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— Lecture outline

1. Introduction

2. Mathematical descriptions of models

3. Dynamic analysis

4. Basic modeling

5. Linearization

6. Modelis of typical components and phenomena in mechatronic systems.
7. Example: Hydraulic actuator

8. Example: Brushless DC-Motor
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— Why models ?
Some examples

 Model based feedback and feed forward control design
 Model based state estimation, non measurable states
* Model based failure diagnostics

 Model based Hardware In the Loop, HIL simulation

« Simulation for various purposes,

« Machine dynamics simulation.

« State machine models for simulation of logic algorithms

How good is your model?
How good does it have to be?
How do you measure the quality of a model?
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— Model characteristics

»Physical properties
 mechanical
» electrical
o fluid mechanics
* thermal etc.

=System properties

e time variance vs invariance y(t)=—ay(t) +bu(t)
* single vs multivaria y(t)=—a(t) y(t)+b(t)u(t)
e linear vs nonlinear y(t)=-asiny(t)+bu(t)

»Modelling strategy

« kinematic (motion without forces) /
dynamic

» (interaction of forces and motion) / static

e lumped / distributed parameters

e continuous / discrete /state machines

Dynamics and Motion Control




— Model details complexity—m—mm—mmmm—mm™@™@@8@™™—

Real system
Analysis ——— — Detailed nonlinear model
_ : Lineariation
Detailed linear model
Design _
\ Linear model
Verification

Parameter calculation

Parameter identification thrugh experiments
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— Model types

Continuous time Discrete time
Differential equations (time) Difference equations (time)
y =—ay +bu y[n]=ay[n 1]+ bu[n]

State space models (time) State space models (time)
X=Ax+ Bu X[n+1] = dx[n]+T'u[n]
y=Cx+ Du y[n] = Cx[n]+ Du[n]

Transfer functions (frequency) Transfer functions (frequency)
ORIRANO Y(2)=—2u(@)

Block diagrams for good physical insight
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Example: state space model

A .
d ™
M/VW\ e F. m .
i | X = Ax+ Bu

d ﬁ _
!//«-'.-’/'/.-f%//// T y CX

Force balance for the rolling mass, my = Z Fo=F —ky—dy
Select states =Y, Xp=Y
X =Xp

Model the derivatives of the state 1
XZ - —(F - le - dXZ)
m

0 1 0
Write in matrix form X = _k d [x+| 1|F

m m

m
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Example: Block diagram

Differential equations are modeled by using integrators
| :
y=—(F—-ky—dy)

m

FIN] y[m/s?]  yIm/s]  y[m]

(1) (o 1im > L ' I-% (1)

Integraton

[N]

The signals have real units, force, position etc. for increased
understanding. It is a specification that you also can simulate.
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— Simple to extend to nonlinear behavior

Model of a nonlinear spring

1
y=—(F —ky* - dy)
m

F y y y
&, *_ 1m > % |

Inlegiaton

=
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— Transfer function models

The Laplace transform of a time serie L{u(t)}= Tu (t)e tdt
u(t) is defined as: 0

L{y(t
A transfer function G(s), is the ratio of the G(s) = ngtg
output Laplace transform with the input
Laplace transform. Y(s)=G(s)U(s)

n
Two important special cases: derivative and L{d :} =g"
integration. If the intitial conditions are zero, dt
u(0)=0, then:
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— |nitial and final value theorems

Final value theorem:

f(2) = fim[ f (] = lim[sF(5)]

Example,
Final value for a step input is final value for
1
f (o0) = Iim{sF(s)l} — lim[F (s)] Gls)=_"
s—0 S s—0

with step input is 1/a

Initial value theorem For all G(s) with higher
order denominator as

: : numerator is the initial
fO)= t“—rj(])[f 0]= JLTO[SF(S)] value for a step input zero.
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Example: Transfer function

’]‘.
(o L F
7N
The transfer function can be Direct calculation from the differential
calculated from the state space model. equation is OK for low order models
You have to take a matrix inverse.
OK numerically in Matlab and L{my = F —dy —ky!
symbolically in Maple ms?y = F —dsy —ky
2
L{x = Ax+ Buj} (ms +ds+k)y:F
sx— Ax=Bu G(s) = 1
x = (sl — A)*Bu (m82+ds+k)
y =Cx

y=C(sl — A)1Bu

G(s)=%=C(sI ~AB
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— Planes and tools

*Frequency domain

*G(s) = G(jw), wis the frequency
Complex pole-zero plane

«Solve for s in numerator and denominator polynomials
*Time domain

*The response y = G(s)u for different u, e.g., step, ramp, etc.

Dynamics and Motion Control



— Complex plane: poles and zeros TF

Zeros: set N(s)=0
and solve for s.

The absolute value of s, |s|=va’ + b

Represents a frequency rad/s:
Poles: set D(s)=0

and solve for s. *In time domain how fast a response
to an input is.
Poles and zeros can be plotted *In the freqtuencr)]/ plane_ (BOdEi.)t'td
in the complex plane, the real re%res;]en S achange in amplitude
part vs. the imaginary part and phase
*|s| is often called @y
imag
s=a+bi
cos¢ real
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— Complex plane: poles and zeros state space

The poles are the eigenvalues of
the A matrix calculated by:

det(sl — A)™

The zeros depends on the output,
that is: the C matrix

Different C matrix gives different
Zeros

Example: mass and spring

X, = position
X, = velocity
u = force

Dynamics and Motion Control

0 1 0
X = X+ |F
im0

if :
y=[1 O0Jx
then :

1
G(s) =
(%) ms? + k
if :
y=[0 1
then :
G(s) =
%) ms? + k




— Frequency domain response

For any transferfunction G(S)
with the input

u(t) =1.0sin(wt)
will give the output
y(t) =asin(wt + @)

