
SF1624 Algebra och geometri
Lösningsf̈orslag till tentamen 2011-03-16

DEL A

(1) (a) Använd Gauss-Jordanelimination för att beräknainversen av matrisen

A =





0 1 1
−1 3 1

1 −1 0



 .

(3)
(b) Använd resultatet från (a) för att lösa matrisekvationenXA = B, där

B =

[

0 1 2
5 −3 1

]

.

(1)

Lösning. (a) Vi kan beräkna inversenA−1 genom Gauss-Jordanelimination på totalma-
trisen

[

A I
]

vilket ger





0 1 1 1 0 0
−1 3 1 0 1 0

1 −1 0 0 0 1



 ∼





−r2

r1

r3 + r2



 ∼





1 −3 −1 0 −1 0
0 1 1 1 0 0
0 2 1 0 1 1



 ∼





r1 + 3r2

r2

r3 − 2r2





∼





1 0 2 3 −1 0
0 1 1 1 0 0
0 0 −1 −2 1 1



 ∼





r1 + 2r3

r2 + r3

−r3



 ∼





1 0 0 −1 1 2
0 1 0 −1 1 1
0 0 1 2 −1 −1



 .

Alltså har vi fått att

A−1 =





−1 1 2
−1 1 1

2 −1 −1



 .
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(b) För att lösa matrisekvationenXA = B multiplicerar vi bägge sidor medA−1 från
höger och fårX = BA−1. Med hjälp av resultatet från (a) kan vi nu beräkna

X =

[

0 1 2
5 −3 1

]





−1 1 2
−1 1 1

2 −1 −1





=

[

0 − 1 + 4 0 + 1 − 2 0 + 1 − 2
−5 + 3 + 2 5 − 3 − 1 10 − 3 − 1

]

=

[

3 −1 −1
0 1 6

]

.

Vi kan kontrollera räkningarna genom att se att

XA =

[

3 −1 −1
0 1 6

]





0 1 1
−1 3 1

1 −1 0





=

[

0 + 1 − 1 3 − 3 + 1 3 − 1 + 0
0 − 1 + 6 0 + 3 − 6 0 + 1 + 0

]

=

[

0 1 2
5 −3 1

]

= B.

�

Svar:

(a) A−1 =





−1 1 2
−1 1 1

2 −1 −1



.

(b) Lösningen ärX =

[

3 −1 −1
0 1 6

]

.
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(2) Låt matrisen

A =









1 2 3
1 5 7

−1 1 1
3 0 1









representera en linjär avbildningT : R
3 → R

4 med avseende på standardbasen.
(a) BeräknaT (1, 2,−2). (1)
(b) Bestämkärnan1 till T , dvs nollrummet till matrisenA. (2)
(c) Visa attT (1, 0, 0), T (0, 1, 0) ochT (0, 0, 1) är linjärt beroende. (1)

Lösning.a). För att bestämmaT (1, 2,−2) måste vi utföra matrismultiplikationenA ·
[

1 2 −2
]T

, därA är (4 × 3)-matrisen ovan. Vi erhåller








1 2 3
1 5 7

−1 1 1
3 0 1













1
2

−2



 =









1 · 1 + 2 · 2 + 3 · (−2)
1 · 1 + 5 · 2 + 7 · (−2)

−1 · 1 + 1 · 2 + 1 · (−2)
3 · 1 + 0 · 2 + 1 · (−2)









=









−1
−3
−1

1









dvs
T (1, 2,−2) = (−1,−3,−1, 1).

Vi utför Gauss-Jordanelminination på matrisenA för att få fram nollrummet. Vi använder
första raden för att eliminera i första kolonnen och får









1 2 3
1 5 7

−1 1 1
3 0 1









∼









r1

r2 − r1

r3 + r1

r4 − 3r1









∼









1 2 3
0 3 4
0 3 4
0 −6 −8









∼









r1 − 2

3
r2

1

3
r2

r3 − r2

r4 + 2r2









∼









1 0 1

3

0 1 4

3

0 0 0
0 0 0









.

