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Why models ?

M d l b d f db k d f d f d t l d i

Some examples

• Model based feedback and feed forward control design 

• Model based state estimation, non measurable states 

• Model based failure diagnostics

• Model based Hardware In the Loop, HIL simulation

• Simulation for various purposes, 

• Machine dynamics simulation.   

• State machine models for simulation of logic algorithms 

How good is your model?How good is your model? 
How good does it have to be?

How do you measure the quality of a model?
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Model characteristics

Physical properties 

• mechanical 

• electrical 

• fluid mechanics 

• thermal etc

)()()( tbutayty 

• thermal etc. 

System properties 

• time variance vs invariance 

)()(sin)(
)()()()()(

)()()(

tbutyaty
tutbtytaty

yy





• single vs multivariable 

• linear vs nonlinear 

Modelling strategy 

• kinematic (motion without forces) /

dynamicdynamic 

• (interaction of forces and motion) / static 

• lumped / distributed parameters 
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• continuous / discrete /state machines 



Model details complexity

Real system

Detailed nonlinear modelAnalysis

Detailed linear model

y

Design

Lineariation

Linear model
Design

Verification

Parameter calculation
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Model types

Continuous time Discrete time

Diff ti (ti )Differential eq ations (time) Difference equations (time)Differential equations (time)

buayy  ][]1[][ nbunayny 

State space models (time)

BuAxx 

State space models (time)

][][]1[ nunxnx 
DuCxy
BuAxx




Transfer functions (frequency)

][][][
][][]1[

nDunCxny
nunxnx




Transfer functions (frequency)Transfer functions (frequency)
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Transfer functions (frequency)
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

Block diagrams for good physical insight
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Example: state space model

m

Cxy
BuAxx




Force balance for the rolling mass   ydkyFFym Force balance for the rolling mass,   ydkyFFym e

Select states yxyx  21 ,

Model the derivatives of the state
)(1

212

21

dxkxFx

xx









m

Write in matrix form Fxdkx
























 1
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
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Example: Block diagram

Differential equations are modeled by using integrators
s
1
s

)(1 ydkyF
m

y  

]/[ smy ][my]/[ 2smy][NF

][N ][N

The signals have real units, force, position etc. for increased
understanding. It is a specification that you also can simulate. 
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Simple to extend to nonlinear behavior

Model of a nonlinear springp g

)(1 2 ydkyF
m

y  
m

y yyF
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Transfer function models

The Laplace transform of a time serie 


 )()}({ dtetutuL st

u(t) is defined as: 
0

)()}({

A t f f ti G( ) i th ti f th
)}({)( tyLsG A transfer function G(s), is the ratio of the 

output Laplace transform with the input 
Laplace transform. )()()(

)}({
)(

sUsGsY
tuL

sG





Two important special cases: derivative and 
integration. If the intitial conditions are zero, 
u(0)=0 then:

n
n

n
s

dt
udL 










u(0)=0, then:

s
dttuL 1)(

0
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


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
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Initial and final value theorems

Final value theorem:

   )(lim)(lim)(
0

ssFtff
st 



Example
Final value for a step input is

 )(lim1)(lim)( sFssFf 





Example,
final value for

sG  1)( )(lim)(lim)(
00

sF
s

ssFf
ss 





 as 

)(

with step input  is 1/a

Initial value theorem For all G(s) with higher 
order denominator as 

   )(lim)(lim)0(
0

ssFtff
st 


numerator is the initial
value for a step input zero.
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Example: Transfer function

m

The transfer function can beThe transfer function can be 

calculated from the state space model. 

You have to take a matrix inverse.

Direct calculation from the differential 

equation is OK for low order models

OK numerically in Matlab and 

symbolically in Maple 
 

kydsyFyms

kyydFymL




2



 

BuAsIx

BuAxsx
BuAxxL
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
  
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




2

2

1)(

y
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Cxy
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1

1)(
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


  kdsms 
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Planes and tools

•Frequency domain q y

•G(s) = G(j),  is the frequency

•Complex pole-zero plane 

•Solve for s in numerator and denominator polynomials

•Time domain

•The response y = G(s)u for different u, e.g., step, ramp, etc.
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Complex plane: poles and zeros TF

)(
)()(

sD
sNsG 

Zeros: set N(s)=0
The absolute value of s, 22 bas 

( )
and  solve for s.

Poles: set D(s)=0
and  solve for s.