With the gain,
a= \G(ja))\

and the phase

¢:tan_1(image(jw)j
realG(jw)

Dynamics and Motion Control



— Integrator and derrivator

Derrivation

G(jo)=jo
ljel=
arg jo =atan(w/0)=7/2

M agnitude (dB)

Phase (deq)

w

Poles and zeros:

Integration Integrator:
G(jw)=1/(jw) pole.: s=0

jo| =1/ Zero: none
- derivate:

arg jo=atan(- @/0)=—-7x/2 sole: none
zero: s=0

Bode Diagram

B0
40 _

ok i Step response for an Integrator
0r \‘ Step Response
20 1500
40 e LT

a0 : 1000

45 © sap

ok
ask " z00 1000 1500
-90 o :

107 107 10" 10° 10°

What is the step respone for a
G(s) =s,10s 110 Derrivator ?
1 ] 1
S
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First order polynomial

Two ways of writing:

G(s)=—<

G(S) :L

Amplitude

Imaginary Lxizs

S+a

s+1

Step Responze

n 1 2 = A =

Paole-Zera Magp

Good for frequency domain,

Good for time domain

1
G =———
Example 15901
5
27 5+10

NhAavantAaviatian AvrAacs
vllialaulelistliLs dl .

Pole

Dc-gain

Time constant

Cut-off frequency
Phase lag at high freq.

Bode Diagram

Magnitude (dB)

45 |

Phaze (deq)
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— Second order TF in complex plane

Model:

@

% + 2¢ws +

G(s) = wg

Un-damped resonance frequency:

s/ =1/ (¢mo ) +[L- ¢ Joft = g

Poles, complex conjugate when: & <1

s=—Cwy £~ —lwy =—Cwg + A 1- Py

imag

1_ 2 Damped resonance frequency, what
V1=¢ @ you would measure in time domain

real
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— Second order TF in time and frequency domains

Two models with same frequency but different damping

Step Response 4
Bode Diagram

20

20t
A0 b
50 F
50

N T T

mMagnitude (dB)

Amplitude

a5 |
o |
135

Phase (deq)

1 1 1 1 1 1 1 1 -1 BI:I
0 02 04 0E oa 1 1.2 14 16 1.8 10
Titme (zec)

Low pass characteristics, 180 degree phase shift at high frequencies
Overshot, What is the damping ratio ?
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— Superposition and dominant dynamics (poles)

100
A second order model  Gi(s)= is superpositioned
T 82 1651100 Perp 7
. . a
with a first order model Gz(S)=m , such that Gg(s) = G;(s)G,(s) A
-20 -2
In left figure is a=2 and in right figure a=20 /
1.4 T T 14 : :
— 5] , =1
12} G2 124 ) H — G2
— G17E2 | R
1L — AR/ s, G162 |
™ | \‘Q/
08} . I 08} Ir
0B} 06H ||
/ J
Q4] // 0.4 fl
02 I."Ir o2t ::EI
i i
I:I 1 L 1 1 1 L I:I d 1 1 1 1 1 1
0 05 1 15 2 25 3 35 0 05 1 15 5 S F 5

The TF with the slowest pole dominates the step response
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— |Influence of a real zero

G(s) =

Amplituda

“1)og

2

s T 1lloys T ag

a =[05,1,2,4]

Step FResponse

-
7] —201
5
) ; E, -30
Increasing ain | g
direction of arrow —40r
50
. e . -60 — =
D2 04 05 08 07 08 10 10

Time (&Rl
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— Higher order models: pole/zero in bode

s+10 s+100 s+1

Gy(s) =

(s+1)(s+100)° Ga2(9)= (s+1)(s+10)° Gs(s)= (s+10)(s +100)

Bode D:iagram
20

=1
2
G3 [

et N\ s

1 1
i " : ! i
1 1 1

hagnitude (dB)

1 1 1
ok | : i -
1 1

1 1
-F0 ' ! ' i
1 1 1

1 1 1

-850 EETIT| 1ol TR 11l ool
107 1w 10 1’ 10° 1d° 10}

1 1

FrF:r:luF:nr:v: rrardf=ar’
1
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-— Pole access

The number of poles and zeros equals the order of the

denominator and nominator respectively. G(s) = N(s)
For a TF we define the number of poles and zeros as D(s)
np and ny

The pole access is defind as: np =np —ny

*TF with n, > -1 are called proper.

If n, = 0, is the model output constant at high frequencies, a step response
will give a nonzero initial value.

If n, > 0, is the model output zero at high frequencies, a step response has
zero initial value

oIf n, <0, is the model not proper, the gain at high frequencies is infinite, it is

not possible to make a step response for such a model
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Example: pole access

s+1 : : —
Gi(s) = +10, na=0 Relationship between initial value and

St Dc-gain in frequency and time domain for
G,(s) = S+ , Ny=1 models with different pole access

(s+10)(s+1) OBS! No step response for G4(s)

_ (s+1)(s+50) B
Ga(s) = (s+10) a=-1 dB = 20log10(mag)
i 93//\/

hagnitude (dB)
[on)
[}

: ;

) e——),
0 0.5 1 1.5 2 24 3 34 4
3

Time (zec)
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— Modelling from physical properties

Mechatronic system design Janscheck

esection 2.3-2.3.4 (except the parts with Lagrange and Hamilton)
esection 2.3.8

Lumped models

*Descriptions of basic elements

* Energy storage and dissipative energy

 Mechanical, translational and rotation
*mass, inertia, damping, friction, stiffness

*Electric

*Resistors, inductors, capacitors
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— Distributed vs. lumped parameters models

A spring has a distributed mass, it gives a force when compressed or extended
*The model is a partial differential equation with mass distribution
oIf the spring is first compressed and then released it starts to oscillate with
zero speed at the fixed end.

