Dynamics and Motion control
 Lecture 2

Modelling and analysis of dynamics as
a basis for control design and simulation

Jan Wikander,Bengt Eriksson
KTH, Machine Design
Mechatronics Lab
e-mail: benke@md.kth.se

- Lecture outline

1. Introduction

2. Mathematical descriptions of models
3. Dynamic analysis
4. Basic modeling
5. Linearization
6. Models of typical components and phenomena in mechatronic systems.
7. Example: Hydraulic actuator
8. Example: Brushless DC-Motor

Some examples

- Model based feedback and feed forward control design
- Model based state estimation, non measurable states
- Model based failure diagnostics
- Model based Hardware In the Loop, HIL simulation
- Simulation for various purposes,
- Machine dynamics simulation.
- State machine models for simulation of logic algorithms

> How good is your model?
> How good does it have to be? How do you measure the quality of a model?

Model characteristics

-Physical properties

- mechanical
- electrical
- fluid mechanics
- thermal etc.
-System properties
- time variance vs invariance

- single vs multivariable
- linear vs nonlinear $\dot{y}(t)=-a(t) y(t)+b(t) u(t)$ $\dot{y}(t)=-a \sin y(t)+b u(t)$
-Modelling strategy
- kinematic (motion without forces) / dynamic
- (interaction of forces and motion) / static
- lumped / distributed parameters
- continuous / discrete /state machines

—— Model details complexity

- Lecture outline

1. Introduction

2. Mathematical descriptions of models

3. Dynamic analysis
4. Basic modeling
5. Linearization
6. Models of typical components and phenomena in mechatronic systems.
7. Example: Hydraulic actuator
8. Example: Brushless DC-Motor

Continuous time
Differential equations (time)

$$
\dot{y}=-a y+b u
$$

State space models (time)

$$
\begin{aligned}
& \dot{x}=A x+B u \\
& y=C x+D u
\end{aligned}
$$

Transfer functions (frequency)

$$
y(s)=\frac{b}{s+a} u(s)
$$

Discrete time

Difference equations (time)

$$
y[n]=a y[n-1]+b u[n]
$$

State space models (time)

$$
\begin{aligned}
& x[n+1]=\Phi x[n]+\Gamma u[n] \\
& y[n]=C x[n]+D u[n]
\end{aligned}
$$

Transfer functions (frequency)

$$
y(z)=\frac{b}{z+a} u(z)
$$

Block diagrams for good physical insight

—— Example: state space model

$$
\begin{aligned}
& \dot{x}=A x+B u \\
& y=C x
\end{aligned}
$$

Force balance for the rolling mass,

$$
m \ddot{y}=\sum F_{e}=F-k y-d \dot{y}
$$

Select states

$$
\begin{aligned}
& x_{1}=y, \quad x_{2}=\dot{y} \\
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=\frac{1}{m}\left(F-k x_{1}-d x_{2}\right) \\
& \dot{x}=\left[\begin{array}{cc}
0 & 1 \\
-\frac{k}{m} & -\frac{d}{m}
\end{array}\right] x+\left[\begin{array}{l}
0 \\
\frac{1}{m}
\end{array}\right] F
\end{aligned}
$$

—— Example: Block diagram

Differential equations are modeled by using integrators

$$
\ddot{y}=\frac{1}{m}(F-k y-d \dot{y})
$$

$$
F[N] \quad \ddot{y}\left[m / s^{2}\right] \quad \dot{y}[m / s] \quad y[m]
$$

The signals have real units, force, position etc. for increased understanding. It is a specification that you also can simulate.

—— Simple to extend to nonlinear behavior

Model of a nonlinear spring

The Laplace transform of a time serie $u(t)$ is defined as:

$$
L\{u(t)\}=\int_{0}^{\infty} u(t) e^{-s t} d t
$$

A transfer function $G(s)$, is the ratio of the output Laplace transform with the input Laplace transform.

$$
\begin{aligned}
& G(s)=\frac{L\{y(t)\}}{L\{u(t)\}} \\
& Y(s)=G(s) U(s)
\end{aligned}
$$

Two important special cases: derivative and integration. If the intitial conditions are zero,

$$
\begin{aligned}
& L\left\{\frac{d^{n} u}{d t^{n}}\right\}=s^{n} \\
& L\left\{\int_{0}^{\infty} u(t) d t\right\}=\frac{1}{s}
\end{aligned}
$$

Final value theorem:

$$
f(\infty)=\lim _{t \rightarrow \infty}[f(t)]=\lim _{s \rightarrow 0}[s F(s)]
$$

Final value for a step input is

$$
f(\infty)=\lim _{s \rightarrow 0}\left[s F(s) \frac{1}{s}\right]=\lim _{s \rightarrow 0}[F(s)]
$$

Initial value theorem

$$
f(0)=\lim _{t \rightarrow 0}[f(t)]=\lim _{s \rightarrow \infty}[s F(s)]
$$

Example, final value for

$$
G(s)=\frac{1}{s+a}
$$

with step input is $1 / a$

For all $\mathrm{G}(\mathrm{s})$ with higher order denominator as numerator is the initial value for a step input zero.

- Example: Transfer function

The transfer function can be calculated from the state space model. You have to take a matrix inverse.

OK numerically in Matlab and symbolically in Maple

$$
\begin{aligned}
& L\{\dot{x}=A x+B u\} \\
& s x-A x=B u \\
& x=(s I-A)^{-1} B u \\
& y=C x \\
& y=C(s I-A)^{-1} B u \\
& G(s)=\frac{y}{u}=C(s I-A)^{-1} B
\end{aligned}
$$

Direct calculation from the differential equation is OK for low order models

$$
\begin{aligned}
& L\{m \ddot{y}=F-d \dot{y}-k y\} \\
& m s^{2} y=F-d s y-k y \\
& \left(m s^{2}+d s+k\right) y=F \\
& G(s)=\frac{1}{\left(m s^{2}+d s+k\right)}
\end{aligned}
$$

- Lecture outline

1. Introduction
2. Mathematical descriptions of models
3. Dynamic analysis
4. Basic modeling
5. Linearization
6. Models of typical components and phenomena in mechatronic systems.
7. Example: Hydraulic actuator
8. Example: Brushless DC-Motor

Planes and tools

-Frequency domain
$\bullet G(s)=G(j \omega), \omega$ is the frequency
-Complex pole-zero plane
-Solve for s in numerator and denominator polynomials
-Time domain
-The response $y=G(s) u$ for different u, e.g., step, ramp, etc.

Complex plane: poles and zeros TF

$G(s)=\frac{N(s)}{D(s)}$
Zeros: set $N(s)=0$
and solve for s.
Poles: set $D(s)=0$
and solve for s.