Represents a frequency rad/s:

•In time domain how  fast  a response
t i t i

Poles and zeros can be  plotted 
in the complex plane, the real 
part vs. the imaginary part

to an input is.
•In the frequency plane (Bode) it
represents a change in amplitude
and phase 

imag

p g y p

bias 

•|s| is often called 0

realcos
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Complex plane: poles and zeros state space

The poles are the eigenvalues of 
the A matrix calculated by:the A matrix calculated by:

  1det  AsI

The zeros depends on the output, 
that is: the C matrix

Fx
mk

x 


















:if
1
0

0/
10



velocity
position

2

1




x
x

Different C matrix gives different 
zeros
Example: mass and spring

 xy 

1
:then

01
:if

forceu

 

kms
sG


 2

:if
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y




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10
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Frequency domain response

For any transferfunction G(s)

)sin(0.1)( ttu 

For any transferfunction G(s)
with the input

)()(

will give the output

)sin()(   taty

gainWith the
 )(

gain,With the
jGa








 

)(real
)(imagtan

phase  theand

1

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jG
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Integrator and derrivator

Derrivation Integration

)/(1)(  jjG

Poles and zeros:
Integrator:
pole: s=0 

  2/0/atan arg

)(












j
j

jjG

  2/0/atan arg
/1

)/(1)(












j
j

jjG p
zero: none
derivate:
pole: none

0zero: s=0

Step response for an integratorStep response for an integrator

G 10110)(
What is the step respone for a
Derrivator ?
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First order polynomial
Characteristics are:Two ways of writing:

as
ksG


)( Good for frequency domain,

Characteristics are:
Pole
Dc-gain
Time constant

1
)(




s
ksG

 Good for time domain
Cut-off frequency
Phase lag at high freq.

Example:
5
1

1
1 


G

s
G

10
5

2 


s
G
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Second order TF in complex plane

22 11   j
2
0

2

2
0

2
)(






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sG

Model: Poles, complex conjugate when: 1

0
2
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2

0 11   js02   ss

    222 1 

Un-damped resonance frequency:

    0
2
0

22
0 1  s

21 

imag

Damped resonance frequency, what 

0

0
21 

p q y
you would measure in time domain 

0


real

)cos( 
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Second order TF in time and frequency domains

Two models with same frequency but different dampingTwo models with same frequency but different damping

Low pass characteristics, 180 degree phase shift at high frequencies
Overshot, What is the damping ratio ?
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Superposition and dominant dynamics (poles)

1006
100)( 21




ss
sGA second order model is superpositioned x

as
asG


)(2

In left figure is a=2 and in right figure a=20

with a first order model , such that )()()( 21 sGsGsGs 

x

oo
-20 -2

In left figure is a 2 and in right figure a 20 x
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Influence of a real zero
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Higher order models: pole/zero in bode 
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
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Pole access

The number of poles and zeros equals the order of theThe number of poles and zeros equals the order of the 
denominator and nominator respectively.
For a TF we define the number of poles and zeros as
nD and nN

)(
)()(

sD
sNsG 

nD and nN

The pole access is defind as: NDA nnn 

•TF with nA > -1 are called proper. 

•If nA = 0, is the model output constant at high frequencies, a step response A , p g q , p p

will give a nonzero initial value.

•If nA > 0, is the model output zero at high frequencies, a step response has A

zero initial value

•If nA < 0, is the model not proper, the gain at high frequencies is infinite, it is 
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Example: pole access

15)(

0,
10
1)(

2

1












A

A

nssG

n
s
ssG Relationship between initial value and 

Dc-gain in frequency and time domain for 
models with different pole access

1,
)10(

)50)(1()(

1,
)1)(10(

)(

3

2












A

A

n
s

sssG

n
ss

sG models with different pole access
OBS! No step response for G3(s)

)mag(10log20dB )10( s )g(g
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Modelling from physical properties

Mechatronic system design  Janscheck

•section 2.3-2.3.4 (except the parts with Lagrange and Hamilton)
•section 2.3.8 

•Lumped models 

•Descriptions of basic elements•Descriptions of basic elements 

• Energy storage and dissipative energy 

• Mechanical translational and rotationMechanical, translational and rotation

•mass, inertia, damping, friction, stiffness 

•ElectricElectric

•Resistors, inductors, capacitors
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Distributed vs. lumped parameters models

•A spring has a distributed mass, it gives a force when compressed or extended
•The model is a partial differential equation with mass distribution
•If the spring is first compressed and then released it starts to oscillate withIf the spring is first compressed and then released it starts to oscillate with 
zero  speed at the fixed end.

•Modeling the spring as a massless spring and a point mass gives a lumped 
model with two elements.
•The spring can now be modeled using ordinary differential equations with an 

i l d i iff kequivalent mass m, and spring stiffness kf.

fk

m
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Different concepts of modelling
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Trough and across variables  

Mechanical components Electrical componentsp

vi velocity at node i vi voltage at node i

f force trough the component i current trough the component

V = v1-v2 velocity across the component U= v1-v2 voltage across the component

H d th i bl ?

Dynamics and Motion Control

How do you measure the variables?