*Modeling the spring as a massless spring and a point mass gives a lumped
model with two elements.

*The spring can now be modeled using ordinary differential equations with an
equivalent mass m, and spring stiffness k.

K
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— Different concepts of modelling

Mechatronic System

v

lumped parameters
energy conservation laws

1l 1l

scalar energy functions multi-ports
, 4 P PR !
LAG‘RA:\.IGE HAM!LTONs > Port- fgn:s - KIRCHHOFF i signal-coupled ' |
formalism equations HAaMILTONIAN grap | networks ' networks P
formalism i : 1 ]
! power coupled i power decoupled : i
‘\\W R ettt el "i/

Pspice,...
VHDL-AMS,

Matlab/Simulink,

Labview,...

Modelica, ...

CAE computer algebra:
Mathematica, Maple, ...

(hybrid) differential algebraic equations (DAE) system

.
(hybrid) state space model (ODE) s rssion et e e S s
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— Trough and across variables

Mechanical components

v, velocity at node |

f force trough the component

V =v;-v, velocity across the component

Electrical components

—

i Vi Vi i
——— -

U

—

v; voltage at node i

| current trough the component

U= v;-v, voltage across the component

How do you measure the variables?
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—— Elements that can store enegy

Svmbol Physical Constitutive Stored
y element relation energy
U -

v ¥ v di 1, .,
.1 2. .| Inductance L—=U=v, -V, E=_Li
| —>o0——~~~~~—o0— | dt 2

L
U
> du .
. V2. |Capacitance Cd—:"U =V, =V, E—ECUZ
C
v Lt
" - | f =ky,y=[Vvdt L
f o NN f| Translational 1 df E==ky
f - =4y 2
k Spring k dt
— dv 1

Vi - V2 |Translational | ,,9V _ _y — E="mV?2

f—o “—fl  Mass ™t LV=n=v, 2
m
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— Rotational mechanical elements

Symbol Physical Constitutive Stored
element relation energy
e o = A I
Q .
T 5 I “:j T Ro&a;sosnal J%—?:T,Q:a)lza)z E_%mﬂz
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— Elements that only dissipates energy

Physical Constitutive Stored
Symbol .
element equation energy
U [
W V2 | Resistance U = Ri _
j —o— ____—o0—
R
V »
Vi TV Damping B
F—o—d o (friction) F=adv
d
L D
- ry _
f—s friction = 4umg
S
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— Connecting basic elements

= Mechanical properties -> Newtons laws
= Electrical properties -> Kirchhofs laws

» Parallel and series equations
= Node and loop equations

= The principles of impedance and mobility

» The order of the differential equations equals the number of energy storage
elements
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— Connection of elements

'he velocity/voltage The force/current
across the component through the
component
Series connection V=V, —V,
Vv, V, Vo =Vp —V3 - _
f Vi Vs f Vo V3 V=V, +V, f,=f,
£ f f
L C, g 1 L& C, _&’_2 V =(Vy —Vy) +(Vy, —V3)
Y, Vi=v; -3
>
Parallel connection Trough C,
V, fy
f f
1
O C, O¢ - The same: Trough C,
£ g f Vi=V,
“hTv S =0
f2 f2 f - fl + f2
O C, O
Va
—_—

Dynamics and Motion Control



— Connection of components

Parallel
Node equation

Series
Loop equation

dv
m—=> f df
Mechanical: dt 2 P Ki(vy, —vg, ) === Kp(Vy, —Vp,)
force balance equation compatibility equation
or Newtons 2 : nd law
_ du : di
Electrical: CE=Z' LE= Ry(uy, —Uy, ) —--— Ry (up, —up,)

Kirchofs current law

Kirchofs voltage law
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— State space modelling steps

» Make a lumped sketch of the elements (for mechanical modeling)
» Make a free-body figure (mechanical) or circuit diagram (electrical)
= Give notation to parameters, node and loop variables

= \Write the constitutive equations
= Gives the states of the model

= \Write the node and loop equations
= Eliminate unwanted variables

= Write the equations in matrix form
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Example : Electric circuit

L
Constitutive di, Ui C R U,
equations E:UL I
dUC O N\ 4 O
C—C=ic
dt
Jo=Rlr Eliminate UL ic ik Ur Uo
Loop Uc =Ug =U
equations C-TRTTo 1
U +U, =U; X1:I(Ui—xz)
Model
X —l(x —lx )
NOde iL:iC +iR 2 C ! R 2
equation
S
State and =l X =Uc Matrix "= 11 o I6UI
ate an U, form C RC
I
y_{o 1}(
input U, 10
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Constitutive
equations

Loop
equations

Node
equation

State and
outputs

Input

Example : Mechanical

Ldf
k dt
dv,
m—==f
d "
V=V, +V;
Vik=V; —Vq
V1:V1
fm="fc— 14

V, K 2 d v,=0
0/\/\/\ m h 1 |
Vi v Vi
fk fk fk fd fd
NN N— —_— b | ]
Eliminate Vi o V0 Vg
i = k(% - %)
Model 1
Xo =— (X —dxy)
0 -k
Matr x=[1 _Q_x+{}w
atrix m m
form

Dynamics and Motion Control
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— Compare the mechanical and electric systems

0 -k K 0o _1 1
x={1 d X+|:O:|V| X=| 4 II X+| L |U;
mom ¢ rc) U
1 — Y=, o

_ 1
Mechanical: o k d
Electrical; % i1

The mechanical system:
the mass and damper are in parallell !
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— Alternative selection of states in mechanical systems =—

Sometimes the position is needed as state or output of the model

Vi, Yi K Vo, Yo d
NN m b — CE

y is the position that corresponds to the velocity.
Select the states as position and velocity

