﬁtem c?r; onI;; reside in
one o ese states at a given
» On -\)= time. °
y } »

» Flashing é

A state machine can be
used to represent state
behaviour.

10

Where are we?

* Introduction to State machine diagrams

Quick picture of a state machine

Example: Professor

* There are a sequence of events before an instructor
becomes a University professor.

» Assistant professor (achieves tenure by producing a
number of quality publications)

» Tenure/Associate professor
» Professor (based on seniority)

\ Assistant —> Tenured ——> Professor —— Retired f
Professor

13

What Is a State Machine?

= A state machine models dynamic behavior of a
element (system, component, class, operation, etc.)

= State machines are ideal to describe reactive, event-
driven behavior.

= |t specifies
» the sequence of states in which an object can exist in.
= a finite number of states

» The events and conditions that cause transitions
between those states.

» The actions that take place when those states are reached

» States can be
» Composite
» Orthogonal

14

®

Why use state machines?

= State machines are executable

» Because state machines are formally defined, they form executable
models.

» State machines can be visualized graphically.

» State machines can be animated - their dynamic behavior
shown graphically:
» Standard debugging can be done, such as setting breakpoints, step
through, step into, and so on.

» You can focus on the abstract behavior: R
» Was the door locked with a card or a code? %l{’;ﬁiﬂ’i;ﬁf{i_:__n;‘g,%_
» Rather than, is some variable O or 17

CARD_UNLOCK

CODE_UNLOCK

= State Machines provide for easy testing.

lockedByCode]

“BlockCode = code;=...itsLoc. ..
<, itsLock.open(); = .itsDispla..

@

15

®

What Is a State Machine Diagram?

= A state machine

d i ag ram V i S u al i ZeS a Ovendew statemachine Client : inttialze {171}
state machine

» State symbol

» Transition lines
between the states

16

State Machine Diagram — Basic Syntax

States / transitions / events / actions

= \What is a state?

= \What is a transition?

=\\Vhat is an event?

=\\Vhat is an action?

A state is a distinguishable, disjoint,
orthogonal condition of existence of an
object that persists for a significant period
of time.

A transition is a response
to an event of interest moving
the object from a state to a state.

An event is an occurrence of a stimulus
that can trigger a state transition.

An action is a run-to-completion behavior.
The object does not accept or process any
new events until the actions associated
with the current event are complete.

18

®

What Is a state? (details)

» Represents the mode of operation of an activity.

®

What Is a state? (details)

* The state machine is either in a stable state or is
executing the actions specified on a transition

= A state is also a memory:
» Use states to memorize a sequence of received input

» States may be used instead of variables / attributes —
iIf it improves the state machine structure, readability or
maintainability

20

What Is a state? (details)

* The system must always be in exactly one state at a

given level of abstraction.

» The object must be in either off or on or delay — it cannot

be In more than one or none.

7

off @

\b ightOff(); tm(5000)

*—» -

=, lighton();

\ J

evDoorOpen
evDoorOpen l

4 N
on

evDoorClose

21

What Is a state? (details)

= Pseudostates

» Initial T

» Final (return)

» History state
= Shallow %
=" Deep

What is a transition? (detalils)

= A transition is
» the journey from one state to another
» the placeholder for behavior

» activated when a event that matches the
trigger is selected from a event pool (e.g. signal
gueue)

* Transitions may end in the original state

= A transition ends in |

updateld(id)/ack();

) a state [W —

) &

» Final state

» A Transition may be split using
» a junction

23

What is a transition? (detalils)

" Transition syntax
g trigger [guard | / action list

trigger

Ji parameter-list
digit(n) [number incomplete] / store digit(); Trigger {1\0 guard) “

F \ userCardO / “openDoor();
guard action
{WaitDoorOpened] doorCIosed;)[assed==1]
7/ [number complete] / connect(number); event and guard

[door.Status =<z open |

guard only
Connected
{ WaitDoorClosed J

24

®

What Is a transition? (details)

What are guards?

= A guard is some condition that must be met for the transition to be

taken.