Poles and zeros can be plotted in the complex plane, the real part vs. the imaginary part

The absolute value of $s,|s|=\sqrt{a^{2}+b^{2}}$

Represents a frequency rad/s:

- In time domain how fast a response to an input is.
- In the frequency plane (Bode) it represents a change in amplitude and phase
- $|s|$ is often called ω_{0}

—— Complex plane: poles and zeros state space

The poles are the eigenvalues of the A matrix calculated by:

$$
\operatorname{det}(s I-A)^{-1}
$$

The zeros depends on the output, that is: the C matrix
Different C matrix gives different zeros
Example: mass and spring

$$
\begin{array}{ll}
x_{1}=\text { position } & \dot{x}=\left[\begin{array}{cc}
0 & 1 \\
k / m & 0 \\
x_{2}=\text { velocity } & \text { if }: \\
u=\text { force } & y=\left[\begin{array}{ll}
1 & 0
\end{array}\right] x \\
& \text { then }:
\end{array}\right.
\end{array}
$$

$$
G(s)=\frac{1}{m s^{2}+k}
$$

if :
$y=\left[\begin{array}{ll}0 & 1]\end{array}\right.$
then :
$G(s)=\frac{s}{m s^{2}+k}$

Frequency domain response

For any transferfunction $G(s)$
with the input
$u(t)=1.0 \sin (\omega t)$
will give the output
$y(t)=a \sin (\omega t+\phi)$

With the gain,
$a=\mid G(j \omega)$
and the phase
$\phi=\tan ^{-1}\left(\frac{\operatorname{imag} G(j \omega)}{\operatorname{real} G(j \omega)}\right)$

—— Integrator and derrivator

Derrivation	Integration
$G(j \omega)=j \omega$	$G(j \omega)=1 /(j \omega)$
$\|j \omega\|=\omega$	$\|j \omega\|=1 / \omega$
$\arg j \omega=\operatorname{atan}(\omega / 0)=\pi / 2$	$\arg j \omega=\operatorname{atan}(-\omega / 0)=-\pi / 2$

$$
G(s)=s, 10 s, \frac{1}{s}, \frac{10}{s}
$$

Poles and zeros:

$$
\begin{aligned}
& \text { Integrator: } \\
& \text { pole: s=0 } \\
& \text { zero: none } \\
& \text { derivate: } \\
& \text { pole: none } \\
& \text { zero: s=0 }
\end{aligned}
$$

Step response for an integrator

What is the step respone for a Derrivator?

First order polynomial

Two ways of writing:

$$
\begin{array}{ll}
G(s)=\frac{k}{s+a} & \text { Good for frequency domain, } \\
G(s)=\frac{k}{\tau s+1} & \text { Good for time domain }
\end{array}
$$

Characteristics are:

Pole
Dc-gain
Time constant
Cut-off frequency
Phase lag at high freq.

Example: $\quad G_{1}=\frac{1}{s+1}$

$$
G_{2}=\frac{5}{s+10}
$$

Dynamics and Motion Control

- Second order TF in complex plane

Model:
Poles, complex conjugate when: $\zeta<1$
$G(s)=\frac{\omega_{0}^{2}}{s^{2}+2 \zeta \omega s+\omega_{0}^{2}}$

$$
s=-\zeta \omega_{0} \pm \sqrt{\zeta^{2}-1} \omega_{0}=-\zeta \omega_{0} \pm j \sqrt{1-\zeta^{2}} \omega_{0}
$$

Un-damped resonance frequency:
$|s|=\sqrt{\left(\zeta \omega_{0}\right)^{2}+\left(1-\zeta^{2}\right) \omega_{0}^{2}}=\omega_{0}$

Dynamics and Motion Control

- Second order TF in time and frequency domains

Two models with same frequency but different damping

Low pass characteristics, 180 degree phase shift at high frequencies Overshot, What is the damping ratio ?

Superposition and dominant dynamics (poles)

A second order model $\quad G_{1}(s)=\frac{100}{s^{2}+6 s+100} \quad$ is superpositioned with a first order model $G_{2}(s)=\frac{a}{s+a}$, such that $G_{s}(s)=G_{1}(s) G_{2}(s)$ In left figure is $a=2$ and in right figure $a=20$

The TF with the slowest pole dominates the step response

_- Influence of a real zero

$$
G(s)=\frac{\left(\frac{s}{\omega_{0} a}+1\right) \omega_{0}^{2}}{s^{2}+2 \xi \omega_{0} s+\omega_{0}^{2}} a=[0.5,1,2,4]
$$

Dynamics and Motion Control
_— Higher order models: pole/zero in bode

$$
G_{1}(s)=\frac{s+10}{(s+1)(s+100)}, G_{2}(s)=\frac{s+100}{(s+1)(s+10)}, G_{3}(s)=\frac{s+1}{(s+10)(s+100)}
$$

Dynamics and Motion Control

Pole access

The number of poles and zeros equals the order of the denominator and nominator respectively.
For a TF we define the number of poles and zeros as

$$
G(s)=\frac{N(s)}{D(s)}
$$

n_{D} and n_{N}
The pole access is defind as: $n_{A}=n_{D}-n_{N}$

- TF with $n_{A}>-1$ are called proper.
-If $n_{A}=0$, is the model output constant at high frequencies, a step response will give a nonzero initial value.
-If $n_{A}>0$, is the model output zero at high frequencies, a step response has zero initial value
-If $n_{A}<0$, is the model not proper, the gain at high frequencies is infinite, it is not possible to make a step response for such a model

Example: pole access

$$
\begin{aligned}
& G_{1}(s)=\frac{s+1}{s+10}, \quad n_{A}=0 \\
& G_{2}(s)=\frac{s+5}{(s+10)(s+1)}, \quad n_{A}=1 \\
& G_{3}(s)=\frac{(s+1)(s+50)}{(s+10)}, \quad n_{A}=-1
\end{aligned}
$$

Relationship between initial value and
Dc-gain in frequency and time domain for models with different pole access
OBS! No step response for $G_{3}(s)$

$$
\mathrm{dB}=20 \log 10(\mathrm{mag})
$$

Dynamics and Motion Control

- Lecture outline

1. Introduction
2. Mathematical descriptions of models
3. Dynamic analysis
4. Basic modeling
5. Linearization
6. Models of typical components and phenomena in mechatronic systems.
7. Example: Hydraulic actuator
8. Example: Brushless DC-Motor

—— Modelling from physical properties

Mechatronic system design Janscheck
-section 2.3-2.3.4 (except the parts with Lagrange and Hamilton) -section 2.3.8
-Lumped models
-Descriptions of basic elements

- Energy storage and dissipative energy
- Mechanical, translational and rotation
-mass, inertia, damping, friction, stiffness
-Electric
-Resistors, inductors, capacitors

—— Distributed vs. lumped parameters models

-A spring has a distributed mass, it gives a force when compressed or extended
-The model is a partial differential equation with mass distribution
-If the spring is first compressed and then released it starts to oscillate with zero speed at the fixed end

-Modeling the spring as a massless spring and a point mass gives a lumped model with two elements.
-The spring can now be modeled using ordinary differential equations with an equivalent mass m, and spring stiffness k_{f}.