Elements that can store enegy

Symbol Physical 
element

Constitutive 
relation

Stored 
energy

21 vvU
d
diL 

gy

2

2
1 LiE Inductancev2v1

U

i i 21dt

UidUC

2

1

L

U

i i

21, vvUi
dt

C 

dkf 

2

2
1 CuE Capacitancev2v1

C

V

i i

V
dt
df

k

Vdtykyf



 
1

,
2

2
1 kyE Translational 

Spring

v2v1

V

k
f f

21, vvVf
dt
dVm  2

2
1 mVE Translational 

Mass
v2v1

V

f f
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Rotational mechanical elements

Symbol Physical 
element

Constitutive 
relation

Stored 
energy



 kT

dtkT  ,

gy

2

2
1 kE Rotational

Spring
TT


1 2

kT 

d

2

21

Spring
k

Rotational1 2


T T
21,  

 T
dt
dJ 2

2
1

 mE

J

Rotational 
mass

1 2T T
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Elements that only dissipates energy

Symbol Physical
element

Constitutive
equation

Stored 
energy

RiU 

gy

Resistancev2v1

U

i i

Damping

R

v2v1

V

i i

dVf Damping
(friction)

21

d

V

f f

Dry
friction mgf 

V

f
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Connecting basic elements 

M h i l ti > N t l Mechanical properties -> Newtons laws

 Electrical properties -> Kirchhofs laws

 Parallel and series equations

 Node and loop equationsNode and loop equations

 The principles of impedance and mobility

 The order of the differential equations equals the number of energy storage 
elements
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Connection of elements
The velocity/voltage The force/current

Series connection 211 vvV 

The velocity/voltage
across the component

The force/current
through the 
component

1v 2v 2v 3v
21

322

211

0
VVV

V
vvV

vvV








21 ff 

The same:1V 2V

C2
1f 1f C2

2f 2f

31

3221

21

)()(
vvV

vvvvV
VVV




 21 ff

V

Parallel connection 

1V

Trough C1

1f

1v
C1

f

1f

f
2v

1f

21 VV 

The same: Trough C2

2f

C2

2f

f

2f

21

21

vv
VV


21

0
fff

f



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Connection of components

Parallel
Node equation

Series
Loop equation

Mechanical:
 f

dt
dvm )()(

2121 11 nnni vvkvvk
dt
df

 

lawnd:2Newtonsor 
equation balance force equationity compatibil

dt

Electrical:
li h f

 i
dt

dUC )()(
2121 111 nnn uuRuuR

dt
diL  

lawcurrent Kirchofs lawvoltageKirchofs
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State space modelling steps

 Make a lumped sketch of the elements (for mechanical modeling)p ( g)

 Make a free-body figure (mechanical) or circuit diagram (electrical)

 Give notation to parameters, node and loop variables

 Write the constitutive equations

 Gives the states of the model

 Write the node and loop equations Write the node and loop equations

 Eliminate unwanted variables 

 Write the equations in matrix form

Dynamics and Motion Control



Example : Electric circuit

LdiConstitutive

L

iU URC
L

L U
dt
diL 

C
C i

dt
dUC 

Constitutive
equations

i oURC

Loop
equations

Ro RiU 

oRC UUU 

Eliminate oRRCL UUiiU

iii 

ioL UUU 

Node

equations

Model
)1(1

)(1

212

21

x
R

x
C

x

xU
L

x i









RCL iii 

Ui

Node
equation

RC

ULxLx 











 


110















L

o

CL

i
U

y

Uxix 21
State and

output

Matrix
form

ULx

RCC

x i



























10

0
11
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Example : Mechanical

k
k V

dt
df

k


1

dVConstitutive

vi v1k d v2=0

m

mfdt
dVm 1

Constitutive
equations

1dVfd 

1VkV V

1

1

vvV
VVV

ik

k


Loop

equations
m

kf kf kf df df

dk fff 

11 vV 

Node )(k

dmk fVVfV 1Eliminate

dkm fff Node
equation Model

)(1
)(

212

21

dxx
m

x

xvkx i



















m

k

f
v

y

vxfx

1

121 ,State and
outputs Matrix

form

v
k

x
m
d

m

k
x i


























0
1
0


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Compare the mechanical and electric systems

ULxLx i





















 


0

1

11

10
v

k
xd

k
x i


























0
1
0



xy

RCC



















01
10

0

x
d

y

mm















1
10

0

 01

M h i l
1

k dMechanical:

Electrical:
m

k

C
1

d

L
1

R
1

The mechanical system:The mechanical system: 

the mass and damper are in parallell ! 
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Alternative selection of states in mechanical systems

Sometimes the position is needed as state or output of the model

k d

m
ii yv , 22, yv

y is the position that corresponds to the velocity.y is the position that corresponds to the velocity.
Select the states as position and velocity

1211 , vxyx 


1

1

2

)(
dvf

yykf
ffvm

d

ik

dk





212

21

)( x
m
dxy

m
kx

xx

i 







 xy

y
m
kx

m
d

m
kx i

01

010

2 



























1fd  xy 012
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Using impedance and mobility as modelling tools

