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SF1624 Algebra och geometri
L dsningsbrslag till tentamen 2011-03-16

DEL A

(1) (a) Anvand Gauss-Jordanelimination for att berakmarsen av matrisen

0 11
A= |-1 3 1
1 -1 0
3)
(b) Anvand resultatet fran (a) for att [6sa matrisekwa¢nX A = B, dar
0 1 2
p=15 1)
(1)

Losning. (a) Vi kan berakna inversea—! genom Gauss-Jordanelimination pa totalma-
trisen|[ A | I ] vilket ger

0 1 1|1 00 —T9 1 -3 -1]0 -1 0 r1 -+ 3719
-1 3 1/0 10|~ r1 ~10 1 11 0 0|~ ro
1 =1 0]0 0 1 T3+ 1o 0 2 110 11 T3—2T2
1o 2 3 -10 r1+ 2r3 1 00— 1
~101 1] 1 00]|~]|m+rs|~]010/-1 1 1
00 -1}]-2 11 —r3 001} 2 -1 -1
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(b) For att losa matrisekvationeXiA = B multiplicerar vi bagge sidor med ! fran
hoger och farX = BA~!. Med hjalp av resultatet fran (a) kan vi nu berakna

-1 1 2
0 1 2
X_[5_31} -1 1 1

2 -1 -1
B 0-1+4 0+1-2 0+1-2| |3 -1 -1
| -5+3+2 5-3—-1 10-3—-1| |0 1 6

Vi kan kontrollera rakningarna genom att se att

0 1 1
XA :{g _1 _H -1 31
1 -1 0
_[o+1-13-3+1 3-1+0]_T0 1 2]_,
| 0—-1+6 0+3—-6 0+1+0| |5 =3 1|
]
Svar:
—1 1 2
@A'=]-1 1 1
2 -1 -1

N . 3 -1 -1
(b) Losningen arX = { 0 1 6 }
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(2) Lat matrisen

1 2 3
1 57
A=1_1 11
301
representera en linjar avbildnidg R?* — R* med avseende pa standardbasen.
(a) Beraknar'(1,2, —2). (1)
(b) Bestanmkarnan'till 7', dvs nollrummet till matrisem. (2)
(c) Visa attT'(1,0,0),7(0,1,0) ochT'(0,0, 1) ar linjart beroende. (1)

Losning.a). For att bestamm@(1,2, —2) maste vi utfora matrismultiplikationed -
1 2 —Q}T, darA ar (4 x 3)-matrisen ovan. Vi erhaller

1 23 ] 1-1+2-243-(-2) -1
157 o | | L145:2+47-(=2) | _ |3
-1 11 > -1 14+1241-(=2) | | -1
301 3:14+0-24+1-(-2) 1

dvs

T(1,2,-2) = (-1,-3,-1,1).
Vi utfor Gauss-Jordanelminination pa matris€for att fa fram nollrummet. Vi anvander
forsta raden for att eliminera i forsta kolonnen och far

1 2 3 o) 1 2 3 rL— 37 10 %

15 7 fra=m| |0 3 4| | g2 | _|013
-1 1 1 T3+ 71 0 3 4 s — T2 00 0

3 0 1 T4 — 3T 0 -6 -8 T4 + 219 0 0 O
Vi har darmed en fri variabel i den tredje kolonnen och iréid parameter sa att = 3t.
Vi kan sedan anvanda de tva nollskilda raderna for st kive, = —%l’g = —t och
xy = —zx3 = —4t. Darmed bestar nollrummet av alla punkfter, z, x3) i R? pa

formen(—t, —4t, 3t) dart ar en reell parameter.
Vi kan anvanda satsen fran boken som sager att dimens@mnbildrummet till en av-
bildning T’ plus dimensionen av karnan till ar lika med antalet kolonner i matriseh
Bildrummet ges spanns upp av vektoretd, 0,0),7'(0,1,0) ochT'(0,0, 1). Om dessa
vore linjartoberoendekulle bildrummet ha dimension tre, vilket medfor att dmmnen
till karnan ar noll, men vi sag i del (b) att karnan har dimsion ett eftersom det kravdes
en parameter.