—— Different concepts of modelling

Dynamics and Motion Control

—— Trough and across variables

Electrical components

v_{i} voltage at node i
i current trough the component
$U=V_{1}-V_{2}$ voltage across the component
$V=v_{1}-V_{2}$ velocity across the component

Mechanical components

v_{i} velocity at node i
f force trough the component

How do you measure the variables?

Elements that can store enegy

Symbol	Physical element	Constitutive relation	Stored energy
	Rotational Spring	$\begin{aligned} T & =k \varphi, \varphi=\int \Omega d t \\ \dot{T} & =k \dot{\varphi} \end{aligned}$	$E=\frac{1}{2} k \varphi^{2}$
	Rotational mass	$J \frac{d \Omega}{d t}=T, \Omega=\omega_{1}=\omega_{2}$	$E=\frac{1}{2} m \Omega^{2}$

Elements that only dissipates energy

——Connecting basic elements

- Mechanical properties -> Newtons laws
- Electrical properties -> Kirchhofs laws
- Parallel and series equations
- Node and loop equations
- The principles of impedance and mobility
- The order of the differential equations equals the number of energy storage elements

- Connection of elements

- Connection of components

	Parallel Node equation	Series Loop equation
Mechanical:	$m \frac{d v}{d t}=\sum f$ force balance equation or Newtons $2:$ nd law	$\frac{d f}{d t}=k_{i}\left(v_{1_{1}}-v_{1_{2}}\right)-\cdots-k_{n}\left(v_{n_{1}}-v_{n_{2}}\right)$
compatibility equation		

—— State space modelling steps

- Make a lumped sketch of the elements (for mechanical modeling)
- Make a free-body figure (mechanical) or circuit diagram (electrical)
- Give notation to parameters, node and loop variables
- Write the constitutive equations
- Gives the states of the model
- Write the node and loop equations
- Eliminate unwanted variables
- Write the equations in matrix form

—— Example : Electric circuit

$$
\begin{array}{cc}
\text { Constitutive } \\
\text { equations }
\end{array} \quad L \frac{d i_{L}}{d t}=U_{L}, ~\left(\frac{d U_{C}}{d t}=i_{C}, ~\left(U_{o}=R i_{R}\right.\right.
$$

$\begin{array}{ll}\text { Loop } & U_{C}=U_{R}=U_{o} \\ U_{L}+U_{o} & =U_{i}\end{array}$
$\begin{gathered}\text { Node } \\ \text { equation }\end{gathered} \quad i_{L}=i_{C}+i_{R}$

State and output

$$
x_{1}=i_{L} \quad x_{2}=U_{C}
$$

$y=\left[\begin{array}{c}U_{o} \\ i_{L}\end{array}\right]$
input
U_{i}

Eliminate

$$
\begin{array}{llllll}
U_{L} & i_{C} & i_{R} & U_{R} & U_{o}
\end{array}
$$

$$
\begin{aligned}
& \dot{x}_{1}=\frac{1}{L}\left(U_{i}-x_{2}\right) \\
& \dot{x}_{2}=\frac{1}{C}\left(x_{1}-\frac{1}{R} x_{2}\right)
\end{aligned}
$$

$$
\underset{\text { form }}{\operatorname{Matrix}} \quad \dot{x}=\left[\begin{array}{rr}
0 & -\frac{1}{L} \\
\frac{1}{C} & -\frac{1}{R C}
\end{array}\right] x+\left[\begin{array}{c}
\frac{1}{L} \\
0
\end{array}\right] U_{i}
$$

$$
y=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]^{x}
$$

Example : Mechanical

Constitutive	
equations	$\frac{1}{k} \frac{d f_{k}}{d t}=V_{k}$
	$m \frac{d V_{1}}{d t}=f_{m}$
	$f_{d}=d V_{1}$
Loop	
equations	$V=V_{k}+V_{1}$ $V_{1}=v_{1}-v_{1}$

Eliminate $\quad \begin{array}{llllll} & V_{k} & f_{m} & V_{1} & V & f_{d}\end{array}$
$\begin{gathered}\text { Node } \\ \text { equation }\end{gathered} \quad f_{m}=f_{k}-f_{d}$
Model $\quad \begin{aligned} & \dot{x}_{1}=k\left(v_{i}-x_{2}\right) \\ & \dot{x}_{2}=\frac{1}{m}\left(x_{1}-d x_{2}\right)\end{aligned}$

$$
\begin{array}{ll}
\begin{array}{l}
\text { State and } \\
\text { outputs }
\end{array} & x_{1}=f_{k}, \quad x_{2}=v_{1} \\
& y=\left[\begin{array}{l}
v_{1} \\
f_{m}
\end{array}\right]
\end{array}
$$

Matrix
form
$\dot{x}=\left[\begin{array}{rr}0 & -k \\ \frac{1}{m} & -\frac{d}{m}\end{array}\right] x+\left[\begin{array}{l}k \\ 0\end{array}\right] v_{i}$

Input
v_{i}
_— Compare the mechanical and electric systems

$$
\left.\begin{array}{ll}
\dot{x}=\left[\begin{array}{cc}
0 & -k \\
\frac{1}{m} & -\frac{d}{m}
\end{array}\right] x+\left[\begin{array}{l}
k \\
0
\end{array}\right] v_{i} & \dot{x}=\left[\begin{array}{cc}
0 & -\frac{1}{L} \\
\frac{1}{C} & -\frac{1}{R C}
\end{array}\right] x+\left[\frac{1}{L}\right. \\
0
\end{array}\right] U_{i} .
$$

$$
\begin{array}{lccc}
\text { Mechanical: } & \frac{1}{m} & k & d \\
\text { Electrical: } & \frac{1}{C} & \frac{1}{L} & \frac{1}{R}
\end{array}
$$

The mechanical system:
the mass and damper are in parallell!

Sometimes the position is needed as state or output of the model

y is the position that corresponds to the velocity.
Select the states as position and velocity

$$
\begin{aligned}
& x_{1}=y_{1}, x_{2}=v_{1} \\
& m \dot{v}_{2}=f_{k}-f_{d} \\
& f_{k}=k\left(y_{i}-y_{1}\right) \\
& f_{d}=d v_{1}
\end{aligned} \quad \square \quad \begin{aligned}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=\frac{k}{m}\left(y_{i}-x_{1}\right)-\frac{d}{m} x_{2}
\end{aligned} \quad \begin{aligned}
& \dot{x}=\left[\begin{array}{cc}
0 & 1 \\
-\frac{k}{m} & -\frac{d}{m}
\end{array}\right] x+\left[\begin{array}{l}
0 \\
\frac{k}{m}
\end{array}\right] y_{i} \\
& y_{2}=\left[\begin{array}{ll}
1 & 0
\end{array}\right] x
\end{aligned}
$$