For electric circuits ZiU 

For mechanical systems MfV  where M is the mobillity

where Z is the impedance

For mechanical systems MfV where M is the mobillity

Equivalente impeadance  and mobillity for series conections ne ZZZZ  21

Equivalente impeadance  and mobillity for parallellconections
ne ZZZZ

1111

21
 

Two elements in parallell 21ZZZe 

El t i l M h i l

Two elements in parallell
21 ZZe 

Electrical

Cs
ZC

1


Mechanical

ms
Mm

1


LsZL 

RZR 

s
k

M k
1



d
Md

1

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Divisions, getting other outputs 

V

Voltage and velocity divisions

f f1v 2v 2v 3v

V

1V 2V

fZV
fZV

V
ZZ

f

11

21

1






VZV

V
ZZ

ZV

2
2

21

1
1






Z1
f f2

Z2
f f2 3 fZV 22 

V
ZZ

V
21

2 

V

Current and force divisions

V
Z

f

f
ZZ

ZZV

1
1

21

21

1





Z

f
ZZ

Zf
21

2
1 
Z1

1f 1f1v 2v

ff

V

V
Z

f

Z

2
2

1

1


f
ZZ

Zf
21

1
2 


Z2
2f 2f

1v 2v

ff
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Same example as in slide xx

L

The equivalent impedance 
from  i to Ui.

iZU ei 

What is the order of the model ?
pZ

iU oURC
2C

1R1/Cs
/  Z,parallelin   and p 





RCs

RCsRRC

1
 Zseriein  L

2

e 



RCs

RLsLRCsZLs p

The output impedance  
from Ui to Uo .





  110

State space model

ZZ
Z

Z

UZU

Lp

p
o

ioo




 ULx

RCC

Lx i




























0

1

11

0


RLsRCLs
RZo


 2 xy 










01
10

What is the dc-gain ?
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Same example as in slide xx

The equivalent mobility  
from f to V. vi v1k d v2=0

MM
MMMM

fMvV

dm

dm
ke

ei






1VkV

m

V

kd
kdsmsM

dms
dms

k
sM

e

e

)(

/1)/(1
)/(1

2 





V

kdmse )( 

The velocity at node 1, v1
using velocity division  xv

v
k

x
m
d

m

k
x i

10

0
1
0



























using velocity division

dm
MM

MM


 xv 101 

Transferfunction from vi to v1 by:

)()()( 1 svBAsICsv 

i

dm

dm
k

dm

vkv

v

MM
MMM

MMv









1

1
)()()(1 svBAsICsv i

Calculated in Maple we get:

k
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Example where state space technique is simpler 

2v1d

2m

2d

1m

1vf

111 ffvm d

1

222

2111

2122

)(
vdf

vvdf
ffvm

d

d

dd



 Using node and 

loop equations

2211122

21111

)(
)(

vddvdvm
vvdfvm





 Differential eq.

2211 , vxvx 

2211122 )( vddvdvm 

states

fmxddd
m
d

m
d

x
























1

1211
1

1

1

1

 model
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Same example with mobility technique 

m2

v2 dv1 d

m2

1V 2V 3V 4V1V 2V 3V 4V

34V

234V

23443 vVVV 
11

11
34

md

md
MM

MMM


Parallel   ->

34212 VvvV 

11 md

342234 MMM Series   ->

1221342234 )( vvvvVVV 

)(VVV 1221342234 )( vvvvVVV 

23411 VvV 
2341

2341
1234 MM

MMM


Parallel   ->
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Model order with position as output of a model 

Two systems with parallel connections, V1=V2

d

m
if v

First order model to velocity ifdms
v




1

2V1V Second order model to position
ifdsms

y


 2
1

k

m
if v

Second order model to velocity ifkms
sv


 2

2V1V

m

Second order model to position

kms 

ifkms
y


 2

1

Draw the step response for each model

Dynamics and Motion Control

Draw the step response for each model 



Lecture outline

1. Introduction

2. Mathematical descriptions of models

3. Dynamic analysis 

4. Basic modeling

5. Linearization

6 M d l f t i l t d h i h t i t6. Models of typical components and phenomena in mechatronic systems.

7. Example: Hydraulic actuator

8. Example: Brushless DC-Motor
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Linearization
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Example: pendelum
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Example: nonlinear spring, f=ky2

Differential eq 21 , yxyx  

Nonlinear model

2kymgym 
Differential eq.

 2

21

21

1

)(
xx

xfx
yy







 2
12

1 kxmg
m

x 

0x

Equilibrium point
Linearization

0

1 




Q k
mgx

x




















02

10

m
kg

x
fA

Qxx
Qxxy

xAx

11 


Linearized model

02

1

Q

Q

x
k Qxxy 11 
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Lecture outline

1. Introduction

2. Mathematical descriptions of models

3. Dynamic analysis 

4. Basic modeling

5. Linearization 

6 M d l f t i l t d h h t i t6. Models of typical components and phenomena mechatronic systems

7. Example: Hydraulic actuator

8. Example: Brushless DC-Motor
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DC motor with permanent magnets in the stator

L R
Electric part:
The rotor winding has Li EUUU 

iU emfKE 

g
an inductance, a 
resistance and a back-
emf voltage proportional 
to rotor velocity

emfi

rLi

KRi
dt
diLU

EUUU





i
y

Mechanical part:
A torque Tm between rotor 
and stator is proportional 
to rotor current. Rotor

mT
fL TT 

TTTJ fLmr 

 

The rotor inertia, JR
A load TL on the outgoing  
shaft. RJ Inertia,

ikT Tm

f


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Gearbox model
J

Free body figure

T T T

lJ

T

m

mT gT
n

gT gnT gnT lT
l

 n ml 

Jr is the motors rotor inertia, Jg the gearbox inertia calculated on the motor side,

1n

TTJJ gmrgr  )(

r g g
Jl the inertia of a load connected to the gearbox output and n the gear ratio. 