Ett annat satt ar att se att

aT(1,0,0) + bT(0,1,0) + ¢T(0,0,1) = T(a, b, c)

och darmed ar de tre vektorerna linjart beroende preuislet finnsa, b ochc som inte
alla ar noll ochT'(a,b,c) = 0. Detta var vad vi sag att det fanns i uppgift (b), tex ar

leng.kernel
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T(—1,—4,3) = 0 och darmed har vi det linjara beroendet
—T(1,0,0) —47(0,1,0) + 37(0,0,1) = 0.

Svar:

(@) T(1,2,-2) = (—1,-3,—1,1).

(b) Karnan ges av alla vektorer pa formen, z», z3) = (—t, —4t,t), dart ar en reell
parameter.
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(3) Lat7 vara den linjara avbildning fraR? till R? som ges av standardmatrisen

1 4
=0 ]
(a) Bestam standardmatrisen for sammansattnifigef . (1)
(b) Bestam en bas fd? som bestar av egenvektorer till (3)

Losning. (a) Standardmatrisen for sammansattningen ar lika matisprodukten av
standardmatriserna. Vi far alltsa att standardmatirigefi’ o T’ ges av

e[V Al 4] 11440 1A+ 4 (1) ] _[1 0
10 =10 1| |0-1—=1-0 0-4—1-(=1)| |0 1|
(b) Eftersom matriserd ar overtriangular kan vi lasa av egenvardena som diago

lelementen A = 1 och A = —1. Vi hittar sedan egenvektorer till motsvarande
egenvarden genom att losa ekvationssystemet med tdtiaslrﬁaa — A \ 0 } For

A =1farvi
0 4]0 Ly 0 10
0 —2]0 ry+ iy 0 0|0

och vi kan lasa av losningarna sgmo) for en reell parametet

For\ = —1 farvi
2 4]0 ir 1 210
0 00 T 0 00
och vi kan lasa av losningarna sam2t, t) for en reell parametet
En bas av egenvektorer ges nu av en egenvektor for varj@@gkneftersom vi bara
behover tva basvektoreR?. Alltsa kan vi valja(1,0) med egenvardeoch(—2, 1)

med egenvarde 1.

0

Svar:
(a) Standardmatrisen f@r o T" ar identitetmatrisen.
(b) (1,0) och(—2, 1) utgor tillsammans en bas &> av egenvektorer till.
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DeEL B
(4) Omvi har en triangel med sidlangdema ochc kan vi berakna arean s —det(A)
dar
0O 1 1 1
1 0 a® b
A= 1 &> 0 ¢
1 b ¢ 0
Anvand denna formel for att berakna arean av en triangel sidlangderng’2, v/3 och
2v/2. (4)
Losning. Nar vi satter in vardena = v/2, b = v/3 oche = 2v/2 i matrisenA far vi
0111
10 2 3
A=1120 3
1 3 80
och vi kan berakndet(A) med hjalp av radoperationer som
0111 T
. 1 0 2 3 o 1
det(A) o 1 2 0 8 - T3—7’1—27"2
1 3 80 T4—7’2—3T3
1 0 2 3 1
_ 101 1 I T9
o 00 —4 3| T3
0 0 3 —6 Ty + %7”2
10 2 3
0 1 1 1 15
==l0 0 -4 3 _—(4)~<—Z)_—15.
1
00 o0 -
Alltsa ges arean av triangeln enligt formelny/15. O

Svar: Arean av triangeln ar enligt formelﬁ/ﬁ areaenheter.
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(5) StuderaR* med den vanliga euklidiska inre produktém v) = u - v. Lat W vara det
delrum till R* som ges av losningsmangden till ekvationen

ZE1—$2+2ZE3—3ZE4:0.

(a) Bestam en bas foi. (1)
(b) Anvand Gram-Schmidts metod for att utgaende fréseha (a) hitta en ortonormal

bas foriv. (3)

Losning. (a) Vi bestammer forst en bas fér. Skriv Idsningsmangden till ekvationen

r1 — Ty + 225 — 324 = 0 pa parameterform genom att satta= r, x5 = s och
x4y = t. Vi far att

T, = r — 2s + 3t
i) r

Tr3 = S

Ty = t

Detta kan skrivas
(21, 22,3, 24) = r(1,1,0,0) + s(—2,0,1,0) + ¢(3,0,0, 1).