Vi har därmed en fri variabel i den tredje kolonnen och inför en parameter så attx3 = 3t.
Vi kan sedan använda de två nollskilda raderna för att läsa avx1 = −1

3
x3 = −t och

x2 = −4

3
x3 = −4t. Därmed består nollrummet av alla punkter(x1, x2, x3) i R

3 på
formen(−t,−4t, 3t) därt är en reell parameter.
Vi kan använda satsen från boken som säger att dimensionen av bildrummet till en av-
bildningT plus dimensionen av kärnan tillT är lika med antalet kolonner i matrisenA.
Bildrummet ges spänns upp av vektorernaT (1, 0, 0), T (0, 1, 0) ochT (0, 0, 1). Om dessa
vore linjärtoberoendeskulle bildrummet ha dimension tre, vilket medför att dimensionen
till kärnan är noll, men vi såg i del (b) att kärnan har dimension ett eftersom det krävdes
en parameter.

Ett annat sätt är att se att

aT (1, 0, 0) + bT (0, 1, 0) + cT (0, 0, 1) = T (a, b, c)

och därmed är de tre vektorerna linjärt beroende precis om det finnsa, b ochc som inte
alla är noll ochT (a, b, c) = 0. Detta var vad vi såg att det fanns i uppgift (b), tex är

1eng.kernel
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T (−1,−4, 3) = 0 och därmed har vi det linjära beroendet

−T (1, 0, 0) − 4T (0, 1, 0) + 3T (0, 0, 1) = 0.

�

Svar:
(a) T (1, 2,−2) = (−1,−3,−1, 1).
(b) Kärnan ges av alla vektorer på formen(x1, x2, x3) = (−t,−4t, t), därt är en reell

parameter.
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(3) LåtT vara den linjära avbildning frånR2 till R
2 som ges av standardmatrisen

A =

[

1 4
0 −1

]

(a) Bestäm standardmatrisen för sammansättningenT ◦ T . (1)
(b) Bestäm en bas förR2 som består av egenvektorer tillA. (3)

Lösning. (a) Standardmatrisen för sammansättningen är lika med matrisprodukten av
standardmatriserna. Vi får alltså att standardmatrisenför T ◦ T ges av

A2 =

[

1 4
0 −1

] [

1 4
0 −1

]

=

[

1 · 1 + 4 · 0 1 · 4 + 4 · (−1)
0 · 1 − 1 · 0 0 · 4 − 1 · (−1)

]

=

[

1 0
0 1

]

.

(b) Eftersom matrisenA är övertriangulär kan vi läsa av egenvärdena som diagona-
lelementen,λ = 1 och λ = −1. Vi hittar sedan egenvektorer till motsvarande
egenvärden genom att lösa ekvationssystemet med totalmatris

[

A − λI 0
]

. För
λ = 1 får vi

[

0 4 0
0 −2 0

]

∼
[

1

4
r1

r2 + 1

2
r1

]

∼
[

0 1 0
0 0 0

]

och vi kan läsa av lösningarna som(t, 0) för en reell parametert.
Förλ = −1 får vi

[

2 4 0
0 0 0

]

∼
[

1

2
r1

r2

]

∼
[

1 2 0
0 0 0

]

och vi kan läsa av lösningarna som(−2t, t) för en reell parametert.
En bas av egenvektorer ges nu av en egenvektor för varje egenvärde eftersom vi bara
behöver två basvektorer iR

2. Alltså kan vi välja(1, 0) med egenvärde1 och(−2, 1)
med egenvärde−1.

�

Svar:
(a) Standardmatrisen förT ◦ T är identitetmatrisen.
(b) (1, 0) och(−2, 1) utgör tillsammans en bas förR

2 av egenvektorer tillA.
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DEL B

(4) Om vi har en triangel med sidlängdernaa, b ochc kan vi beräkna arean som1
4

√

− det(A)
där

A =









0 1 1 1
1 0 a2 b2

1 a2 0 c2

1 b2 c2 0









.