—— Using impedance and mobility as modelling tools

For electric circuits $U=Z i \quad$ where Z is the impedance

For mechanical systems $V=M f$ where M is the mobillity

Equivalente impeadance and mobillity for series conections

$$
Z_{e}=Z_{1}+Z_{2}+\cdots+Z_{n}
$$

Equivalente impeadance and mobillity for parallellconections $\frac{1}{Z_{e}}=\frac{1}{Z_{1}}+\frac{1}{Z_{2}}+\cdots+\frac{1}{Z_{n}}$
Two elements in parallell $\quad Z_{e}=\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}}$

$$
\begin{array}{cc}
\text { Electrical } & \text { Mechanical } \\
Z_{C}=\frac{1}{C s} & M_{m}=\frac{1}{m s} \\
Z_{L}=L s & M_{k}=\frac{1}{k} s \\
Z_{R}=R & M_{d}=\frac{1}{d}
\end{array}
$$

—— Divisions, getting other outputs

Voltage and velocity divisions

$$
\begin{aligned}
& f=\frac{1}{Z_{1}+Z_{2}} V \\
& V_{1}=Z_{1} f \\
& V_{2}=Z_{2} f
\end{aligned} \quad \Rightarrow \begin{aligned}
& V_{1}=\frac{Z_{1}}{Z_{1}+Z_{2}} V \\
& V_{2}=\frac{Z_{2}}{Z_{1}+Z_{2}} V
\end{aligned}
$$

Current and force divisions

$$
\begin{aligned}
& V=\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}} f \\
& f_{1}=\frac{1}{Z_{1}} V \\
& f_{2}=\frac{1}{Z_{2}} V
\end{aligned} \quad \square \quad \begin{aligned}
& f_{1}=\frac{Z_{2}}{Z_{1}+Z_{2}} f \\
& f_{2}=\frac{Z_{1}}{Z_{1}+Z_{2}} f
\end{aligned}
$$

—— Same example as in slide xx

The equivalent impedance
from i to U_{i}.
$U_{i}=Z_{e}{ }^{i}$
C and R in parallel, $\mathrm{Z}_{\mathrm{p}}=\frac{R / C s}{1 / \mathrm{Cs}+\mathrm{R}}=\frac{R}{R C s+1}$
Lin serie $\mathrm{Z}_{\mathrm{e}}=L s+\mathrm{Z}_{p}=\frac{L R C s^{2}+L s+R}{R C s+1}$

What is the order of the model ?

State space model

$$
\begin{aligned}
& \dot{x}=\left[\begin{array}{cc}
0 & -\frac{1}{L} \\
\frac{1}{C} & -\frac{1}{R C}
\end{array}\right] x+\left[\begin{array}{c}
\frac{1}{L} \\
0
\end{array}\right] U_{i} \\
& y=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] x
\end{aligned}
$$

Same example as in slide $x x$

The equivalent mobility from f to V.
$V=v_{i}=M_{e} f$
$M_{e}=M_{k}+\frac{M_{m} M_{d}}{M_{m}+M_{d}}$
$M_{e}=\frac{s}{k}+\frac{1 /(d m s)}{1 /(m s)+1 / d}$
$M_{e}=\frac{m s^{2}+d s+k}{(m s+d) k}$

The velocity at node $1, v_{1}$ using velocity division
$v_{1}=\frac{\frac{M_{m} M_{d}}{M_{m}+M_{d}}}{M_{k}+\frac{M_{m} M_{d}}{M_{m}+M_{d}}} v_{i}$
$v_{1}=\frac{k}{m s^{2}+d s+k} v_{i}$

$$
\begin{aligned}
& \dot{x}=\left[\begin{array}{cc}
0 & -k \\
\frac{1}{m} & -\frac{d}{m}
\end{array}\right] x+\left[\begin{array}{l}
k \\
0
\end{array}\right] v_{i} \\
& v_{1}=\left[\begin{array}{ll}
0 & 1
\end{array}\right] x
\end{aligned}
$$

Transferfunction from v_{i} to v_{1} by:
$v_{1}(s)=C(s I-A)^{-1} B v_{i}(s)$
Calculated in Maple we get:

$$
v_{1}=\frac{k}{m s^{2}+d s+k} v_{i}
$$

—— Example where state space technique is simpler

$$
\begin{aligned}
& m_{1} \dot{v}_{1}=f-f_{d 1} \\
& m_{2} \dot{v}_{2}=f_{d 1}-f_{d 2} \\
& f_{d 1}=d_{1}\left(v_{1}-v_{2}\right) \\
& f_{d 2}=d_{2} v_{2}
\end{aligned}
$$

$$
m_{1} \dot{v}_{1}=f-d_{1}\left(v_{1}-v_{2}\right)
$$

$$
m_{2} \dot{v}_{2}=d_{1} v_{1}-\left(d_{1}+d_{2}\right) v_{2}
$$

$$
x_{1}=v_{1}, \quad x_{2}=v_{2}
$$

states

$$
\dot{x}=\left[\begin{array}{cc}
-\frac{d_{1}}{m_{1}} & \frac{d_{1}}{m_{1}} \\
\frac{d_{1}}{m_{2}} & -\frac{d_{1}+d_{2}}{m_{2}}
\end{array}\right] x+\left[\begin{array}{c}
\frac{1}{m_{1}} \\
0
\end{array}\right] f \quad \text { model }
$$

Dynamics and Motion Control

Same example with mobility technique

$$
\begin{array}{lll}
V_{3}=V_{4}=V_{34}=v_{2} & \text { Parallel }-> & M_{34}=\frac{M_{d 1} M_{m 1}}{M_{d 1}+M_{m 1}} \\
V_{2}=v_{1}-v_{2} \neq V_{34} & \text { Series -> } & M_{234}=M_{2}+M_{34} \\
V_{234}=V_{2}+V_{34}=\left(v_{1}-v_{2}\right)+v_{2}=v_{1} & & \\
V_{234}=V_{2}+V_{34}=\left(v_{1}-v_{2}\right)+v_{2}=v_{1} & & M_{1234}=\frac{M_{1} M_{234}}{M_{1}+M_{234}}
\end{array}
$$

—— Model order with position as output of a model

Two systems with parallel connections, $V_{1}=V_{2}$
First order model to velocity $\quad v=\frac{1}{m s+d} f_{i}$
Second order model to position

$$
y=\frac{1}{m s^{2}+d s} f_{i}
$$

Second order model to velocity $\quad v=\frac{s}{m s^{2}+k} f_{i}$
Second order model to position

$$
y=\frac{1}{m s^{2}+k} f_{i}
$$

Draw the step response for each model

- Lecture outline

1. Introduction
2. Mathematical descriptions of models
3. Dynamic analysis
4. Basic modeling
5. Linearization
6. Models of typical components and phenomena in mechatronic systems.
7. Example: Hydraulic actuator
8. Example: Brushless DC-Motor