En bas forlv utgors alltsa av vektorerna, = (1,1,0,0), us = (—=2,0,1,0) och
Us = (3, 0, 0, 1)

(b) Vianvander nu Gram-Schmidts ortogonaliseringprocéar att fa en ortogonal bas.

Steg 1:
Vi =u; = (1, 1,0,0)
Steg 2:
Vo = Uy — <U‘2’V1>v1 = (-2,0,1,0) — _—2(1, 1,0,0) = (—1,1,1,0).
[ v 2
Steg 3
v <u37 V1> <u37 V2>
3 3 - 2
[ v1][? [ val[?
3 -3
= (3,0,0,1) = 5(1,1,0,0) = =~(~1,1,1,0)
1 1 1
— (5= 1.1)=>(1.-1.2.2).
(27 27 b) ) 2( b b b) )

Vi erhaller en ortonormal bas genom att normera de eradléktorerng1, 1,0, 0),
(1,—1,1,0) och(1,—1,2,2); basen blir

{1(1100) 1(1 1,1,0) 1(1 122)}
\/5777 7\/§7 P Y 107 )= *

Svar:
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(@) En bas forlV ges av vektorerna; = (1,1,0,0), us = (—2,0,1,0) ochuz =
(3,0,0,1).
(b) Enortonormal bas fdi’ ges av vektorernar; = —=(1,1,0,0), wo = —=(1,—1,1,0)

V2 V3
ochw; = %0(1,—1,2,2).
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(6) (a) Redogor for hur vi kan bestamma den pu€kt ett givet plan med ekvation pa
formenax + by + cz = d som ligger narmast en given punkti rummet.
lllustrera metoden genom att for var och en av de tre punkté& = (1,1,0),
P, =(1,1,1) ochP; = (2, -1, —1) bestamma motsvarande narmsta punkt i planet

med ekvationen — 2y + 2z = 1. (3)
(b) Anvand rakningarna ovan for att avgora vilka (ongo@) av punkternd;, P, och
P; som ligger pa samma sida av planet som origo. (1)

Losning. (a) Den sokta punkte® i planet karakteriseras av att vektap® ar vinkelrat
mot planet och darmed parallell med planets normalveakter(a, b, c).

P (given punkt)

] QP
: planet
@ (sOkt punkt)
Det finns tva naturliga, och beslaktade, metoder attapesta(), och vi beskriver

bagge.

(Som bekant ska man dock som tentand barargésning!)

Eftersom metoderna ska anvandas for flera olika givna eurtk andrar vi beteck-
ningarna nagot och antar att man ska bestamma den pyrikplanet som ligger
narmast den givna punktéf) = (z;, y;, 2;)-

Metod 1, “projektion p & normalvektorn n”:

Si P;
P,Q; = —RS,
n
¢ 3 planet
R Qi

| denna metod bestams forst en puRkitdet givna planet, exempelvis genom att ldsa
ekvationemuzx + by + cz = d med Gauss-elimination och satta de fria variablerna
till 0. Det ger till resultat en punki = (zo, yo, 20), dar alltséazg + byo + czo = d.
Nasta steg ar att projicera vektorn

RP; = (v;—x0, Yi—Yo, 2i—%0)
pa planets normalvektar, vilket ger till resultat en vektor

_RP;-n

n-n

RS;

n = s;-(a,b,c),
dar
RP;-n a(zi—x0) + b(yi—yo) + c(zi—20)
n-n a? 4+ b2+ ¢? '
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Slutligen erhalls den sokta punktéh ur sambandet (se figuren)
Q; = P, + P,Q;, = P, — RS; = (2,y, %) — si-(a,b, ¢),

meds; enligt ovan.
Metod 2, “projektion direkt p & planet mha normalvektorn n™:

g
planet
J@
| denna metod bildar man forst en linje som gar genom denagpunktenP; =

(75,9, 2;) och som har riktningsvektom = (a, b, ¢), sa att linjen ar vinkelrat mot
det givna planet. Ekvationen for denna linje pa paranfieter ar