TJTJ

T

TnTJ lgll 









g other. in theput  and eq, onein  for  solve

TTJJJ

n
T

n
J

n
T

n
JT

l
mr

l
gr

lrllll
g







 







2

2 Compare with an 
electrical transformer
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Nonlinear friction model

Dynamics and Motion Control



Implementation of Karnop’s friction model

Dynamics and Motion Control



Coulumb friction 

Dc-motor simulation with torque input and Coulumb friction

)50sin(51 3 tT  340 T)5.0sin(5.1 3 teTapplied 

Blue line is applied torque
Typical velocity with

34.0 eTc

Green line is friction torque
Typical velocity with 
Coulomb friction

frictionapplied TTJ 

Dynamics and Motion Control

frictionapplied



Higher order dynamics in moving machine parts

 All material has finite stiffness

 Lumped models with mass, spring and damper

 Multi Body Systems, MBS

 Resonance and anti resonance frequencies,  

 Gives phase lag which can make feedback systems instable 

 For a general theory on MBS see any textbook in Robotics or for an For a general theory on MBS see any textbook in Robotics or for an 
introduction, Jansheck chapter 4.

 Reading material Jansheck section 4 4 – 4 7 5Reading material Jansheck section 4.4 4.7.5

 Which frequencies can affect a feedback system in a negative way

Dynamics and Motion Control



General  MBS

Two basic types of MBS systems

Machines where parts can move
with relative motion in different
coordinate systems 

Machines where the relative motion
is because of  flexible (not stiff) parts.
Same coordinate system.

Dynamics and Motion Control



General nonlinear model of MBS systems

Based on Newton Euler can a general matrix based 
equations of motion be written as the nonlinear model

),,(),,(),( tqqftqqgqtqM  

equations of motion be written as the nonlinear  model

DOFNq 

Where:

are N the minimal number of generalized coordinatesq  are NDOF the minimal number of generalized coordinates

DOFDOF NNM  is the mass matrixDOFDOF NNM  is the mass matrix

generalized spring damping Coriolis forcesDOFNg  generalized spring, damping, Coriolis forces

generalized external forces

g 

DOFNf 
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Linearized model of MBS

Linearizing around a stable position q*0 gives that q(t) = q*0 + y(t)
and the equations of motion asand the equations of motion as

)()()( tfyNKyGByM  

forces inertial  theare  , yMMM T


DOFDOF NN   are matrices all Where 

forces damping  theare  , yBBB T


fihKKK T

forces gyroscopic  theare  , NyGG T

forcesspringtheare  , KyKK T

d lfliN
forces veconservati-non  theare  , NyNN T

Dynamics and Motion Control
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Structured modeling of MBS with flexible linkage 





  221 kkk

)               ( 4321 NmmmmmdiagM 

equation of motion





















 4433

3322

N

kkk
k

kkkk
kkkk

K


)(tfKyyByM  

  1NNN kkk












3322

221

bbbb
bbb

Tyyx )( 

Define a state vector













 




1

4433

3322

NNN

N

bbb
b

bbbbB


iii yyx )(

Gives the state space model
T

Nyyyyyy )               ( 4321 

fx
E

BfAxx 












00

 f
M

x
BMKM

BfAxx 









 

  111
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Dynamic of the MBS 
Poles are simply calculated as the eigenvalues of the A matrix

The zeros and therefore also the frequency response depends
hi h i t t d d hi h i don which mass is actuated and which mass is measured.

That is, on which row in the B matrix and which column in the 
C matrix. 

1y

2b

2y
3baF 2k

2m1m

1y

1k
Example: 2 mass

2b

Observe phase

toFrom 1yF toFrom 2yF

difference

Dynamics and Motion Control

zeros  twoand polesFour 
 to  From 1yFa

zeros no and polesFour 
 to From 2yFa



Dc motor with load and week shaft

1 12  
ikT T s

s i
ass

b


1 )(


Stiff shaft model
(with gear ratio 1.0) mJ lJ

ikT Tm 

1b 3b lm

T
s

bb
JJ

kb






31

:Where

lm
s JJ

a


 31

Shaft with torisional

kk
kkk

kkk
K

JJM lm

0

)(diag

31
322

221 














ikT Tm 
2k

Shaft with torisional
spring and damper
model

ssb

bbb
bbb

B

1/2/

:Gives
22

322

221


















3b1b
2b

lJmJ
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b aaa

w
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1/2/
1/2/

)( 00
2
0

21







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Dc motor with week shaft

1/2/)(
22   ssbG aaaw

1/2/)(
)(

00
2
0

2 





ssass
sG aaa

w

w
w

)( sbG

x
0

Im

o

)(
)(

s

s
s ass

sG




x
a

a

x

Re0an smaller thly sufficient is   If sa

Then:

22

1/2/
1/2/

)(
)(

00
2
0

2

22










ss
ss

ass
bsG aaa

s

s
w
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Example: Identify MBS model

Simplest approach is to make a step response to velocity and measure
time constant, 1/a and resonance frequency 00

67160/1a1000
2,1

:parametersModel

21 
k

mm

422
67.16.0/1

0
0 



T

a
1,1,4

1000

321

2




bbb
k

a/1

Dynamics and Motion Control0T

a/1



Example continued

1m

Antiresonance frequency Compare frequency response

2.24
21

1
0 




mm
m

a 

Gives the parametric modelGives the parametric model

1)42/(
1)2.24/(

67.1
67.12.0

2

2








s

s
s

G

Compare step response

Red lines original modelRed lines original model
Blue lines identified model

Dynamics and Motion Control



Model of: Backlash or play (glapp på svenska)
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1. Introduction

2. Mathematical descriptions of models

3. Dynamic analysis 

4. Basic modeling

5. Linearization 

6 M d l f t i l t d h i h t i t6. Models of typical components and phenomena in mechatronic systems.

7. Example: Hydraulic actuator

8. Example: Brushless DC-Motor
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Hydraulic systems

 Pressure difference is the across variable

 Volume flow is the through variable Volume flow is the through variable 

 Node and loop equations

 Fluid capacitance and fluid resistance

 Volume and pressure sources -> PumpsVolume and pressure sources  Pumps

 Flow and pressure control valves -> servo valves

 Fluid to mechanical transformers -> cylinders and motors

 Modeling example :  flow controlled hydraulic cylinder

Dynamics and Motion Control



Hydraulic components

Across type

QdPC

Through type Disipative type

dQ PQRf Q
dt
dPC f 

ecapacitanc fluid fC

P
dt
dQI f 

inertance fluid fI

PQRf

resistance fluid fR

V
A
gghp 
AV ,

tank

pipe pipeR

Not so important !

QdVdpC

g
AC

A
gp

f  


ph

Q
Q

ip
flow

op

Q

ip

flow

op
fR

Q
dtdt

pC f pump

 
 

3  volumeliquid mV 

pipecircular afor 





kg
A
lI f
 )( oif ppRQ 

 
3

2

 flow  volume

 area sectional cross 

s
mQ

mA
















 
2

 sectional cross 
 pipe oflength  

density 










A
ml

m
kg
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Compressibility of hydraulic oil 

Density increase, (volume decrease) of hydraulic 
oil is more than 100 times larger then that of steel. 
So it can not be neglected.

Bulk modulus 







 





  9102 NppV  



density kgmBulk modulus, 





 





 

 2102
mV

V


 
 3  density,

mV


dd Mass flow into a  
dt
dVV

dt
dQm  00 

Mass flow into a 
constant volume,

F d fi iti

dpV0

dpd

 From definition,

Hence dp
dt
dpVQ


0Hence,

With 0VC

Q
dt
dpC f 

Constitutive equation

Dynamics and Motion Control

With,

0C f 



Hydraulic circuits

There are a lot of hydraulic details in a system
but we will concentrate on a few components 
th t i t t f th d ithat are important for the dynamics.  

Cylinder

Flow control
valve

VariableVariable 
displacement
pump

Dynamics and Motion Control



4-way 3 position directional valve (closed center)

From pumpTo tank

tP sP tP sP

Spool to
the right  

Spool to
the left  Valve

v vv

2P1P 2P1P

Cylinder
0

presure Load

21  PPP 0
presureLoad

21  PPP

Standard hydraulic 
valve component sketch
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Spool valve model

 Spool assumptions

 No leakage, equal cylinder actuator areas
pspt pt

 Sharp edged, steady flow

 Opening area proportional to x

Xv

 Opening area proportional to xv

 Return pressure is zero p1, Q1p2, Q2

 Symmetrical 

O ifi d l f h d d ifi  3Orifice model for sharp edged orifice:
Q, flow 
Cd , Discharge constant
A effecti e opening area











s
mpACQ od

3
   2



set:
Ao , effective opening area
, density
p, pressure drop over orifice
R a constant given by valve data sheet

vtv

vsv

xppRQ

xppRQ





21

11 0vx

Dynamics and Motion Control

Rv , a constant given by valve data sheet

vsv

vtv

xppRQ

xppRQ

21

11




0vx



The complete model

f

m

QpC
fvm

11 



 m, mass of piston, piston rod and load
A, effective piston area
f friction force f external force