- A nonlinear model $\dot{x}=f(x, u) \quad y=g(x, u)$ can be linearized around some operating point $\left\{x_{o}, u_{O}\right\}$ by considering a neighbourhood around the operating point and approximating the nonlinear model with a truncated Taylor series.
Set $x=x_{Q}+\Delta x, u=u_{Q}+\Delta u$ and $y=y_{Q}+\Delta y$, then

$$
\begin{aligned}
& \begin{array}{c}
\dot{x} \approx f\left(x_{Q}, u_{Q}\right)+\left.\frac{\partial f}{\partial x}\right|_{\left\lvert\, \begin{array}{ll}
x=x_{Q} \\
u=u_{Q}
\end{array}\right.} \Delta x+\left.\frac{\partial f}{\partial u}\right|_{\substack{x=x_{Q} \\
u=u_{Q}}} \Delta u \\
y \approx g\left(x_{Q}, u_{Q}\right)+\left.\frac{\partial g}{\partial x}\right|_{\substack{x=x_{Q} \\
u \\
=u_{Q}}} \Delta x+\left.\frac{\partial g}{\partial u}\right|_{\substack{x=x_{Q} \\
u \\
=u_{Q}}} \Delta u \\
\end{array} \\
& \begin{aligned}
\dot{x} & =A \Delta x+B \Delta u \\
\Delta y & =C \Delta x+D \Delta u
\end{aligned} \\
& \Delta y=C \Delta x+D \Delta u \\
& A=\left.\frac{\partial f}{\partial x}\right|_{\begin{array}{l}
x=x_{Q} \\
u=u_{Q}
\end{array}} \quad B=\left.\frac{\partial f}{\partial u}\right|_{\begin{array}{l}
x=x_{Q} \\
u=u_{Q}
\end{array}} \\
& C=\left.\frac{\partial g}{\partial x}\right|_{\substack{x=x_{Q} \\
u=u_{Q}}} \\
& D=\left.\frac{\partial g}{\partial u}\right|_{\substack{x=x_{Q} \\
u=u_{Q}}}
\end{aligned}
$$

Example: pendelum

$$
\begin{aligned}
& \quad \text { Differential equation } \\
& J \ddot{\varphi}=\sum_{2} M_{y}=-m g l \sin \varphi \\
& J=m l^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Nonlinear state space } \\
\text { model } \\
x_{1}=\varphi, x_{2}=\dot{\varphi} \\
\dot{x}=f\left(x_{1}, x_{2}\right) \\
\dot{x}_{1}=x_{2} \\
\dot{x}_{2}=-\frac{g}{l} \sin x_{1}
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
\begin{array}{l}
\text { Equilibrium point and } \\
\text { Linearization }
\end{array} \\
\left(\dot{x}_{2}=0\right) \Rightarrow x_{1 Q}=0 \\
A=\left.\frac{\partial f}{\partial x}\right|_{x=x_{Q}}=\left[\begin{array}{cc}
0 & 1 \\
-\frac{g}{l} \cos 0 & 0
\end{array}\right]
\end{gathered}
$$

Linear model
$x=x_{Q}+\Delta x=\Delta x$
$\dot{\Delta x_{1}}=\Delta x_{2}$
$\dot{\Delta x_{2}}=-\frac{g}{l} \Delta x_{1}$

Example: nonlinear spring, $f=k y^{2}$

See Simulink model

- Lecture outline

1. Introduction
2. Mathematical descriptions of models
3. Dynamic analysis
4. Basic modeling
5. Linearization
6. Models of typical components and phenomena mechatronic systems
7. Example: Hydraulic actuator
8. Example: Brushless DC-Motor

—— DC motor with permanent magnets in the stator

Electric part:

The rotor winding has an inductance, a
resistance and a backemf voltage proportional to rotor velocity

Mechanical part:

A torque T_{m} between rotor and stator is proportional to rotor current.
The rotor inertia, J_{R}
A load T_{L} on the outgoing shaft.

$$
\begin{aligned}
& U_{i}=U_{L}+U_{r}+E \\
& U_{i}=L \frac{d i}{d t}+R i+K_{\text {emf }} \dot{\varphi}
\end{aligned}
$$

$$
\begin{aligned}
& \varphi_{l}=n \varphi_{m} \\
& n>1
\end{aligned}
$$

Free body figure

J_{r} is the motors rotor inertia, J_{g} the gearbox inertia calculated on the motor side, J, the inertia of a load connected to the gearbox output and n the gear ratio.

$$
\begin{aligned}
& \left(J_{r}+J_{g}\right) \ddot{\varphi}_{r}=T_{m}-T_{g} \\
& J_{l} \ddot{\varphi}_{l}=n T_{g}-T_{l} \\
& \text { solve for } T_{\mathrm{g}} \text { in one eq, and put in the other. } \\
& T_{g}=\frac{J_{l} \ddot{\varphi}_{l}}{n}+\frac{T_{l}}{n}=\frac{J_{l} \ddot{\varphi}_{r}}{n^{2}}+\frac{T_{l}}{n} \\
& \left(J_{r}+J_{g}+\frac{J_{l}}{n^{2}}\right) \ddot{\varphi}_{r}=T_{m}-\frac{T_{l}}{n}
\end{aligned}
$$

Compare with an
electrical transformer

Standard Coulomb model
$F_{f}(\mathrm{v})$ is discontinuous and not unique, numerical problems. Friction force can be higher then applied force.
High stiffness, $\sigma_{0}=\left[10^{3} \ldots 0^{5}\right]$ numerical problems.

—— Implementation of Karnop's friction model

$$
\begin{aligned}
& v=\text { velocity } \\
& F_{a}=\text { applied torque } \\
& F_{f}=\text { friction torque } \\
& F_{c}=\text { Coulomb friction level } \\
& d=\text { velocity proportional friction } \\
& d_{v}=\text { velocity deadband }
\end{aligned}
$$

Dynamics and Motion Control

Dc-motor simulation with torque input and Coulumb friction

$$
T_{\text {applied }}=1.5 e^{-3} \sin (0.5 t)
$$

$$
T_{c}=0.4 e^{-3}
$$

Blue line is applied torque

Green line is friction torque

$$
J \ddot{\varphi}=T_{\text {applied }}-T_{\text {friction }}
$$

Typical velocity with Coulomb friction

Higher order dynamics in moving machine parts

- All material has finite stiffness
- Lumped models with mass, spring and damper
- Multi Body Systems, MBS
- Resonance and anti resonance frequencies,
- Gives phase lag which can make feedback systems instable
- For a general theory on MBS see any textbook in Robotics or for an introduction, Jansheck chapter 4.
- Reading material Jansheck section 4.4-4.7.5
- Which frequencies can affect a feedback system in a negative way

——General MBS

Two basic types of MBS systems

a)

b)

Machines where parts can move with relative motion in different coordinate systems

Machines where the relative motion is because of flexible (not stiff) parts. Same coordinate system.