(IL’,y,Z) - (xiayia Zz) + t'(av b7 C)'

Var sokta punkt), utgor skarningspunkten mellan linjen och det givna plaoeh
den erhalls genom att bestamma det varge parameternfor vilket
ar + by +cz =d, dvs (a,b,c) - ((z;,y:,2) +t-(a,b,c)) = d, vilket ger att

d—(a,b,c) - (i, yi, %) _dy —ax; —by; — ez

(a,b,c) - (a,b,c) a4+ +c2
Darmed ar var sokta punk®; = (z;, ys, 2:) + ti- (a, b, ¢), medt; enligt ovan.
Notera att metoderna ger samma resultat, ty —s, (eftersomuzq+byo+czo = d).
Insattning av siffror: Vi har i uppgiften att(a, b, ¢) = (1, -2,2),d = 1,

Py :($1,y1,2’1) :(17170%
P = ($2,y2,2’2) = (17171)7
Py = (373,y3723) = (27—17—1)

och, om man anvander metodA = (o, yo, 20) = (1,0, 0).
Insattning i exempelvis metod 2 ger &it= (1 — z; + 2y; — 22;)/9,
och darmed ar, = 2/9, ¢, = 0 ocht; = —1/9, sa att

Q1 = (1,1,0)+ (2/9) - (1,-2,2) = (11/9, 5/9, 4/9),
Q: =(1,1,1)+0-(1,-2,2) =(1,1,1) = P,
Qs =(2,—1,—1)—(1/9) - (1,—2,2) = (17/9,=7/9,—11/9).

(b) Oms; > 0 (dvst; < 0) sa liggerP; pa den sida av planet som normalvektarn
pekar at, onms; < 0 (dvst; > 0) sa liggerP; pa den motsatta sidan, och em= 0
(dvst; = 0) sa liggerP; i planet.

Eftersomivart falt; > 0, ¢, = 0 ocht; < 0 sa ligger punktern®; och P; pa varsin
sida av planet medahR, ligger i planet (sa atf), = B,).

t =
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Om man satteP, = (0,0, 0) i formeln ovan sa erhalls atf = 1/9 > 0, och darmed
ar det endasP, av de tre givna punkterna som ligger pa samma sida om planet s
origo.

O]

Svar:
(a) De narmaste punkterna@; = (11/9,5/9,4/9), Q2 = P» = (1,1, 1) respektive
(b) P, ligger pa samma sida om planet som origo, men itech Ps.
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DeL C

(7) Lat A vara en symmetrisk x 3-matris som har ett egenvarde som ar lika raednta att
alla vektorer som uppfyller — 2y + z = 0 ar egenvektorer tilA med egenvardet

(a) Bestam en egenvektor med egenvade (1)
(b) Bestam matrised. (Ledning Borja med att bestamma en ortogonal basidsom
bestar av egenvektorer tifl.) (3)

Losning. (a) Eftersom egenvekorer som hor till olika egenvardisymmetriska ma-
triser ar ortogonala mot varandra maste egenvektoreethagenvarde vara nor-
malvektorer till planet av egenvektorer med egenvdrdé kan lasa av en normal-
vektor som koefficienterna i ekvatinonen for planet oahd@rmed egenvektorerna
med egenvarde2 som¢(1, —2, 1), dart # 0.

(b) Vi kan nu finna en ortogonal bas av egenvektorer genomadjts wa ortogonala
vektorer i planetr — 2y + z = 0. Den ena kan kan valjas sofh, 1,1) och vi
kan fa den andra genom kryssprodukten rfied-2, 1), dvs(1,1,1) x (1,—-2,1) =
(1-(-2),-1-(-1),-2—-1)=(3,0,-3).