Använd denna formel för att beräkna arean av en triangel med sidlängderna
√

2,
√

3 och
2
√

2. (4)

Lösning.När vi sätter in värdenaa =
√

2, b =
√

3 ochc = 2
√

2 i matrisenA får vi

A =









0 1 1 1
1 0 2 3
1 2 0 8
1 3 8 0









och vi kan beräknadet(A) med hjälp av radoperationer som

det(A) =

∣

∣

∣

∣

∣

∣

∣

∣

0 1 1 1
1 0 2 3
1 2 0 8
1 3 8 0

∣

∣

∣

∣

∣

∣

∣

∣

= −

∣

∣

∣

∣

∣

∣

∣

∣

r2

r1

r3 − r1 − 2r2

r4 − r2 − 3r3

∣

∣

∣

∣

∣

∣

∣

∣

= −

∣

∣

∣

∣

∣

∣

∣

∣

1 0 2 3
0 1 1 1
0 0 −4 3
0 0 3 −6

∣

∣

∣

∣

∣

∣

∣

∣

= −

∣

∣

∣

∣

∣

∣

∣

∣

r1

r2

r3

r4 + 3

4
r2

∣

∣

∣

∣

∣

∣

∣

∣

= −

∣

∣

∣

∣

∣

∣

∣

∣

1 0 2 3
0 1 1 1
0 0 −4 3
0 0 0 −15

4

∣

∣

∣

∣

∣

∣

∣

∣

= −(4) ·
(

−15

4

)

= −15.

Alltså ges arean av triangeln enligt formeln av1

4

√
15. �

Svar: Arean av triangeln är enligt formeln1
4

√
15 areaenheter.
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(5) StuderaR4 med den vanliga euklidiska inre produkten〈u,v〉 = u · v. Låt W vara det
delrum till R4 som ges av lösningsmängden till ekvationen

x1 − x2 + 2x3 − 3x4 = 0.

(a) Bestäm en bas förW . (1)
(b) Använd Gram-Schmidts metod för att utgående från basen i (a) hitta en ortonormal

bas förW . (3)

Lösning. (a) Vi bestämmer först en bas förW . Skriv lösningsmängden till ekvationen
x1 − x2 + 2x3 − 3x4 = 0 på parameterform genom att sättax2 = r, x3 = s och
x4 = t. Vi får att















x1 = r − 2s + 3t
x2 = r
x3 = s
x4 = t

Detta kan skrivas

(x1, x2, x3, x4) = r(1, 1, 0, 0) + s(−2, 0, 1, 0) + t(3, 0, 0, 1).

En bas förW utgörs alltså av vektorernau1 = (1, 1, 0, 0), u2 = (−2, 0, 1, 0) och
u3 = (3, 0, 0, 1).

(b) Vi använder nu Gram-Schmidts ortogonaliseringprocedur för att få en ortogonal bas.
Steg 1:

v1 = u1 = (1, 1, 0, 0).

Steg 2:

v2 = u2 −
〈u2,v1〉
‖v1‖2

v1 = (−2, 0, 1, 0) − −2

2
(1, 1, 0, 0) = (−1, 1, 1, 0).

Steg 3:

v3 = u3 −
〈u3,v1〉
‖v1‖2

v1 −
〈u3,v2〉
‖v2‖2

v2

= (3, 0, 0, 1)− 3

2
(1, 1, 0, 0)− −3

3
(−1, 1, 1, 0)

= (
1

2
,−1

2
, 1, 1) =

1

2
(1,−1, 2, 2).

Vi erhåller en ortonormal bas genom att normera de erhållna vektorerna(1, 1, 0, 0),
(1,−1, 1, 0) och 1

2
(1,−1, 2, 2); basen blir

{

1√
2
(1, 1, 0, 0),

1√
3
(1,−1, 1, 0),

1√
10

(1,−1, 2, 2)

}

.

�

Svar:
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(a) En bas förW ges av vektorernau1 = (1, 1, 0, 0), u2 = (−2, 0, 1, 0) och u3 =
(3, 0, 0, 1).