= Guards are evaluated prior to the execution of any action.

= Guards can be:

» Variable range specification, for example: [cost<50]

» Concurrent state machine is in some state [IS_IN(fault)]

y.

If two guards are likely to
be true at the same time,
then it is a good idea to
chain condition
connectors, so that the
order in which the guards
are tested is known.

v

off

evOon

25

[t<10]

Red

[else]

[t<20]

Green

Blue

®

Problem 3

» Define the proper transition label based on the
following criteria:

1. The variable failure_msg is set to true and x is set to 5/y
when the event abort occurs.

[STATE_1 } » STATE_2]

2. Five time units after STATE_1 is entered, system_status Is
set to levell.

[STATE_1 } { STATE_2]

26

Problem 3 (continued)

» Define the proper transition label based on the
following criteria:

3. If the event start_testing occurs and power is true, the
variable light_cmd is set to true.

[STATE_1 } »1 STATE_2]

4. When the value of X changes, then set Z to the absolute
value of X.

[STATE_1 } { STATE_2]

27

Problem 3 - Solution

» Define the proper transition label based upon the

following criteria:

1. The variable failure_msg is set to true and x is set to 5/y

when the event abort occurs.

] ABORT/FAILURE_MSG=true;X=5/Y;

STATE_1
e

» STATE 2

J

2. Five time units after STATE_1 is entered, system_status Is

set to levell.

dly(5)/SYSTEM_STATUS=LEVEL;

[STATE_1 }

28

| STATE_2

J

Problem 3 - Solution (continued)

» Define the proper transition label based on the
following criteria:

3. If the event start_testing occurs and power is true, the

variable light_cmd is set to true.

[STATE_1

START_TESTING and [POWER]/

LIGHT_CMD=true;

)
)

» STATE 2

J

4. When the value of X changes, then set Z to the absolute

value of X.

[STATE_1

ch(X)/Z=ABS(X);

)
J

29

» STATE 2

J

What Is a transition? (details)

How are transitions handled?

= [f an object is Iin a state S that responds to an event
evX, then it acts upon that event.

» It transitions to the specified state, if the event triggers a
transition and the guard (if any) on that transition
evaluates to TRUE. N

» It executes any actions associated with that transition.

» Events are quietly discarded If:

» A transition is triggered, but the transition’s guard
evaluates to FALSE.

» A transition to a conditional pseudostate is triggered, but
all exiting transition guards evaluate to FALSE.

» The event does not explicitly trigger a transition or
reaction.

30

What Is an action? (detalils)

= Actions are run to completion:

» Normally actions take an insignificant amount of time to

perform

* They may occur when:
» A transition is taken
» A reaction occurs
» A state is entered
» A state is exited

31

What Is an action? (detalls)

Entry / exit actions

Entry actions

L

evRed[isAllowed())/

RED
“x,redOn();
2, redOff();

Note the order of
execution of the actions
and that the guard gets
checked before any
actions are taken.

N

GREEN " log("Green to Red");
\bgreenOn(),
<, greenOff(); | o
evGreen/
log("Red to Green");

Exit actions

32

®

What is an Event? (detalls)

= An event iIs an occurrence of a stimulus that can
trigger a state transition.

» Example: Successful publication of numerous papers

Assistant Event

Tenured
Professor

33

®

What is an Event? (detalls)

= UML defines 4 kinds of events:
» Sighal Event

= Asynchronous signal received for example, evOn,
evOff

» Call Event
= Operation call received, for example, opCall(a,b,c)

» This is known as a Triggered Operation in
Rational Rhapsody

» Change Event

= Change in value occurred
» Time Event

= Absolute time arrived

» Relative time elapsed, for example,
tm(PulseWidthTime)

34

Time event

*» When an object enters a state, any Timeout from
that state is started. When the Timeout expires, the
state machine receives the expiration as an event.

= \When an object leaves a state, any timeout that was
started on entry to that state is cancelled.