=Y, X=V

—x o 1] [o0]
mV2=fk—fd 1= 2 % = _h _E X+ h Y,
fomk(y ) — xzzg(yi_xl)_%xz e— m m Lm
fg = dvy =L 0)x
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— Using impedance and mobility as modelling tools

For electric circuits U =Zi  where Z is the impedance

For mechanical systemsV = Mf where M is the mobillity

Equivalente impeadance and mobillity for series conections Le=21+Zy+--+ 1,
: : . : 1 1 1 1
Equivalente impeadance and mobillity for paralleliconections @—=—+—+---+—
Ze 4y L Z,
ZZ
Two elements in parallell Z,=—172_
Z1+ 2,
Electrical Mechanical
1 1
Zc=— My, =—
Cs ms
= 1
Zr =R
R Md :%
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Divisions, getting other outputs

Voltage and velocity divisions

V
> f 1
Vy Va2 Z,+2,
Vlzzlf
Vi Vo ¢ Vo V3 Vo= 7. f
f 2 =42
»O— Z, O¢ —»O0— 7, |—O«—
Current and force divisions
V
V = leZ
f]_ Vl V2 f]_ Zl+22
= f =ty
f f 1— Zl
1
fo=—V
f f 2
2 Z, 2 Z,
Vi Vo
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— Same example as in slide xx

The equivalent impedance
from ito U,

U; = Z,i

What is the order of the model ?

Cand Rin parallel, Z, = R/Cs = R
1/Cs+R RCs+1
2
LinserieZ, =Ls+Z, = LRCs” +Ls+R
RCs+1
The output impedance State space model
from U, to U, . i}
o -1 | J1
U, =ZY; x=| ;¢ px+H[L
Z, = ——=| Lo
Zo = ' C RC
Zo+Z|
R 0 1
Z0 = 2 . . y= X
RCLs“ +Ls+R What is the dc-gain ? 10
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— Same example as in slide xx

The equivalent mobility

from fto V.
V:Vi:Mef
Mesz+—Mde
Mm+Md
_S, 1/(dms)
® k 1/(ms)+1/d
- ms?+ds+k
® (ms+d)k

Mde
Vi = Mm+Md
1 i
Mk +7Mde
Mm+Md
k
V, = Vi

L
ms2 +ds + k

v, k Vv, d V,=0
NN M b — GE
Vk V Vl

v

v =[0 1]
Transferfunction from v; to v, by:
vi(s) =C(sl — A) B v;(s)
Calculated in Maple we get:

k
Vi =

1 i
ms?2 +ds + k
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Example where state space technique is simpler

f vy dq Vs d,
— m p— d m pb——| =E
myy = = fgy
maVy = fg1— fyo Using node and
fyp=d;(vy — V) loop equations
fa2 =davo
—)
mVy = f —dy (v —Vvy) Differential eq.

myV, = divy — (dp +dy)v,

=V, X=V)

states
- g _
_1 ﬂ 1
x=| M M |
d, dy+d, 01 model
L M m;
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— Same example with mobility technique

> m, P _= m, p : {
vy v, Vs V,
V3 .
Vosa :
Mdll\/I mil
V3=V, =V3 =V Parallel -> Msy =
3=V =Vg =V Mgy + M
Vo =V =V, #V3y Series -> Mjszq =My + Mg,
Vozq =Vo +V3y = (V= Vo) +V, =V,
Vozq =V + V3 = (v —V3) +Vp =V,
MM 34
Vi =v; =Vap3y Parallel -> Miggq = ——==—
: M; +Moyzq

Dynamics and Motion Control




— Model order with position as output of a model

Two systems with parallel connections, V=V,

f; v d
- °E First order model to velocity V=
—_ m o :
\] 2 Second order model to position _
ms? + ds
fi Y k -
l: Second order model to velocity V=
— M o_/\/\/\__:E
V. ] v " Second order model to position _
' i ms? +k

Draw the step response for each model
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— | Inearization

A nonlinear model x = fix, u) v = g(x,u) can be linearized around
some operating point {x,.u,} by considering a neighbourhood around
the operating point and %pprommatmg the nonlinear model with a
truncated Taylor series.

Setx = xQ+ﬂ.x, u = uQ-hﬂu and V= }=Q+ﬂ}-‘, then

Ax = AAx+ BAu
Ay = CAx+DAu
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Example: pendelum

MNonlinear stale space
mode!

X; = QX = @
X =f(xl,xg}
X=X

Xy = —'?f,inxl

y
' Differential equation

Jo = ZML = —mglsinoe

J

Dynamics and Motion Control

CJ = mfg
N A
Y - Y e ™
Equilibrium point and Linear model
Lineanzation
. — + —
(, = G}Z}xlg =0 X =xg Ax = Ax
ﬂ.'xl = Ax,
- of _ 0 1 | 2
Ox|¥ =g —%cosﬂ 0 Axy = _’%‘ﬁxl
o AN /




y —l
(™) 1o
MNonlinear
spring

unilibrium point\

% =0
—

mg
S

Example: nonlinear spring, f=ky?

Differential eq.
my = mg — ky?

0

Linearization

\

@onlinear model\

X=Y Xo=Y
% = f(x)
X1:X2

Dynamics and Motion Control

X5 =%(mg —kxlz)

- )

-

AX = AAX
y - AXl + XlQ

o

Linearized model

~

%

See Simulink model
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— DC motor with permanent magnets in the stator

L R

Electric part: O —

The rotor winding has U =U_+U, +E

an inductance, a B , di

resistance and a back- Ui Q T £ =Kemt ¢ Uj=L—+Ri+Kgpso
emf voltage proportional i dt

to rotor velocity O -

Mechanical part:
Atorque T, between rotor @

and stator is proportional T T, +T,
to rotor current. ——3] Rotor S\:K_(__
The rotor inertia, Jg

Aload T, on the outgoing
shatft.