(b) En ortonormal bas förW ges av vektorernaw1 = 1√
2
(1, 1, 0, 0),w2 = 1√

3
(1,−1, 1, 0)

ochw3 = 1√
10

(1,−1, 2, 2).
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(6) (a) Redogör för hur vi kan bestämma den punktQ i ett givet plan med ekvation på
formenax + by + cz = d som ligger närmast en given punktP i rummet.
Illustrera metoden genom att för var och en av de tre punkterna P1 = (1, 1, 0),
P2 = (1, 1, 1) ochP3 = (2,−1,−1) bestämma motsvarande närmsta punkt i planet
med ekvationenx − 2y + 2z = 1. (3)

(b) Använd räkningarna ovan för att avgöra vilka (om någon) av punkternaP1, P2 och
P3 som ligger på samma sida av planet som origo. (1)

Lösning. (a) Den sökta punktenQ i planet karakteriseras av att vektornQP är vinkelrät
mot planet och därmed parallell med planets normalvektorn = (a, b, c).

planets

s

Q (sökt punkt)

QP

P (given punkt)

n
6

6

Det finns två naturliga, och besläktade, metoder att best¨ammaQ, och vi beskriver
bägge.
(Som bekant ska man dock som tentand bara geen lösning!)
Eftersom metoderna ska användas för flera olika givna punkterPi ändrar vi beteck-
ningarna något och antar att man ska bestämma den punktQi i planet som ligger
närmast den givna punktenPi = (xi, yi, zi).
Metod 1, “projektion p å normalvektorn n”:

planets

s

s

s

Qi

PiQi = −RSi

Pi

n

Si

R

6

�
�

�
�

��6

?

I denna metod bestäms först en punktR i det givna planet, exempelvis genom att lösa
ekvationenax + by + cz = d med Gauss-elimination och sätta de fria variablerna
till 0. Det ger till resultat en punktR = (x0, y0, z0), där alltsåax0 + by0 + cz0 = d.
Nästa steg är att projicera vektorn

RPi = (xi−x0, yi−y0, zi−z0)

på planets normalvektorn, vilket ger till resultat en vektor

RSi =
RPi · n
n · n · n = si ·(a, b, c),

där

si =
RPi · n
n · n =

a(xi−x0) + b(yi−y0) + c(zi−z0)

a2 + b2 + c2
.
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Slutligen erhålls den sökta punktenQi ur sambandet (se figuren)

Qi = Pi + PiQi = Pi − RSi = (xi, yi, zi) − si ·(a, b, c),

medsi enligt ovan.
Metod 2, “projektion direkt p å planet mha normalvektorn n”:

planets

s

Qi

Pi

n

n
6

6

I denna metod bildar man först en linje som går genom den givna punktenPi =
(xi, yi, zi) och som har riktningsvektornn = (a, b, c), så att linjen är vinkelrät mot
det givna planet. Ekvationen för denna linje på parameterform är

(x, y, z) = (xi, yi, zi) + t·(a, b, c).

Vår sökta punktQi utgör skärningspunkten mellan linjen och det givna planet, och
den erhålls genom att bestämma det värdeti på parameternt för vilket
ax + by + cz = d, dvs (a, b, c) · ((xi, yi, zi) + t·(a, b, c)) = d, vilket ger att

ti =
d − (a, b, c) · (xi, yi, zi)

(a, b, c) · (a, b, c)
=

di − axi − byi − czi

a2 + b2 + c2
.

Därmed är vår sökta punktQi = (xi, yi, zi) + ti ·(a, b, c), medti enligt ovan.
Notera att metoderna ger samma resultat, tyti = −si (eftersomax0+by0+cz0 = d).
Insättning av siffror: Vi har i uppgiften att(a, b, c) = (1,−2, 2), d = 1,

P1 = (x1, y1, z1) = (1, 1, 0),
P2 = (x2, y2, z2) = (1, 1, 1),
P3 = (x3, y3, z3) = (2,−1,−1)

och, om man använder metod 1,R = (x0, y0, z0) = (1, 0, 0).
Insättning i exempelvis metod 2 ger attti = (1 − xi + 2yi − 2zi)/9,
och därmed ärt1 = 2/9, t2 = 0 ocht3 = −1/9, så att

Q1 = (1, 1, 0) + (2/9) · (1,−2, 2) = (11/9, 5/9, 4/9),
Q2 = (1, 1, 1) + 0 · (1,−2, 2) = (1, 1, 1) = P2,
Q3 = (2,−1,−1) − (1/9) · (1,−2, 2) = (17/9,−7/9,−11/9).