Vi kan nu med ett ortogonalt basbyte med matrisen

1
S B2
P=| -3 - 0
N
6 V3 V2
diagonalisera till
20 0
PTAP=10 1 0
001
Alltsa kan vi beraknal genom
20 0
A =P|0 1 0|PT
001
1 1 1 1 2 1
o B A IR
N B N A
AV vz V%
7 -2 1
=3+ -2 10 -2
1 -2 7

En alternativ metod ar att se att-I har ett tvadimensionellt egenrum med egenvarde
0, dvs ett tvadimensionelt nollrum, och ett endimensidreglenrum med egenvarde
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ett som ges av linjen med rikntningsvektar —2, 1). Dessutom ar dessa bada egen-
rum ortogonala mot varandra. Alltsa harA/i- I ar standardmatrisen for den ortogo-
nala projektionen pa vektomn= (1, —2, 1). Om vi tanker pair som en kolonnmatris

kan darforA — I skrivas som
1 . 1 1 1 1 =2 1

suu=5——o—[1 -2 1]| -2 |=-|-2 4 -2
Iy 124 (=2)2+1 1 6 1 -2 1

Vifarnu AsomI + (A — 1), dvs

1oo] [ 1 -2 1 72
A=looo|l+=] -2 4 2|=2]|-2 10 -2
00 1 61 1 2 1 61 1 2 7

Svar:
(@) (1,—2,1) ar en egenvektor med egenvatde
(b) Matrisen ges av
1 7T =2 1
A== =2 10 -2
61 1 2 7
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(8) Pa campus finns det tva studentpubbarch 5. Varje fredag fordelar sig studenterna efter
foljande monster, som enbart beror pa pubvalet fortg. W de studenter som var pa
pub A kommer60% valja pubA igen, medan de resterand@’ valjer pubB. Av dem
som var pa puld forra helgen kommer enba20% valja pub3, medans0% valjer pub
A. Vid terminstart valjeb0% av studenterna pulh och50% av studenterna valjer puB.

(a) Lata, vara andelen studenter som valjer pdilfredagn ochb,, vara andelen stu-
denter som valjer puB fredagn. Visa att vi da har sambandet

ani1] _ [0,60 0,80] [an
bui1| 0,40 0,20] |b,

for n > 0 om vi numrerar fredagarma 1,2. . .. (1)
(b) Vad blir fordelningen av studenterna pa de olika pnbarid slutet av studietiden
(d.v.s. efter en mycket lang tid)? (3)

Losning. (a) Enligttexten har vi att,,,; = 0,60a,+0,80b,, ochb,, . ; = 0,40a,,+0,20b,,
vilket kan formuleras som matrisprodukten

ani1]  [0,60 0,80] [an
bosr| 0,40 0,20 | b, |
An1

(b) For varjen > 0 har vi att fordelningt,,,; = {b
n+1

1 (6 8
=5 ls )
Specielt har vi att

Foi1 = AF, = A(AF,_)) = --- = A",

8’?8} , och vill beraknaA™ Fy, for storan. Detta gor vi lattast med

egenvektorer. Det karakteristiska polynomet till matnigear

6 2 32 8 20
A= =)A= =)= ——— =X — X — —.
10 10 100 10 100

Nollstallen hittar vi genom kvadratkomplettering. Dell Waga vi satter uttrycket

ovan lika med noll, och erhaller att
4., 20 16 36

A= 10" = 100 T 100 ~ 100
Detta betyder att egenvarderna till matris€@ar

} ges avk, ., = AF,, dar

matrisen

Vi kannerF, =

6 4 —6 4 2
M=—+-—=1 och Ng=—+—=——.
RRTIRART! "0 "0 10

De tillhdrande egenrummen bestammer vi pa sedvarditit sch far att?; ar noll-

rummet till

4 =8
4 ¥l
10 10
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Med andra ord a¥; = (2t,t), godtyckliga talt. EgenrummetZ, blir nollrummet

-8 -8
till [191 191}, vilket betyder attF, = (¢, —t). En bas for egenrummet valjer vi

10 10
somp3 = {(2,1),(1,—1)}. Vihar attA = P~'DP, dar P ar basbytesmatrisen fran

standardmatrisen till baset) och dar

1 0
p=|p 4.
MatrisenP~! ar basbytesmatrisen fran basetill standardbasen, och denna laser
vi av som
4 (21
pr ).