——General nonlinear model of MBS systems

```
Based on Newton Euler can a general matrix based
equations of motion be written as the nonlinear model
M(q,t)q+g(q,q,t)=f(q,q,t)
Where:
q\in\mp@subsup{\mathfrak{R}}{}{\mp@subsup{N}{\mathrm{ DOF }}{}}\mathrm{ are N NOF the minimal number of generalized coordinates}
M\in\mp@subsup{\mathfrak{R}}{}{\mp@subsup{N}{DOF}{}\times\mp@subsup{N}{DOF}{}}\quad\mathrm{ is the mass matrix}
g\in\mp@subsup{\mathfrak{R}}{}{\mp@subsup{N}{DOF}{}}\mathrm{ generalized spring, damping, Coriolis forces}
f\in\mp@subsup{\mathfrak{R}}{}{\mp@subsup{N}{DOF}{}}\quad\mathrm{ generalized external forces}
```


—— Linearized model of MBS

Linearizing around a stable position $q_{* 0}$ gives that $q(t)=q_{*_{0}}+y(t)$ and the equations of motion as
$M y+(B+G) \dot{y}+(K+N) y=f(t)$

Where all matrices are $N_{\text {DOF }} \times N_{\text {DOF }}$
$M=M^{T}, M y$ are the inertial forces
$B=B^{T}, B y$ are the damping forces
$G=-G^{T}$, Ny are the gyroscopic forces
$K=K^{T}, K y$ are the spring forces
$N=-N^{T}, N y$ are the non - conservative forces
N is always zero for our models

——Structured modeling of MBS with flexible linkage

$$
\begin{aligned}
& M=\operatorname{diag}\left(\begin{array}{llllll}
m_{1} & m_{2} & m_{3} & m_{4} & \cdots & m_{N}
\end{array}\right) \\
& K=\left[\begin{array}{cccccc}
k_{1}+k_{2} & -k_{2} & & & & \\
-k_{2} & k_{2}+k_{3} & -k_{3} & & & \\
& -k_{3} & k_{3}+k_{4} & -k_{4} & & \\
& & & \ddots & & -k_{N} \\
& & & & -k_{N} & k_{N}+k_{N+1}
\end{array}\right] \\
& B=\left[\begin{array}{cccccc}
b_{1}+b_{2} & -b_{2} & & & & \\
-b_{2} & b_{2}+b_{3} & -b_{3} & & & \\
& -b_{3} & b_{3}+b_{4} & -b_{4} & & \\
& & & \ddots & & -b_{N} \\
& & & & -b_{N} & b_{N}+b_{N+1}
\end{array}\right] \\
& y=\left(\begin{array}{llllll}
y_{1} & y_{2} & y_{3} & y_{4} & \cdots & y_{N}
\end{array}\right)^{T} \\
& \text { a) } \\
& \dot{x}=A x+B f=\left[\begin{array}{cc}
0 & E \\
-M^{-1} K & -M^{-1} B
\end{array}\right] x+\left[\begin{array}{c}
0 \\
M^{-1}
\end{array}\right] f \\
& \text { b) }
\end{aligned}
$$

Dynamic of the MBS

Poles are simply calculated as the eigenvalues of the A matrix
The zeros and therefore also the frequency response depends on which mass is actuated and which mass is measured. That is, on which row in the B matrix and which column in the C matrix.

Example: 2 mass

—— Dc motor with load and week shaft

$$
\varphi_{1}=\frac{b_{s}}{s\left(s+a_{s}\right)} i
$$

Where:

$$
\begin{aligned}
& b_{s}=\frac{k_{T}}{J_{m}+J_{l}} \\
& a_{s}=\frac{b_{1}+b_{3}}{J_{m}+J_{l}}
\end{aligned}
$$

$M=\operatorname{diag}\left(\begin{array}{ll}J_{m} & J_{l}\end{array}\right)$
$K=\left[\begin{array}{cc}k_{1}+k_{2} & -k_{2} \\ -k_{2} & k_{2}+k_{3}\end{array}\right] \quad k_{1}=k_{3}=0$
$B=\left[\begin{array}{cc}b_{1}+b_{2} & -b_{2} \\ -b_{2} & b_{2}+b_{3}\end{array}\right]$
Gives:
$\varphi_{1}=\frac{b_{w}}{s\left(s+a_{w}\right)} \frac{s^{2} / \omega_{a}^{2}+2 \zeta_{a} s / \omega_{a}+1}{s^{2} / \omega_{0}^{2}+2 \zeta_{0} s / \omega_{0}+1} i$

$$
\begin{aligned}
& G_{w}(s)=\frac{b_{w}}{s\left(s+a_{w}\right)} \frac{s^{2} / \omega_{a}^{2}+2 \zeta_{a} s / \omega_{a}+1}{s^{2} / \omega_{0}^{2}+2 \zeta_{0} s / \omega_{0}+1} \\
& G_{s}(s)=\frac{b_{s}}{s\left(s+a_{s}\right)}
\end{aligned}
$$

If a_{s} is sufficiently smaller than ω_{0}

Then:

$$
G_{w}(s) \approx \frac{b_{s}}{s\left(s+a_{s}\right)} \frac{s^{2} / \omega_{a}^{2}+2 \zeta_{a} s / \omega_{a}+1}{s^{2} / \omega_{0}^{2}+2 \zeta_{0} s / \omega_{0}+1}
$$

Example: Identify MBS model

Simplest approach is to make a step response to velocity and measure time constant, $1 / \mathrm{a}$ and resonance frequency ω_{0}

Model parameters:
$m_{1}=1, m_{2}=2$
$k_{2}=1000$
$b_{1}=4, b_{2}=1, b_{3}=1$

—— Example continued

Antiresonance frequency

$$
\omega_{a}=\omega_{0} \sqrt{\frac{m_{1}}{m_{1}+m_{2}}}=24.2
$$

Gives the parametric model

$$
G=\frac{0.2 \cdot 1.67}{s+1.67} \frac{(s / 24.2)^{2}+1}{(s / 42)^{2}+1}
$$

Compare frequency response

Compare step response

Simple model

$$
\begin{array}{lll}
z_{2}=z_{1}-z_{t} & \text { for } & \dot{z}_{1}>0 \\
z_{2}=z_{1}+z_{t} & \text { for } & \dot{z}_{1}<0
\end{array}
$$

Spring loaded model

$$
\begin{array}{llc}
z_{2}=z_{1}-z_{t} & \text { for } & z_{1} \geq 0 \\
z_{2}=z_{1}+z_{t} & \text { for } & z_{1} \leq 0 \\
z_{2}=0 & \text { for } & -z_{t}<z_{1}<z_{t}
\end{array}
$$

1. Introduction
2. Mathematical descriptions of models
3. Dynamic analysis
4. Basic modeling
5. Linearization
6. Models of typical components and phenomena in mechatronic systems.
7. Example: Hydraulic actuator
8. Example: Brushless DC-Motor

—— Hydraulic systems

- Pressure difference is the across variable
- Volume flow is the through variable
- Node and loop equations
- Fluid capacitance and fluid resistance
- Volume and pressure sources -> Pumps
- Flow and pressure control valves -> servo valves
- Fluid to mechanical transformers -> cylinders and motors
- Modeling example : flow controlled hydraulic cylinder

$$
\begin{aligned}
& V=\text { liquid volume }\left[m^{3}\right] \\
& A=\text { cross sectional area }\left[m^{2}\right] \\
& Q=\text { volume flow }\left[\frac{m^{3}}{s}\right] \\
& p=\text { pressure }\left[P a, N / m^{2}\right]
\end{aligned}
$$

Through type
$I_{f} \frac{d Q}{d t}=P$
$I_{f}=$ fluid inertance

Not so important !

for a circular pipe

$$
I_{f}=\frac{\rho l}{A}
$$

$$
Q=R_{f} \sqrt{\left(p_{i}-p_{o}\right)}
$$

$$
\rho=\operatorname{density}\left[\frac{\mathrm{kg}}{\mathrm{~m}^{2}}\right]
$$

$$
l=\text { length of pipe }[m]
$$

$$
A=\text { cross sectional }
$$

$$
\text { area of pipe }\left[\mathrm{m}^{2}\right]
$$

Density increase, (volume decrease) of hydraulic oil is more than 100 times larger then that of steel. So it can not be neglected.