(b) Om si > 0 (dvs ti < 0) så liggerPi på den sida av planet som normalvektornn

pekar åt, omsi < 0 (dvs ti > 0) så liggerPi på den motsatta sidan, och omsi = 0
(dvsti = 0) så liggerPi i planet.
Eftersom i vårt fallt1 > 0, t2 = 0 ocht3 < 0 så ligger punkternaP1 ochP3 på varsin
sida av planet medanP2 ligger i planet (så attQ2 = P2).
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Om man sätterP4 = (0, 0, 0) i formeln ovan så erhålls attt4 = 1/9 > 0, och därmed
är det endastP1 av de tre givna punkterna som ligger på samma sida om planet som
origo.

�

Svar:
(a) De närmaste punkterna ärQ1 = (11/9, 5/9, 4/9), Q2 = P2 = (1, 1, 1) respektive

Q3 = (17/9,−7/9,−11/9).
(b) P1 ligger på samma sida om planet som origo, men inteP2 ochP3.
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DEL C

(7) LåtA vara en symmetrisk3×3-matris som har ett egenvärde som är lika med2. Anta att
alla vektorer som uppfyllerx − 2y + z = 0 är egenvektorer tillA med egenvärdet1.
(a) Bestäm en egenvektor med egenvärde2. (1)
(b) Bestäm matrisenA. (Ledning: Börja med att bestämma en ortogonal bas förR

3 som
består av egenvektorer tillA.) (3)

Lösning. (a) Eftersom egenvekorer som hör till olika egenvärden till symmetriska ma-
triser är ortogonala mot varandra måste egenvektorerna med egenvärde2 vara nor-
malvektorer till planet av egenvektorer med egenvärde1. Vi kan läsa av en normal-
vektor som koefficienterna i ekvatinonen för planet och får därmed egenvektorerna
med egenvärde2 somt(1,−2, 1), därt 6= 0.

(b) Vi kan nu finna en ortogonal bas av egenvektorer genom att välja två ortogonala
vektorer i planetx − 2y + z = 0. Den ena kan kan väljas som(1, 1, 1) och vi
kan få den andra genom kryssprodukten med(1,−2, 1), dvs(1, 1, 1)× (1,−2, 1) =
(1 − (−2),−1 − (−1),−2 − 1) = (3, 0,−3).
Vi kan nu med ett ortogonalt basbyte med matrisen

P =





1√
6

1√
3

1√
2

− 2√
6

1√
3

0
1√
6

1√
3

− 1√
2





diagonaliseraA till

PTAP =





2 0 0
0 1 0
0 0 1



 .

Alltså kan vi beräknaA genom

A = P





2 0 0
0 1 0
0 0 1



PT

=





1√
6

1√
3

1√
2

− 2√
6

1√
3

0
1√
6

1√
3

− 1√
2









2 0 0
0 1 0
0 0 1









1√
6

− 2√
6

1√
6

1√
3

1√
3

1√
3

1√
2

0 − 1√
2





= 1

6





7 −2 1
−2 10 −2

1 −2 7





En alternativ metod är att se attA−I har ett tvådimensionellt egenrum med egenvärde
0, dvs ett tvådimensionelt nollrum, och ett endimensionellt egenrum med egenvärde
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ett som ges av linjen med rikntningsvektor(1,−2, 1). Dessutom är dessa båda egen-
rum ortogonala mot varandra. Alltså har viA−I är standardmatrisen för den ortogo-
nala projektionen på vektornu = (1,−2, 1). Om vi tänker påu som en kolonnmatris
kan därförA − I skrivas som

1

‖u‖2
u

T
u =

1

12 + (−2)2 + 1

[

1 −2 1
]





1
−2

1



 =
1

6





1 −2 1
−2 4 −2

1 −2 1



 .

Vi får nu A somI + (A − I), dvs

A =





1 0 0
0 0 0
0 0 1



 +
1

6





1 −2 1
−2 4 −2

1 −2 1



 =
1

6





7 −2 1
−2 10 −2

1 −2 7



 .