* Only one timeout can be used per state; nested
states can be used If several timeouts are needed.

off

o—»

Entry action — S
> Elig ;

L=, lighton();

i

tm(5000)

evDoorOpen

Exit action / o l

on

|

CourtesyLight

-

(delay |

evDoorOpen
I | i lightOn(): void
) S lightOff():void

AP T EevDoorOpenO.vond

35

EevDoorCloseO:void

@

tm(delayTime)

» tm(delayTime) is specific to
Rational Rhapsody and

code is automatically

generated to start and stop

the timeout.

* This is equivalent to the
second state-chart where a
timer is started on entering
the state and stopped on
exiting the state. If the timer
expires, then it would send
the requested event, for

example, evDelay.

A

UML actually defines the
keyword after(Delay)
instead of tm(Delay).

off

&—» 1 lightOff();

36

=, lightOn();

tm(5000)

evDoorOpen

delay

;

evDoorOpen l

on

evDoorClose T

off

=
=)

®—» . lightOff();

<}, lighton();

evDelay

]

evDoorOpenl

evDoorOpen

delay

*y
(=)
\&

<, stopTimer;

| on

|

%, startTimer(5000,evDelay);

evDoorClose T

@

Exercise: luggage belt system

» Draw the state machine for a luggage belt system.
The belt is started when the start button is pressed
and runs until either the stop button is pressed or
until there is no luggage on the belt. This condition

IS when no luggage has been detected in the
previous 60 seconds.

LuggageBelt i

E evStart():void

E evDetect():void
E evStop():void
ﬁ beltOn():void
ﬁ beltOff():void

Exercise: Luggage belt system (Solution)

I

evStart

C off @
5 beltOff();
=, belton():

LuggageBelt =

T

B evstart():void
E evDetect():void
ﬁ evStop():void
ﬁ beltOn():void
ﬁ beltOff():void

>

evDetect
on b
>
evStop

°

tm(60s)

Hierarchy & concurrency in state machines

. Simple State Machine

] .
Concurrent state machine

| . . .
Hierarchical state machine

39

El

"History Cormector”

52
E2
[257
I s1 82 I N
511 , 521
1 E F2 or 1
e |(E/m iT2er ll®
h 4 : b 4
812 522
A
,"/""\/l
83
1 E3|(Ea
E1
51 . . 52
E2
o/

[m
E)

Concurrency

» What happens when you want to look at the behavior
of two lights simultaneously?

|

\
[L1ON_L20N L1OFF_L20ON }

£
[L1ON_L20FF L1OFF_L20OFF }
J g

Concurrency

= Allows the behavior of two lights to be viewed simultaneously.

TWO_LIGHTS

-

AGHT_ONE

L1ON

L1OFF

LIGHT_TWO

L20N

L20FF

~

%

» When using concurrent states it is recommended that the states
do not interact or broadcast data.

41

concurrent state communication

* concurrent states may communicate via:

» Broadcast events

= All active concurrent states receive their own copy of each
received event and are free to act on it or discard it.

» Propagated events

= A fransition in one concurrent state can send an event that affects

another.
» Guards

= [IS_IN(state)] uses the substate of a concurrent state in a guard.

» Attributes

= Since the concurrent states are of the same object, they “see” all

the attributes of the object.

IS _IN is a Rational Rhapsody C
macro that can be used to test to
see if an object is in a particular
state.

42

Composition

A composite state is a state which is composed of other states.
The states contained within a composite state are called substates.

A composite
state

armed @
evTemporise ;
exiting @ '
tm{EXIT_TIME)
“itsLed[RED].flash(100); A substate
. of armed
active @l
Ifinit[); evDoor “itsLed[RED].on(): ~
off entering & fy
: “YitsLed[RED] flash(100); SPISILENCE_TIME)
3
evl ment silence
eviovement
elesarr intrusion 'y
5L OUT_PORT(cp)->setSiren(ON);

tm{ENTRY_TIME)

R, OUT_PORT(cp)->setSiren(OFF);

tm{ALARM_TIME)

state.