Jrp =Ty =T — Ty
Tm :kTi

Inertia, Jg
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— Gearbox model

O =Ny
n>1

J, Is the motors rotor inertia, J, the gearbox inertia calculated on the motor side,
J, the inertia of a load connected to the gearbox output and n the gear ratio.

(‘]r + ‘]g)(br :Tm _Tg

Jigy =nTy =T,

solvefor T, in one eq, and putin the other.
TG T _dG T

g n n n2 n Compare with an

T, electrical transformer

J)..
(Jr +J4 +n—;j¢r =T, -

Dynamics and Motion Control
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— Nonlinear friction model

Standard Coulomb model

Ff( v) = F_sgn(v) +dv

FAv) is discontinuous

and not unigure,
numerical problems.
Friction force can be

higher then applied force.

dF

dt

Dynamic zero velocity mode!

Ffl
r/,
/.J F

7 :
= Gﬂ(l — —sgn[‘u}jv
F_ .

High SIfﬁn%SS_, i
5o = [107...107]
numerical problems.

Karnop stick-slip model

—-d, <v<d, {

v =0

Ff - Fappﬁed

—d >v>d, { Ff=f(1:)

Small velocity error around
Zero velocity.
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— Implementation of Karnop’s friction model

v = velocity
F,= applied torgue F f
Ff= [friction forque

F. = Coulomb friction level

d = velocity proportional friction 2d,

d, = velocity deadband

- T no
<l<d >
.
yes
Fg v, F{?
=] o —————————
F,= Fﬂl
F-f'
11151:{{Ff] = FC Ff = F-: sgn(v) +dv
min(F P = —F_ Y

Dynamics and Motion Control
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— Coulumb friction

Tarque [Mm]

Dc-motor simulation with torque input and Coulumb friction

Tapplied =1.56 > sin(0.5t)

Blue line is applied torque

Green line is friction torque

1.5

1

03

n

-0s

-1

1.5

i i
0 0.3 1

Time [=]

Jo= Tapplied - Tfriction

“elocity [1452]

300

200

100 F

-100

=200

=300

T, =0.4e°

Typical velocity with
Coulomb friction

a 0.3 1 1.3 2

Time [=]
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— Higher order dynamics in moving machine parts

= All material has finite stiffness

Lumped models with mass, spring and damper

= Multi Body Systems, MBS

Resonance and anti resonance frequencies,

Gives phase lag which can make feedback systems instable

» For a general theory on MBS see any textbook in Robotics or for an
introduction, Jansheck chapter 4.

Reading material Jansheck section 4.4 —4.7.5

= Which frequencies can affect a feedback system in a negative way

Dynamics and Motion Control



— General MBS

Two basic types of MBS systems

Machines where parts can move
with relative motion in different
coordinate systems

= k'l k‘z 3 N N+l /

7-wwW— T Tww—e e |-ww—7
2) f—c— Ol 18 === f

Z b b, b, by by

~Y, ~ Y, Yy

’ k, d"z ks df\ ] ’dcx-;-lr/
b) //" 271 ( 271 é‘]\ aes D L 2 4

A L y H yn _y_-\-' A

Machines where the relative motion
IS because of flexible (not stiff) parts.
Same coordinate system.
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— General nonlinear model of MBS systems

Based on Newton Euler can a general matrix based
equations of motion be written as the nonlinear model

M(q,t)q+9g(d,q,t) = f(q,q,t)

Where:

qeR"PF  are Npor the minimal number of generalized coordinates

M e )RNoorXNoor s the mass matrix

g e RNooF  generalized spring, damping, Coriolis forces

f e;Noor  generalized external forces

Dynamics and Motion Control



— |_Inearized model of MBS

Linearizing around a stable position g., gives that q(t) = g., + Y(t)
and the equations of motion as

My+(B+G)y+(K+N)y=f(t)
Where all matricesare Npor x Npog

M =MT My are the inertial forces

B =B", By are the damping forces
G=-G', Ny are the gyroscopic forces

K=K, Ky are the spring forces

N=-NT, Ny are the non - conservative forces
N is always zero for our models

Dynamics and Motion Control




— Structured modeling of MBS with flexible linkage

M =diag(m; m, mgy my -

kg +ky, -k,
—k,  ky+ks —Kg
K= —ky  Kg+ky
b+b, —b,
—b, by+b; by
B= —b; b3+

my)
K,
“ky
_b,
by,

y=0V1 Y2 Y3 Ya - Yn)'

a)

b)

k k,

1

equation of motion

My + By + Ky = f (t)

_kN
Kn + K |
] Define a state vector
=0y i)'
_bN
by + Dy | Gives the state space model

ANNAN
S
3 k

(==
=)

5
/>

2 kg k.‘\' k—“\- +1
— MW»_. amm g
m w - !m"t:g
2 bi; b.\" E b.‘-'-l
=Ya Yy

N+l

\7\3"

X = Ax + Bf :{

ANNNN

o™

1 2

-, .