Constitutive
equations:

vsvv

f

xpRQ

xppRQ

QpC

11

22




ff ,friction force, fe , external force
xv > 0

vvv xpRQ 22 

tP sP
efm ffApApf  21Node eq.

vxcv

cv

QQQ
QQQ




22

11
Loop eq.

The valve dynamics, spool mass
and solenoid  must be modeled.
Physical model is difficult, flow
forces on spool PP

v

vQ1 vQ2

forces on spool.
A second order model  from valve
input signal to spool position is
usually sufficient.
P t f l d t h t

2P1P

A
m ef

Dynamics and Motion Control
u

ss
xv 2

00
2

2
0

2 





Parameters from valve data sheets. AvQc Volume flow  due to
piston velocity.



Linearizing the model
Li i d ti i t 0d fLinearize around an operating point 0assume ,and, 21  ftvQQQ fpxpp




 e
QQQQ

fppfApAp 21210





















Qs
vv

vQsv

QQeQQ

pp
xC

AvAvxppR

A
ppfApAp

1

2

1

2121

0

0

fpp

A
fpp

es
Q

es
Q 22

2

1



















 Q

vv
vQv p

xC
AvAvxpR 2

2

20
A

p Q 222

selectedmanualy  bemust  ,vQx

ii KR , Define,
2222

111

pRxKQ
pRxKQ

v

lv




222

111

ppp

ppp

xxx

Q

Q

vvQv







:where

fp

xR
pp

xR
p
QR

e

vQv

Qs

vQv

xx
pp Q 










 2

1
2 11

1
1

11 A
fpRppR

x
QK es

vQsv

xx
ppv Q 221

1
1

11








A
fp

xR
p
xR

p
QR

A
p

e
s

vQv

Q

vQv

xx
pp

sxx

vQv
Q

vQv













2
1

2 22

2
2

22 A
fpRpR

x
QK es

vQv

xx
ppv

xx

vQv
Q

vQv

222
2

2
22










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Linear model
 00010

2514321 ,,,, pxpxvxvxxx vv  AAd
v

vv























 0

00

0002
00010

2

2



Select states:

ux

RAK
C
R

C
A

C
K

mmmx

fff































0
0
0

00

00

22

11
coeficientfriction linear ,d

CCC fff










00 22

Step response

 20 MPaps   

][ 025.0

][ 100
22 mA

kgm
p

c

s




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1. Introduction

2. Mathematical descriptions of models

3. Dynamic analysis 

4. Basic modeling

5. Linearization 

6 M d l f t i l t d h i h t i t6. Models of typical components and phenomena in mechatronic systems.

7. Example: Hydraulic actuator

8. Example: Brushless DC-Motor
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3-phase electric motors

 Asynchronous machines have windings in both stator and rotory g

 Permanent magnet 3-phase motors have only winding in stator

 Also called Synchronous motors (rpm synchronous to electric field rotation)

 Two types

 Brushless DC motor BLDC or Trapezoidal motor

 Permanent Magnet Synchronous Machine PMSM or Sinusoidal motorg y

 Advantage over DC-motor

 cooling -> higher currents and/or smaller size

 Disadvantage over DC-motor

Dynamics and Motion Control

 More advanced control  -> electronic commutation (software)



Electromechanical design

2 pole motor (1 magnet )8 pole motor (4 magnets) 2-pole motor (1 magnet )8-pole motor (4 magnets)

http://www.stefanv.com/rcstuff/qf200212.html
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Back EMF depends on motor design

Trapezoidal EMF Sinewave EMF

Different Modeling and control strategies are used for the two kinds

Dynamics and Motion Control



BLDC control structure (trapezoidal)

PWM 3 Phase n* d 6
BLDC

BLDC speed control

PWM Inverter

Hall SensorsComm tation

-
BLDC

nact

G

Hall SensorsCommutation
Sequence

BLDC speed and current cascaded control 

Dynamics and Motion Control



PMSM control structure

Field Oriented Control  

Phase currents are sampled synchronously to PWM signals

Dynamics and Motion Control



Commutation of trapezoidal motor (BLDC)

Hall A

100 110 010 101011 001001 101

Hall B

Hall C

0° 120° 240°
Position

Q1

Q3

0° 120° 240°

Q2

+

Q4

Q5

Q6

Q1 Q3

ia ea z
UcaUbc

ec

z

Vs + -

icQ5

iA
Uab

ibeb

z

Q2
Q4 Q6

iB

iC

-
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BLDC model structure 

DC link voltage(PWM) Phase voltages Phase
Inverter

EMF
&

Fl

Commutation
logic

 dt
di

Electric
torque

Mechanical
load

currents

gate

Flux

Speed,position
Position

1 Set up the differential equations for the phase currents

Modeling steps:

1. Set up the differential equations for the phase currents
2. Model the shape of the EMF and flux
3. Calculate the electric torque
4 Model the commutation logic based on hall sensors or position4. Model the commutation logic based on hall sensors or position
5. Model the inverter
4 and 5 can be modeled in one state machine (state flow) 