�

Svar:
(a) (1,−2, 1) är en egenvektor med egenvärde2.
(b) Matrisen ges av

A =
1

6





7 −2 1
−2 10 −2

1 −2 7



 .
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(8) På campus finns det två studentpubarA ochB. Varje fredag fördelar sig studenterna efter
följande mönster, som enbart beror på pubvalet förra helg. Av de studenter som var på
pubA kommer60% välja pubA igen, medan de resterande40% väljer pubB. Av dem
som var på pubB förra helgen kommer enbart20% välja pubB, medan80% väljer pub
A. Vid terminstart väljer50% av studenterna pubA och50% av studenterna väljer pubB.
(a) Låt an vara andelen studenter som väljer pubA fredagn och bn vara andelen stu-

denter som väljer pubB fredagn. Visa att vi då har sambandet
[

an+1

bn+1

]

=

[

0,60 0,80
0,40 0,20

] [

an

bn

]

för n ≥ 0 om vi numrerar fredagarna0, 1, 2 . . . . (1)
(b) Vad blir fördelningen av studenterna på de olika pubarna vid slutet av studietiden

(d.v.s. efter en mycket lång tid)? (3)

Lösning. (a) Enligt texten har vi attan+1 = 0,60an+0,80bn ochbn+1 = 0,40an+0,20bn,
vilket kan formuleras som matrisprodukten

[

an+1

bn+1

]

=

[

0,60 0,80
0,40 0,20

] [

an

bn

]

.

(b) För varjen ≥ 0 har vi att fördelningFn+1 =

[

an+1

bn+1

]

ges avFn+1 = AFn, där

matrisen

A =
1

10

[

6 8
4 2

]

Specielt har vi att

Fn+1 = AFn = A(AFn−1) = · · · = An+1F0.

Vi kännerF0 =

[

0,50
0,50

]

, och vill beräknaAnF0, för storan. Detta gör vi lättast med

egenvektorer. Det karakteristiska polynomet till matrisen A är

(λ − 6

10
)(λ − 2

10
) − 32

100
= λ2 − 8

10
λ − 20

100
.

Nollställen hittar vi genom kvadratkomplettering. Det vill säga vi sätter uttrycket
ovan lika med noll, och erhåller att

(λ − 4

10
)2 =

20

100
+

16

100
=

36

100
.

Detta betyder att egenvärderna till matrisenA är

λ1 =
6

10
+

4

10
= 1 och λ2 =

−6

10
+

4

10
= − 2

10
.

De tillhörande egenrummen bestämmer vi på sedvanligt s¨att, och får attE1 är noll-
rummet till

[

4

10

−8

10
−4

10

8

10

]

.
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Med andra ord ärE1 = (2t, t), godtyckliga talt. EgenrummetE2 blir nollrummet

till

[

−8

10

−8

10
−4

10

−4

10

]

, vilket betyder attE2 = (t,−t). En bas för egenrummet väljer vi

somβ = {(2, 1), (1,−1)}. Vi har attA = P−1DP , därP är basbytesmatrisen från
standardmatrisen till basenβ, och där

D =

[

1 0
0 −1

5

]

.

MatrisenP−1 är basbytesmatrisen från basenβ till standardbasen, och denna läser
vi av som

P−1 =

[

2 1
1 −1

]

.

En välkänd formel ger att

P = (P−1)−1 =
−1

3

[

−1 −1
−1 2

]

.

För varjen ≥ 0 har vi attAn = P−1DnP . Vi beräknar

An =

[

2 1
1 −1

] [

1n 0
0 (−1

5
)n

]

1

3

[

1 1
1 −2

]

=

[

2 (−1

5
)n

1 −(−1

5
)n

]

1

3

[

1 1
1 −2

]

1

3

[

2 + (−1

5
)n 2 − 2(−1

5
)n

1 − (−1

5
)n 1 + 2(−1

5
)n

]

.

Vi har attF0 =

[

0,50
0,50

]

. Detta betyder att för varjen > 0 har vi att

Fn =
1

3

[

2 + (−1

5
)n 2 − 2(−1

5
)n

1 − (−1

5
)n 1 + 2(−1

5
)n

] [

0,50
0,50

]

.