If the event evDisarm is received when the
object is in state armed, then irrespective of
which nested state is active, the transition will
be taken and the object will go into the off

43

®

Exercise: LED

= Draw the state machine for an LED class that can
be in one of three modes: on, off and flashing at
1Hz.

Led @

E evOff():void
E evOn():void
E evFlash():void
@ on():void

@ off():void

Exercise: LED (Solution)

Led

E evOff():void
E evOn():void
E evFlash():void
ﬁ on():void

ﬁ off():void

/

running

evOff

!

always_off

@)

\»

"% off();

\,

“gon();

.

j [always_on
J

flashing

\b

evFlash

[flash_on &}

"5 on0;

tm(600)

tm(400)

(flash_off &)

"B off();

~

-

45

®

State machine design guidelines

= |dentify and define states of
the System

= |dentify and define transitions

FillCoffee/CoffeeQK;

= |dentify and define events
and actions

®

Poorly formed state machi

ne

Race condition

Must be same event

\

History not initialized

==

No default
state

L

Conflicting
transitions

“StatechartOfBadDesign

Wte_A

:

S

te_A1b

state Ala ﬂb state_A2a
NState_ _
— ev2/x=0;

evl/x*=3;

state_A2b

Overlapping
guards

/ v
state_B

ev2

evd

evs

state_E

o> state_E1

V6 i T ev/

state_E2

@

state_D

[amount<=0]

evCoin/
amount=params;>aCoin; L

state_C

[amount=>0]

47

)

Use before initialization

®

Exercise: mouse

» Draw the state machine for the following
mouse that has three extra buttons:

» One of these buttons allows the Mouse to
magnify the area around the mouse. This
magnify mode is invoked and exited by
pressing the magnify button (evMagnify).

» When in the magnify mode, if the magnify
button is held (evMagnifyHeld), then the up

Mouse &

& evUp():void
& evDown():void
& evMagnify():void
& evMagnifyHeld():void
B8 evMagnifyReleased():void
&5 up():void
&5 down():void
& incMagnification():void
&5 decMagnification():void
&g magnifyOn():void
&l magnify Off():void

(evUp) and down (evDown) buttons control the

magnification, invoking operations

IncMagnification() and decMagnification(). It

remains in this mode until the magnify button is

released (evMagnifyReleased).

» When the magnify button is not held, the up
(evUp) and down (evDown) buttons invoke
operations up() and down().

48

\

Exercise: Mouse (Solution)

Mouse e

d running @)
2 evUp/up();
& evDown/down();
i normal @* evMagnify | magnify
“x, magnifyOff(); _—
=, magnifyOn(); evMagnify
evMagnifyReleased
evMagnifyHeld
fie -
changeMagnification (2

() evUp/incMagnification();
{'-;3-_;' evDown/decMagnification();

B evUp():void
B8 evDown():void
B evMagnify():void
B evMagnifyHeld():void
B evMagnifyReleased():void
&5 up():void
&g down():void
&gl incMagnification():void
&5 decMagnification():void
& magnifyOn():void
& magnify Off():void

49

1T
.|l|
L
]

Exercise: Battery charger

= Draw the state machine for a simple Battery
Charger that can charge two batteries in
parallel. The charger has three modes: idle,
discharging, and charging.

= A button can be pressed (evStart) to start
charging the batteries. However, before each
battery can be charged, it must be
discharged.

= When each battery is discharged, it sends an
event (evBatteryA Discharged or
evBatteryB Discharged) to the Battery
Charger.

* When each battery is charged, it sends an
event (evBatteryA Full or evBatteryB_Full) to
the Battery Charger.

= \When both batteries are charged, the Battery
Charger returns to the idle mode.