Dynamics and Motion Control



1. Differential equations for phase currents










 










 









 aaab ei

dLRU
U

110
011

110
011 i

dt
dLRiz 












































 









 c

b

c

b

ca

bc

e
e

i
i

dt
dLR

U
U

101
110

101
110 dt

Same R and L in each phase

bac iii 













 










 






 









b

a
aab e

e
idLRU

U 01111 ec
i

Phase to phase
voltages



































c

b
bbc e
idtU 11021

d 121 U

ia ea z
UcaUbc z

z
+ -

icg

   





  bcbcababaa EUEURi

L
i

dt
d

3
1

3
21



Uab
ibeb

   





  bcbcababbb EUEURi

L
i

dt
d

3
1

3
11
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2. Back EMF model

b

eea

Kfe

Kfe









 



2
)(

[V/rad]constant
 oricElectromot eK

eec

eeb

Kfe

Kfe











 









3
4
3



[V/rad]constant 

ltiIf

 [rad/s]velocity 
 Electric e

























 










3
2,

3
261

3
20,1

f

  2, is
 polesmagneticIf

m e

























 









2
3

5,1
3

56
3

5,1
f

 

A simple way to simulate is to, take cos(f()) and saturate it between -0.5…0.5
and then multiply it with 2. Which is how the plot above has been done.
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3. Electric torque

 

Same shape as the EMF















 






  cbate ifififKT

3
4

3
2)( 

Dynamics and Motion Control



4. Commutation logic 

+

Q1 Q3
UU

ec

z
icQ5

One way to find the correct

Uab

ia ea z
UcaUbc

ibeb

z

z
Vs + -

Q2
Q4 Q6

One way to find the correct
commutation sequence is to
calculate the phase to phase 
EMF. Exy = ex - ey
Maximum magnetic torque

-

bb2 6Maximum magnetic torque
is achieved when the phase
currents are flow in the same 
direction, for example for Eab
should i > 0 and i < 0

Blue Eab

Red E

should ia > 0 and ib < 0.
Which is achieved with 
Uab = Vs.

See xxx for proof. Red Ebc

Green Eca

p

Q1Q6 Q3Q6 Q Q Q Q Q Q Q QClosed transistors >

Dynamics and Motion Control

Q1Q6
Uca=-Vs

Q3Q6
Ubc=Vs

Q3Q2
Uab=-Vs

Q5Q2
Uca=Vs

Q5Q4
Ubc=-Vs

Q1Q4
Uab=Vs

Closed transistors ->
Energized phases ->



5. Model the inverter

Each energized state must be modeled separately
Let’s start with state Q1Q4 when Uab = Vs
What is then U ?What is then Ubc?

Redraw the motor inverter system for easier analysis 

+

Q1 Q3 Q5

A Zae

+ -

ce

-
Z

+
C

Uab

Q1 Q3
UcaUbc

Vs

Q

Q5

B
A
C

6D

state
previousin i

e -

Z

sV
state

current in  i

-

Q2
Q4 Q6be

+

B

Is phase C connected to plus or ground?
It depends on the direction of the current in C from previous state
For positive direction (rotation) was previous state U = V Q Q closed

Dynamics and Motion Control

For positive direction (rotation) was previous state Ubc = - Vs , Q5 Q4 closed
Gives ic > 0 



5. Model the inverter

Zae ce
Z

Now can we calculate Ubc

D

A Za

+ -

c

-
Z

Z

+
C

6D

state new  theof
start at the i

be
+
-

Z

sV
state

currentin i
bcU

B

C and Bbetween circuit short  0bcUbc

After some time the current in C will become zero, what happens then?
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5. Model the inverter

A Zae ce
Z C

Equivalent circuit when ic = 0

+ - -

Z

+

V i

-

be
+
-

sV

B

i

bcU

B +

There are two loops, one directly from B to C and one via A

bccbb UeZie  0 BC, Loop

abc

bccaas

iii
UeZieV




:hence
 gives  ,0

0  BAC, Loop

   bcacscbasbc EEVeeeVU 
2
1 2

2
1
:hence

This must be done for all six states in both directions of rotation but,

Dynamics and Motion Control

only for Uab and Ubc since Uca is not needed in the differential equations.      



5. Model the inverter
T iti fTransition from 
previous state 

0nistateon  depends
0or   0  nn ii

...abU ...abU
0ni

....bcU ....bcU

Position > xx Position > xx

0ni

Position > xx Position > xx

stateon  depends
0or   0  nn ii

...ab

U
U ...ab

U
U

0ni

....bcU ....bcU

Position > xx
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Voltage step input

Inverter


d

Voltage step Uab ,Ubc

EMF
&

Flux

Commu-
tation
logic

dt Electric
torque

Mechanical
load

Speed,position
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Step response cont.

Currents

Dynamics and Motion Control

Torque ripple because of the commutation