Bulk modulus, $\quad \beta=-V\left(\frac{\partial p}{\partial V}\right)=\rho\left(\frac{\partial p}{\partial \rho}\right) \approx 2 \cdot 10^{9}\left[\frac{N}{m^{2}}\right]$ density, $\rho=\frac{m}{V}\left[\frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right]$

Mass flow into a constant volume,

$$
\dot{m}=Q \rho=\frac{d}{d t}\left(V_{0} \rho\right)=V_{0} \frac{d \rho}{d t}
$$

From definition,

$$
d \rho=\frac{\rho}{\beta} d p
$$

Hence,

$$
Q=\frac{V_{0}}{\beta} \frac{d p}{d t}
$$

With,

$$
C_{f}=\frac{V_{0}}{\beta}
$$

$$
C_{f} \frac{d p}{d t}=Q
$$

Constitutive equation

Hydraulic circuits

There are a lot of hydraulic details in a system but we will concentrate on a few components that are important for the dynamics.

Dynamics and Motion Control

—— 4-way 3 position directional valve (closed center)

Spool valve model

- Spool assumptions
- No leakage, equal cylinder actuator areas
- Sharp edged, steady flow
- Opening area proportional to x_{v}
- Return pressure is zero

- Symmetrical

Orifice model for sharp edged orifice: Q, flow
C_{d}, Discharge constant
A_{o}, effective opening area ρ, density
$\Delta \mathrm{p}$, pressure drop over orifice
$Q=C_{d} A_{o} \sqrt{\frac{2}{\rho} \Delta p}\left[\frac{m^{3}}{s}\right]$
set:
R_{v}, a constant given by valve data sheet

$$
Q_{1}=R_{v} \sqrt{p_{1}-p_{t}} x_{v}
$$

$$
x_{v}<0
$$

$$
\begin{aligned}
& Q_{1}=R_{v} \sqrt{p_{s}-p_{1}} x_{v} \\
& Q_{1}=R_{v} \sqrt{p_{2}-p_{t}} x_{v}
\end{aligned} \quad x_{v}>0
$$

$$
\begin{array}{ll}
\text { Constitutive } & m \dot{v}=f_{m} \\
\text { equations: } & C_{f} \dot{p}_{1}=Q_{1} \\
& C_{f} \dot{p}_{2}=Q_{2} \\
& Q_{1 v}=R_{v} \sqrt{p_{s}-p_{1} x_{v}} \\
& Q_{2 v}=R_{v} \sqrt{p_{2} x_{v}} \\
\hline
\end{array}
$$

Node eq. $\quad f_{m}=p_{1} A-p_{2} A-f_{f}-f_{e}$
Loop eq.
$Q_{1}=Q_{1 v}-Q_{c}$

$$
Q_{2}=-Q_{2 v}+Q_{c}
$$

The valve dynamics, spool mass and solenoid must be modeled. Physical model is difficult, flow forces on spool.
A second order model from valve input signal to spool position is usually sufficient.
Parameters from valve data sheets.

$$
x_{v}=\frac{\omega_{0}^{2}}{s^{2}+2 \zeta \omega_{0} s+\omega_{0}^{2}} u
$$

m, mass of piston, piston rod and load A, effective piston area
f_{f}, friction force, f_{e}, external force
$x_{v}>0$

Volume flow due to
$Q_{c}=A v$ piston velocity.

—— Linearizing the model

Linearize around an operating point $\quad p_{1 Q}, p_{2 Q}$ and $x_{v Q}$, assume $p_{t}=f_{f}=0$

$$
\begin{aligned}
& 0=p_{1 Q} A-p_{2 Q} A-f_{e} \Rightarrow p_{1 Q}=p_{2 Q}-\frac{f_{e}}{A} \\
& \left.0=R_{v} \sqrt{p_{s}-p_{1 Q}} x_{v}-A v \Rightarrow\left(\frac{A v}{C_{v} x_{v}}\right)^{2}=p_{s}-p_{1 Q}\right\} \\
& 0=-R_{v} \sqrt{p_{2 Q}} x_{v}+A v \Rightarrow\left(\frac{A v}{C_{v} x_{v}}\right)^{2}=p_{2 Q} \\
& \text { Define, } R_{i}, K_{i} \Longrightarrow \begin{array}{l}
Q_{1}=K_{1} \Delta x_{v}+R_{1} \Delta p_{l} \\
Q_{2}=K_{2} \Delta x_{v}+R_{2} \Delta p_{2}
\end{array} \quad \text { where: } \quad \begin{array}{l}
x_{v}=x_{v Q}+\Delta x_{v} \\
p_{1}=p_{1 Q}+\Delta p_{1} \\
p_{2}=p_{2 Q}+\Delta p_{2}
\end{array} \\
& p_{1 Q}=\frac{p_{s}}{2}+\frac{f_{e}}{2 A} \\
& p_{2 Q}=\frac{p_{s}}{2}-\frac{f_{e}}{2 A} \\
& x_{v Q} \text {, must be manualy selected } \\
& R_{1}=\left|\frac{\partial Q_{1}}{\partial p_{1}}\right|_{\substack{p_{1}=p_{1 Q} \\
x_{v}=x_{v Q}}}=-\frac{R_{v} x_{v Q}}{2 \sqrt{p_{s}-p_{1 Q}}}=-\frac{1}{\sqrt{2}} \frac{R_{v} x_{v Q}}{\sqrt{p_{s}-\frac{f_{e}}{A}}} \quad K_{1}=\left|\frac{\partial Q_{1}}{\partial x_{v}}\right|_{\substack{p_{1}=p_{1} \\
x_{v}=x_{v Q}}}=R_{v} \sqrt{p_{s}-p_{1 Q}}=R_{v} \sqrt{\frac{p_{s}}{2}-\frac{f_{e}}{2 A}} \\
& R_{2}=\left|\frac{\partial Q_{2}}{\partial p_{2}}\right|_{\substack{p_{2}=p_{2 Q} \\
x_{v}=x_{v Q}}}=-\frac{R_{v} x_{v Q}}{2 \sqrt{p_{2 Q}}}=-\frac{1}{\sqrt{2}} \frac{R_{v} x_{v Q}}{\sqrt{p_{s}-\frac{f_{e}}{A}}} \\
& K_{2}=\left|\frac{\partial Q_{2}}{\partial x_{v}}\right|_{\substack{p_{2}=p_{2 Q} \\
x_{v}=x_{v Q}}}=-R_{v} \sqrt{p_{2 Q}}=-R_{v} \sqrt{\frac{p_{s}}{2}-\frac{f_{e}}{2 A}}
\end{aligned}
$$