50

BatteryCharger =)

&yl chargeBatteryA():void

&x chargeBatteryB():void

& dischargeBatteryA():void

&5l dischargeBatteryB():void

& evStart():void

& evBatteryA_Discharged():void
B evBatteryA_Charged():void

& evBatteryB_Discharged():void
&l evBatteryB_Charged():void

L
A
\
A

Exercise: Battery charger (Solution)

BatteryCharger &

&yl chargeBatteryA():void

&5 chargeBatteryB():void

&y dischargeBatteryA():void

&5 dischargeBatteryB():void

& evStart():void

& evBatteryA_Discharged():void
& evBatteryA_Charged():void
ﬁevBatteryB_Discharged():void
& evBatteryB_Charged():void

evBatteryA_Charged

charged

evBatteryB_Charged

charged

StatechartOfBatteryCharger)
discharging_and_charging |
BatteryA | BatteryB
discharging & : discharging @
dischargeBatteryA(); i
T vSiat B g ryA() l "% dischargeBatteryB()
Fy [
evBatteryA_Discharged I evBatteryB_Discharged
b h 4
charging @ I charging @
"% chargeBatteryA() : "% chargeBatteryB()
]

51

®

Where are we?

» Modelling with Activity diagrams

What Is an Activity Diagram?

» Describe the workflow behavior of a system
» An activity diagram captures the activities and actions performed.

* |t is essentially a flow chart, showing flow of control from one
activity or action to another.

= Show activities that are conditional or parallel.

= Useful for:

» analyzing a use case by describing what actions need to take place
and when they should occur

» describing a complicated sequential algorithm
» modeling applications with parallel processes
» modeling bussiness workflow

[found 1 flight]

‘% 'Enter Departure Airport' % '‘Departure Airport' % 'Lookup city"

[found O flights]

[found > 1 flight]

'List of alternatives' % 'Select flight'

53

Example: Student course selection

v

Select Course
Concurrent ¢

Threads [delete course]
7~
[eav\ourse]

Decision

Delete Course

/ Activity/Action

Check Check
Guard Schedule Pre-requisites

Condition \ \ /
[checks completed] C\l/ [checks failed]

Assign to Resolve
Course Conflicts
Update

Schedule

I

Synchronization
Bar (Fork)

Synchronization
Bar (Join)

S

O«

54

Transition

1T
I
]

Activity Diagram — Basic Syntax

Initial Node

RequestedOrder

/

|

.—{ '‘Receive QOrder' J ~e————IAction Node

LS
'Fill Order’'
oz

|

|Object Node

Join

'‘Ship Order’
'‘Close Order']e@

N

'Invoice order’]

[Rejected]

h

[Decision Node

55

Activity Final

1T
.|l|
L
]

Activity Diagram Symbols - 1

® - Initial node

4 Starting point for invoking other activities. An activity may have several
starting points.

.Action/Activity

Activity2
if (a)

4 An action is an executable unit. Can also refer to a new activity diagram

" sub-activity

56

®

Activity Diagram Symbols - 2

Class3

.Object node

4 Used to show input to or output from an action.

w
UpdateOrder
=3

object flow shows objects

being generated or used by

actions or activities in
ctivity diagrams

CustomerOrder

[Preparelnvoice F

57

1T
.|l|
L
]

Activity Diagram Symbols - 3

" Decision node
<)> 4 A decision node is a control node that chooses between outgoing flows.
4 Each branch has its own guard condition
4 “Else” may be defined for at most one outgoing transition
l " Guard
[e] 4 Alternative from a decision node that is mutually exclusive from

the other alternatives

. Fork/join symbol

4 Divides a flow into multiple concurrent flows. Flows can be split and
synchronized again.

58

®

Activity Diagram Symbols - 4

SignallZf

D

Accept event symbol

4 Represents an input action.

Send signal symbol

4 Represents an output action.

59

®

Exercise

= Write an activity diagram to describe the process of
writing and posting a letter. You might or might not
have a stamp.

®

Exercise - Solution

®

e ~

o)
NI

[Write Letter)

[else])
Buy stamp
[haveStamp]

Gddress envelope Nﬁx stamp HPOS'[Letter]—»@
61

Review

» What is system behavior?

» \What Is a state machine diagram?
Describe the different parts of the
diagram.

» Define state.
* \What is an activity diagram?

» What kind of behavior is best suited to
ne modeled with state machine
Diagrams? What kind of behavior is
nest suited to be modeled with Activity
Dlagrams?