En valkand formel ger att

o=

For varjen > 0 har vi attA™ = P~ D" P. Vi beraknar

A — 2 1 1" 0 1 1 1

T L -1 0 (b3 |1 -2

2 by

Tl —(=3)" 3|1 -2

1{2+<—§>n 2—2(—@"}

3D e
: 0,50 . :
Vi har att Fy = [0 50} . Detta betyder att for varje > 0 har vi att

oo 1]2t (—é)n 2 - 2(—%)” 0,50
" = (=5)m 1+2(=5)"] [050]
Speciellt har vi att om >> 0 blir stor, eventuellt gar mot oandligheten, s& kommer
()™ g& mot0. Detta ger att

1[2-050+042-0,50-0] 12
3| 050-0+050+0 |~ 3|1

dvs fordelningen av studenter biy3 ~ 67% pa pubA och1/3 ~ 33% pa pubB.
O

Fy =

Svar:
(b) Fordelningen i slutet av studietenZ3 av studenterna pa puboch1/3 av studen-

terna pa puls.
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(9) For alla vektoren, v ochw i R3 galler att
ux (vxw)+vx(wxu)+wx(uxv)=0.

Bevisa detta genom att

(a) Visa att vansterledet,(u, v, w), ar linjart iu narv ochw fixerade. (1)
(b) Visa att vansterledet ar noll omar en linjarkombination av ochw. (1)
(c) Visa att vansterledet ar noll omar ortogonal mot bade ochw. (1)
(d) Forklara varfor man fran (a)-(c) kan dra slutsatsgpastaendet galler for alla vek-
toreru, v ochw i R3. (1)

Losning. (a) Genom att anvanda distributiva lagen for kryssproeilar vi

T(u; +ug, v, w)

:(U1+UQ)X(VXW)+VX (WX(U1+UQ))+WX ((U1+UQ)XV):

=u; X (VXW)+uy X (vxw)+vx(wxu)

+v X (WXu)+wxX(u Xv)+wx (ug Xv) =

=w X (VXW)+VvX(WXxu)+wx (ug XV)

+uy X (VX W)+ VX (WXUuy)+wx (ug XV)

=T(uy,v,w)+T(ug,v,w)

och vidare har vi

T(au,v,w)
=(au) X (vxw)+vXx(wx(au))+w x ((au) X v)
=aux (vw)+vxawxu))+wxa(uxv)
=aux (VXw)+avx(wxu))+aw X (ux V)

=al(u,v,w)
(b) P& grund av linjariteten racker det att visa pastit foru = v ochu = w. Vi far
T(v,v,Ww) =VvX(VXW)+VX(WXV)+WwX(VXV)

=vX (VXW)—vX(vxw)+wx(0)=0.
och pa samma satt

T(w,v,w) =wX (VXW)+VX(WXW)+WwWX(WXV)
=wX (VXW)+vx(0)—wx(vxw)=0

(c) Pagrund av linjariteten fran del (a) racker det &bt\pastaendet for en enhetsvektor
som ar ortogonal mot badeochw. Om vi ser pa vektorer i planet som ar ortogonalt
mot u innebar nu kryssprodukten medfran vanster en rotation mee)/2 at ena
hallet, och kryssprodukt medfran hdger en rotation mesd/2 at andra hallet. (Om
det ar medurs eller moturs beror pa fran vilket hall vis& planet.)

Den forsta termem x (v x w) ar noll eftersomu ar parallell medv x w. De bada
andra termerna ar multipler av For att se att dessa tar ut varandra ser vi pa vinkeln
mellanv ochw x u och vinkeln mellanw ochu x v. Dessa ar lika eftersom vi

i det forsta fallet roteratv med /2 at ena hallet, och i det andra fallet rotesat

at andra hallet lika mycket. Det ror sig darmed om tvgskprodukter av vektorer
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med langdernév| och|w| och med samma vinkel mellan. Det enda som skiljer ar
ordningen mellan faktorerna och darmed kommer de att tanaindra.

(d) Vi kan skriva varje vekton som summan av en vektar som ligger i spannet av
ochw med en vekton, som ar ortogonal mot badeochw. Pa grund av linjariteten
fran (a) har vi darmed att

T(u,v,w)=T(uy,v,w)+T(ug,v,w) =040 =0,

dar vi utnyttjar resultaten fran (b) och (c) for att sedetbada termerna ar noll.
0