NN
N
=
A

S ks k.\'
I '(éj[ S
Yy

< |

N

ANNNN
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— Dynamic of the MBS

Poles are simply calculated as the eigenvalues of the A matrix

The zeros and therefore also the frequency response depends
on which mass is actuated and which mass is measured.
That is, on which row in the B matrix and which column in the

C matrix.
k2
. ~ AN~ s
Example: 2 mass —
— =
Bode Diagram Bode Diagram
100 T 100 v
g )/\K B
o o
k= n - k= 1
= =
7 7
= =
-100 e e e -100
1] | ]
= =
E Observe phase £
o -30 . o -180
j: difference j:
-1a0 — | -360 :
107 10" 10’ 107 10"
From K, to y; From F, to vy,
Four polesand two zeros Four polesand no zeros
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— Dc motor with load and week shatft

-

™ Gearno
Encater

g §
DC-mod 1

Bearing

ENCOOET-._

Load
Py

il

-

-~

Shaft with torisional

spring and damper
model

o

k, +k
K:[ 11Kz
—ky

B b+b, —by
_{—bz b2+b3}

| v =01 "7 s(s+ay)
T :le
: ] Where:
Stiff shaft model - : El_‘: k
. . — — I — b. = T
(with gear ratio 1.0) b, _m by ST+
by +bs
*J 4+
M =diag(J,, J;)
Tm:kTi

ke Ky =k =0
Ky+kg| + 0

Gives:

» =

by S /a)a+24’asla)a+1
s(s+ay) s?/af +2§03/a>0+1

Dynamics and Motion Control

/




— Dc motor with week shaft

by, %/ +2,50w,+1

G, (S) =

wl®) S(S+ay) %/ e +2¢p5 wg +1
b

G.(s) = S

(5) s(s+ay)

If & issufficienty smaller than o,

Then:

by  S%/@h+20 .5 w, +1
s(s+as) s/ wp +2805] awp +1

Gy, (s) ~

Dynamics and Motion Control
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Example: Identify MBS model

Simplest approach is to make a step response to velocity and measure
time constant, 1/a and resonance frequency ay

Model parameters:
m=1Lm,=2

k, =1000
by=4,b,=1Lby=1

Amplitude

0.z

018

016 |

014

012+

01 r

003 b

0.06

004 +

0.0z

Ztep Responze

a~1/0.6=1.67
~ 2—7[ =42
To

1

1/a

1
0.3

e
To

1 1 1 1 1 1
1.5 2 25 3 R 4 45
Time (zec)
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Example continued

Antiresonance frequency Compare frequency response

ml Bode Diagram
Wy = @y =242 100 .
My +my
a0 F
Gives the parametric model g 5]
g 02167 (s/24.2)* +1 £
s+1.67 (s/42)%+1 - '
-100 | .
10" *nlj2
Compare step response
Step Responsze
0.25
T, _ o
Red lines original model
ol | Blue lines identified model
Ell 0.1
0.0s
I:IIII IIITS 1I 1 75 2I 2?5 3I 375 *i 435
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—— Model of: Backlash or play (glapp pa svenska)

Simple model Spring loaded model|
Zy = 15, for jl}t] *:Ejzl_:f for :12'2I
Zy = 27tz for ;<0 il:‘l+—r me _‘liﬂ
;2_ ID iCJl‘ _;f‘i:l"a:r
2z,
. b= ) 1 ™ = 3
= +— — —
:l :2 “1 =2
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Introduction

Mathematical descriptions of models

Dynamic analysis

Basic modeling

Linearization

Modelis of typical components and phenomena in mechatronic systems.
Example: Hydraulic actuator

Example: Brushless DC-Motor
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— Hydraulic systems

Pressure difference is the across variable

Volume flow is the through variable

Node and loop equations

Fluid capacitance and fluid resistance

Volume and pressure sources -> Pumps

Flow and pressure control valves -> servo valves

Fluid to mechanical transformers -> cylinders and motors

Modeling example : flow controlled hydraulic cylinder

Dynamics and Motion Control




— Hydraulic components

)

pump

3
Q =volume flow [m_]

Across type
dP
Grp——

f gt Q

C: =fluid capacitance

tank
V, A — pgh =
P=,9 A
P A
Ci =—
Q £9

V =liquid volume [m?’J

A = cross sectional area [mz]

S

p = pressure [Pa, N /mz]

Through type

Ifd—Q=P

dt

| 1 =fluid inertance

Not so important !
pipe
Pi > Po
Q flow

for a circular pipe

A
A

p =density {k—%}
m

| =length of pipe [m]
A = cross sectional

¥

area of pipe [mz]

Dynamics and Motion Control

Disipative type

RiQ=P

R¢ =fluid resistance

R, Pipe

P —>— —> Po

Q flow

Q=R /(P — Po)



— Compressibility of hydraulic oil

Density increase, (volume decrease) of hydraulic
oil is more than 100 times larger then that of steel.
So it can not be neglected.

8p 8p 9|: N :|
Bulk modulus, =\V|—|=p — |x=2-10° | —
P (('Wj p[épj m?

Mass flow into a _ d do
constant volume, M =Qp=a(v0p)=voa

From definition, dp=Ldp
B
Hence, Q _Yodp
B dt
With, Cs Y &
B

Dynamics and Motion Control

. m | k
density, ,o:V [—%}

dp _
fdt—Q

Constitutive equation

C




— Hydraulic circuits

There are a lot of hydraulic details in a system
but we will concentrate on a few components
that are important for the dynamics.

Sungle Rod Cylonder

|
1§ Bad Domeater I z

/ Cylinder

Flow control

(

Il_ == Suctioe Samer

A | 40 150 Micron
5
! |
P el

1-3 PS] Bypass

LY

Offlene Fiker Puaip
A Mo

3-10 Micron
1523 P51 Bypass

Teak Fill Riter
3-10 Mucron No Bypas

L [ Svstem Fall Valve
Shewn Filtenng

I
If'?":::f:m {J — ﬁg:ﬂ\f;kn
A0 =_ }]i.i:‘}i?;:'plu .
s V_arlable
s e displacement
Heat Exchzager [ [_ ¥ | Redies vakve

pump
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— 4-way 3 position directional valve (closed center)

ok | 4 ORI
R Ps
‘ 1 |
| Spool to
Valve _Mght
i | Vv
3 P,
| |
Cylinder Load presure

AP=P-P,>0

13

Spool to
the left
%

K [

3!

Load presure
AP=R -P, <0

\/\/ Standard hydraulic

w"lli>{
va ]

N valve component sketch

SOLENOID A P T SOLENOID B
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— Spool valve model

= Spool assumptions

» No leakage, equal cylinder actuator areas

Sharp edged, steady flow

Opening area proportional to X,

Return pressure is zero

= Symmetrical
Orifice model for sharp edged orifice: 0-cC Ab\/zAp m®
Q, flow 0 s
C, , Discharge constant set:
A, , effective opening area
p, density Q= R/Ps — P x, >0
Ap, pressure drop over orifice Q =R/ P2 = Pty
R, , a constant given by valve data sheet

Qu =Ry PL— PtXy

Xy <0

Dynamics and Motion Control Q= Ryy/Ps = P2Xy



— The complete model

mv=f,
Cip=Q
Cipr=Q,

Qu =Ryy/Ps — PrXy

Q2v = VN/FTZXV

Constitutive
equations:

A, effective piston area
f; ,friction force, f
x,>0

fm = plA_ pZA_ ff - fe
Q1=Q1v _Qc
Q2 =_Q2V +Qc

Node eq.
Loop eq.

1

, f. , external force

The valve dynamics, spool mass
and solenoid must be modeled.
Physical model is difficult, flow
forces on spool.

A second order model from valve
input signal to spool position is
usually sufficient.

Parameters from valve data sheets.

=2 2
S° + 28wys + @

u

m, mass of piston, piston rod and load

| m

Volume flow due to
piston velocity.
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Linearizing the model

Linearize around an operating point  Pig, P2g and x,q,assume p; = f; =0

f
0=pioA— PagA—fe= Pig=Prg — A
_ps fe
Av Y PO = oA
OZRV\/ps_plQXv_AVZ> = Ps — Pio —
CuXy D _bs _fo
2 QR 2A
Av
0=-R,/P2qX + AV:[C ) = P2q Xyq. Must be manualy selected
vXy )

Xy = Xyq +AX,
= KjAX, + RjA
Define, R K; — Q= Kbk + Ry where:  P1=Pig + AP
Qa = KpAX, + RyAp;

P2 = Pag + AP,
oQ RyXuQ 1 R qu oQ p; f
R = =R, [ =R |Ts__"e
t ‘8p1 o o 2P P V2 \/ 7o, o|P=pro Ps 7 Pie =75 T 2a
=XvQ v=Q
f
0Q,y RvaQ 1 RvaQ K, = @ -—R. | =—R Ps_Te
Ro = - - 27| ox, |p2=p2 v P2g V2 2A
= Q
P, Ef:xSéQ 2\/ P2q V2 \/Ds _ ¥ %y =30
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— | Inear model

0 1 0 0 0 |
Select states: —w -2w, O 0 0
X = Xyy Xg =Wy, X3 =V, Xy = P1, X5 = P 0 0 4 A A
- m m m
d, linear friction coeficient X= Ky 0 AR 0
Cs C: C;
Kz A 4 R
Cs C: Cs
Step response
g . ¥ 10° ¥ 107

X+

o o ol o

ps = 20 [MPa]
m =100[Kkg] <

A, = 70.025° [m?]

Yelocity (mfs)
Force (M)
Pressure (MN/m)
=

0.5

a 0.05 0.1 a 0.05 0.1 0 0.05
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Introduction

Mathematical descriptions of models

Dynamic analysis

Basic modeling

Linearization

Modelis of typical components and phenomena in mechatronic systems.
Example: Hydraulic actuator

Example: Brushless DC-Motor
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— 3-phase electric motors

= Asynchronous machines have windings in both stator and rotor

* Permanent magnet 3-phase motors have only winding in stator
= Also called Synchronous motors (rpm synchronous to electric field rotation)
= Two types

= Brushless DC motor BLDC or Trapezoidal motor

= Permanent Magnet Synchronous Machine PMSM or Sinusoidal motor
= Advantage over DC-motor

= cooling -> higher currents and/or smaller size
» Disadvantage over DC-motor

= More advanced control -> electronic commutation (software)

Dynamics and Motion Control




— Electromechanical design

8-pole motor (4 magnets)

Stator

Hall effect
Sensors

Permanent
magnets

Windings Rotor

2-pole motor (1 magnet )

http://www.stefanv.com/rcstuff/qf200212.html
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— Back EMF depends on motor design

20

o Ofp

=20

20

o Of

=20

20
- 0

=20

Trapezoidal EMF

1]

100 200 300 400 s00
eh

(=0H]

1]

100 200 300 400 a0a
=

GO0

7 ~_7.

1]

100 200 300 400 s00
rotor position (degree)

goo

20

n

=20

20

1]

=20

20

1]

=20

Sinewave EMF

== ]

0 100 200 300 400 a00

=0]H]

a 100 200 300 400 a00

(=0H]

1 100 200 300 400 s00
ratar position (degree)

Different Modeling and control strategies are used for the two kinds
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— BLDC control structure (trapezoidal)

n*

BLDC speed control

l |

_I_d I > 6 3 Phase
PWM [ Inverter

l |

l |

l |

: Commutation ! Hall Sensors

I Sequence i

l |

l |

' |

BLDC speed and current cascaded control

1%

Nact

N

—d—|-> PWM

lact

|
6 Ph
e 3 Phase

Inverter

!

Commutation

D/A

Hall Sensors °

-«
I

I
I
I
I
I
I
I Sequence
I
I
I
1
1
I
[
L]
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— PMSM control structure

Field Oriented Control

Up
rrent ctrl
i*sg=0A O / U'sd d,q .
X X ” ’ i
Isd
speed ctrl -current ctrl > Modulator
n* i* *
LEENG W \/I's U'sq ,J/ab,c >
‘k_ /_\ i ) Zi—bﬁ_\ q
n 'Sq ERS}
l iSq d, .
de- DI ! a «—D = s o)
coupling N, ¢ Isd A _
< D A\ % Isp .>
€ a,b
RS
Speed and Encoder ZN

o " PSM
position < ,\4 \ 3~
Measurement

Phase currents are sampled synchronously to PWM signals
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— Commutation of trapezoidal motor (BLDC)

Stator

Hall effect HalA

Permanent . 1
magnets SEnsors Hall B 1

1 1
Windings Rotor Hall C .

1

a———

1
001} 101

100110 010, 011; 001; 101

Position
T

po°

1 i 1 L 1 i 1 L
i 120i i 2401

Q|

Q, !
+ @ Q3 E :
A T :

Q>
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— BLDC model structure

DC link voltage(PWM)

Commutation
logic

gate

Inverter

Phase voltages

EMF

Position

&

di
dt

Phase
currents

Flux

Speed,position

Electric
torque

Mechanical
load

Modeling steps:

kbR

Dynamics and Motion Control

Set up the differential equations for the phase currents
Model the shape of the EMF and flux
Calculate the electric torque

Model the commutation logic based on hall sensors or position
. Model the inverter
4 and 5 can be modeled in one state machine (state flow)




— 1. Differential equations for phase currents

o 5 D I e 7=Ri+L Y]
ch =| R+ La 0 1 -1 Ib +( 0 1 -1 eb
U -1 0 1]i] |-1 0 1]e

N i ‘ Same R and L in each phase
o =—1, — 1

e

U, a1 -1, 1 -1 ol Phase to phase
U =|R+L— S+ ey voltages

bc R & Upe . Uea
d. 1 .2 1 0.
ala:EL— R'a+§(uab_Eab)"'g(UbC_Ebc)) b

d. 1 .1 1
PTE. :EL_ R, +§(Uab - Eab)+§(ch - Ebc)j
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— 2. Back EMF model

=]

Cl : ' : : e, = f(O)K
5 sl \—/ \ _ K. Electromotoric 2= 1(0) ;a)e
20 : : : constant [V/rad] ey =f (9 — —7[) Ke®s
1] 100 200 300 400 500 G600 ] 3
. | 2 | w, Electric A
5 ol u S velocity[rad/s] € = f(e_?)Kewe
B 10 200 300 400 s00 600 If magnetic poles 2
e . 1,0 <0< —ﬂ.
20 . : : IS 2, W, = o, 3
> / \__/ 1—9(9—2—”}2—@9@
-20 : : : f— Vs 3) 3
1] 100 200 300 400 S00 G600 =A 5 e
ratar pasition (degree) _ 1, T < 9 < _7[
2(9—5—7[)—1,5—” <2r
Vs 3

A simple way to simulate is to, take cos(f()) and saturate it between -0.5...0.5
and then multiply it with 2. Which is how the plot above has been done.

Fhi' r
cos{u[1]) 7| _’|j> L "[I:}
phi'r

1
* —D'-'
the we b
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— 3. Electric torque

Same shape as the EMF

T, = Kt[f(e)ia + f(@—%r]ib + f(e—%”jicj
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— 4. Commutation logic

One way to find the correct
commutation sequence is to \/
calculate the phase to phase
EMF. E, =¢,-¢,

Maximum magnetic torque

Is achieved when the phase
currents are flow in the same
direction, for example for E,,
should i, > 0 and i, < 0.
Which is achieved with

Uab = Vs,

See xxx for proof.

“olt

A0 1 : ! ! 1 ! 1 [ ] 1
a 501 100 4 180 ¢ 200 260 300 350
: v Position fdegree) i

Closed transistors -> Q;Qg Q3Qs Q3Q2 QsQ- QsQ, Q.Q,
Energized phases -> Ug=-Vg U=V iU, =-Vi U=V, i U=V Uy=V,
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— 5. Model the inverter

Each energized state must be modeled separately
Let's start with state Q,Q, when U_, =V

What is then U,.?

Redraw the motor inverter system for easier analysis

IIn current
state

w >0

[ ] [ ]

i in previous\ \Ds_|
M
state

Is phase C connected to plus or ground?

It depends on the direction of the current in C from previous state

For positive direction (rotation) was previous state U, = -V, Qs Q, closed

Givesi.>0
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— 5. Model the inverter

Now can we calculate U,

.. Z D
iin current i at the start 6
state of the new stat

U, = 0short circuit between Band C

After some time the current in C will become zero, what happens then?
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— 5. Model the inverter

Equivalent circuit when i, =0

There are two loops, one directly from B to C and one via A
Loop BC,—e, —Zi, +e. +U,, =0
Loop BAC, V, —e; —Zi, +e, +U,, =0
ic =0, givesi, =—i,
hence:
1 1
Upe ZE(_VS TEq+6 — 2€C)=§(—Vs +Eqc + Ebc)

This must be done for all six states in both directions of rotation but,
only for U,, and U, since U_, is not needed in the differential equations.
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— 5. Model the inverter

Transition from

previous state
ip, >0 ori, <0

depends on state

Position > xx Position > xx

i, >0 ori, <0
depends on state

i,=0
Uab =... ] n ( Uab -
ch = J L ch
Position > xx N
\ ’ Position > xx
T o
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400

200

-200

-400

400

200

-200

-400

Voltage step input

phase to phase voltage Uab

phase to phase voltage Ubc

70 72 74 76 7a an
Fosition (degree)

Voltage step Usp  Upe
Inverter Jd
Commu- d Electric Mechanicg
—>| tation EMF torque load
logic &
Flux
Speed,position
otep response

1000 r

a00 - 7
w
E BOO - 1
=
E
= 400} 1
=

200 ¢ 1

I:I 1 1 1
0 0.04 0.1 0.145 0.2
Time (s)
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—— Step response cont.

10

-10

10

-10

10

-10

Currents

A4 56 A3 B0 B2 B4
Fosition (degree)

Torque ripple because of the commutation
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