- Linear model

Select states:

$$
x_{1}=x_{v}, x_{2}=v_{v}, x_{3}=v, x_{4}=p_{1}, x_{5}=p_{2}
$$

d, linear friction coeficient

$$
\dot{x}=\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
-\omega_{v}^{2} & -2 \zeta \omega_{v} & 0 & 0 & 0 \\
0 & 0 & -\frac{d}{m} & \frac{A}{m} & -\frac{A}{m} \\
\frac{K_{1}}{C_{f}} & 0 & -\frac{A}{C_{f}} & \frac{R_{1}}{C_{f}} & 0 \\
\frac{K_{2}}{C_{f}} & 0 & \frac{A}{C_{f}} & 0 & \frac{R_{2}}{C_{f}}
\end{array}\right] x+\left[\begin{array}{c}
0 \\
\omega_{v}^{2} \\
0 \\
0 \\
0
\end{array}\right] u
$$

Step response

$$
\begin{aligned}
& p_{s}=20[\mathrm{MPa}] \\
& m=100[\mathrm{~kg}] \\
& A_{c}=\pi 0.025^{2}\left[\mathrm{~m}^{2}\right]
\end{aligned}
$$

Dynamics and Motion Control

1. Introduction
2. Mathematical descriptions of models
3. Dynamic analysis
4. Basic modeling
5. Linearization
6. Models of typical components and phenomena in mechatronic systems.
7. Example: Hydraulic actuator
8. Example: Brushless DC-Motor

- 3-phase electric motors

- Asynchronous machines have windings in both stator and rotor
- Permanent magnet 3-phase motors have only winding in stator
- Also called Synchronous motors (rpm synchronous to electric field rotation)
- Two types
- Brushless DC motor BLDC or Trapezoidal motor
- Permanent Magnet Synchronous Machine PMSM or Sinusoidal motor
- Advantage over DC-motor
- cooling -> higher currents and/or smaller size
- Disadvantage over DC-motor
- More advanced control -> electronic commutation (software)

8-pole motor (4 magnets)

2-pole motor (1 magnet)

http://www.stefanv.com/rcstuff/qf200212.html

Back EMF depends on motor design

Sinewave EMF

Different Modeling and control strategies are used for the two kinds

BLDC control structure (trapezoidal)

Dynamics and Motion Control

PMSM control structure

Field Oriented Control

Phase currents are sampled synchronously to PWM signals

—— Commutation of trapezoidal motor (BLDC)

Dynamics and Motion Control

BLDC model structure

Modeling steps:

1. Set up the differential equations for the phase currents
2. Model the shape of the EMF and flux
3. Calculate the electric torque
4. Model the commutation logic based on hall sensors or position
5. Model the inverter

4 and 5 can be modeled in one state machine (state flow)

- 1. Differential equations for phase currents

$$
\begin{aligned}
& {\left[\begin{array}{l}
U_{a b} \\
U_{b c} \\
U_{c a}
\end{array}\right]=\left(R+L \frac{d}{d t}\right)\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1 \\
-1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
i_{a} \\
i_{b} \\
i_{c}
\end{array}\right]+\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1 \\
-1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
e_{a} \\
e_{b} \\
e_{c}
\end{array}\right]} \\
& i_{c}=-i_{a}-i_{b} \\
& {\left[\begin{array}{l}
U_{a b} \\
U_{b c}
\end{array}\right]=\left(R+L \frac{d}{d t}\right)\left[\begin{array}{cc}
1 & -1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
i_{a} \\
i_{b}
\end{array}\right]+\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{c}
e_{a} \\
e_{b} \\
e_{c}
\end{array}\right]} \\
& \frac{d}{d t} i_{a}=\frac{1}{L}\left(-R i_{a}+\frac{2}{3}\left(U_{a b}-E_{a b}\right)+\frac{1}{3}\left(U_{b c}-E_{b c}\right)\right) \\
& \frac{d}{d t} i_{b}=\frac{1}{L}\left(-R i_{b}+\frac{1}{3}\left(U_{a b}-E_{a b}\right)+\frac{1}{3}\left(U_{b c}-E_{b c}\right)\right)
\end{aligned}
$$

$$
z=R i+L \frac{d}{d t} i
$$

$$
\text { Same } R \text { and } L \text { in each phase }
$$

2. Back EMF model

A simple way to simulate is to, take $\cos (f())$ and saturate it between -0.5...0.5 and then multiply it with 2 . Which is how the plot above has been done.

Dynamics and Motion Contro

Same shape as the EMF

$$
T_{e}=K_{t}\left(f(\theta) i_{a}+f\left(\theta-\frac{2 \pi}{3}\right) i_{b}+f\left(\theta-\frac{4 \pi}{3}\right) i_{c}\right)
$$

- 4. Commutation logic

One way to find the correct commutation sequence is to calculate the phase to phase EMF. $E_{x y}=e_{x}-e_{y}$
Maximum magnetic torque is achieved when the phase currents are flow in the same direction, for example for $E_{a b}$ should $i_{a}>0$ and $i_{b}<0$. Which is achieved with
$U_{a b}=V_{s}$.
See xxx for proof.

Blue $E_{a b}$
Red $E_{b c}$
Green $E_{\text {ca }}$

Dynamics and Motion Control

5. Model the inverter

Each energized state must be modeled separately Let's start with state $\mathrm{Q}_{1} \mathrm{Q}_{4}$ when $U_{a b}=V_{s}$ What is then $U_{b c}$?

Redraw the motor inverter system for easier analysis

Is phase C connected to plus or ground?
It depends on the direction of the current in C from previous state
For positive direction (rotation) was previous state $U_{b c}=-V_{s}, Q_{5} Q_{4}$ closed
Gives $i_{c}>0$

- 5. Model the inverter

Now can we calculate $U_{b c}$

$U_{b c}=0$ short circuit between B and C
After some time the current in C will become zero, what happens then?

5. Model the inverter

Equivalent circuit when $i_{c}=0$

There are two loops, one directly from B to C and one via A
Loop BC, $-e_{b}-Z i_{b}+e_{c}+U_{b c}=0$
Loop BAC, $V_{s}-e_{a}-Z i_{a}+e_{c}+U_{b c}=0$
$i_{c}=0$, gives $i_{b}=-i_{a}$
hence:
$U_{b c}=\frac{1}{2}\left(-V_{s}+e_{a}+e_{b}-2 e_{c}\right)=\frac{1}{2}\left(-V_{s}+E_{a c}+E_{b c}\right)$
This must be done for all six states in both directions of rotation but, only for $U_{a b}$ and $U_{b c}$ since $U_{c a}$ is not needed in the differential equations.

—— Voltage step input

Dynamics and Motion Control

Step response cont.

Currents

ic

Torque

Torque ripple because of the commutation

Dynamics and Motion Control