Speciellt har vi att omn >> 0 blir stor, eventuellt går mot oändligheten, så kommer
(1

5
)n gå mot0. Detta ger att

F∞ =
1

3

[

2 · 0,50 + 0 + 2 · 0,50 − 0
0,50 − 0 + 0,50 + 0

]

=
1

3

[

2
1

]

dvs fördelningen av studenter blir2/3 ≈ 67% på pubA och1/3 ≈ 33% på pubB.
�

Svar:
(b) Fördelningen i slutet av studieten är2/3 av studenterna på pubA och1/3 av studen-

terna på pubB.
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(9) För alla vektoreru, v ochw i R
3 gäller att

u × (v × w) + v × (w × u) + w × (u× v) = 0.

Bevisa detta genom att
(a) Visa att vänsterledet,T (u,v,w), är linjärt i u närv ochw fixerade. (1)
(b) Visa att vänsterledet är noll omu är en linjärkombination avv ochw. (1)
(c) Visa att vänsterledet är noll omu är ortogonal mot bådev ochw. (1)
(d) Förklara varför man från (a)-(c) kan dra slutsatsen att påståendet gäller för alla vek-

toreru, v ochw i R
3. (1)

Lösning. (a) Genom att använda distributiva lagen för kryssprodukten får vi

T (u1 + u2,v,w)
= (u1 + u2) × (v × w) + v × (w × (u1 + u2)) + w × ((u1 + u2) × v) =
= u1 × (v ×w) + u2 × (v × w) + v × (w × u1)
+v × (w × u2) + w × (u1 × v) + w × (u2 × v) =
= u1 × (v ×w) + v × (w × u1) + w × (u1 × v)
+u2 × (v ×w) + v × (w × u2) + w × (u2 × v)
= T (u1,v,w) + T (u2,v,w)

och vidare har vi

T (au,v,w)
= (au) × (v × w) + v × (w × (au)) + w × ((au) × v)
= au × (v × w) + v × a(w × u)) + w × a(u× v)
= au × (v × w) + av × (w × u)) + aw × (u× v)
= aT (u,v,w)

(b) På grund av linjäriteten räcker det att visa påståendet föru = v ochu = w. Vi får

T (v,v,w) = v × (v × w) + v × (w × v) + w × (v × v)
= v × (v × w) − v × (v × w) + w × (0) = 0.

och på samma sätt

T (w,v,w) = w × (v ×w) + v × (w × w) + w × (w × v)
= w × (v ×w) + v × (0) −w × (v × w) = 0

(c) På grund av linjäriteten från del (a) räcker det att visa påståendet för en enhetsvektor
som är ortogonal mot bådev ochw. Om vi ser på vektorer i planet som är ortogonalt
mot u innebär nu kryssprodukten medu från vänster en rotation medπ/2 åt ena
hållet, och kryssprodukt medu från höger en rotation medπ/2 åt andra hållet. (Om
det är medurs eller moturs beror på från vilket håll vi ser på planet.)
Den första termenu× (v × w) är noll eftersomu är parallell medv ×w. De båda
andra termerna är multipler avu. För att se att dessa tar ut varandra ser vi på vinkeln
mellanv och w × u och vinkeln mellanw och u × v. Dessa är lika eftersom vi
i det första fallet roteratw medπ/2 åt ena hållet, och i det andra fallet roteratv

åt andra hållet lika mycket. Det rör sig därmed om två kryssprodukter av vektorer
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med längderna|v| och |w| och med samma vinkel mellan. Det enda som skiljer är
ordningen mellan faktorerna och därmed kommer de att ta ut varandra.

(d) Vi kan skriva varje vektoru som summan av en vektoru1 som ligger i spannet avv
ochw med en vektoru2 som är ortogonal mot bådev ochw. På grund av linjäriteten
från (a) har vi därmed att

T (u,v,w) = T (u1,v,w) + T (u2,v,w) = 0 + 0 = 0,

där vi utnyttjar resultaten från (b) och (c) för att se attde båda termerna är noll.
�


