IH2655 Design and Characterisation of Nano- and Microdevices

Lecture 1

Introduction and technology roadmap

- Introduction to IH2655
- Brief historic overview
- Moore's Law and the ITRS Roadmap
- From Geometrical to Material-based scaling
- CMOS Process Flow

Course PM

Subject: Advanced course of the physical and technological concepts used in modern CMOS and bipolar/BiCMOS fabrication.

Prerequisites: Semiconductor Devices (IH1611) or Semiconductor Theory and Device Physics (IH2651) or equivalent knowledge in semiconductor device physics.

Course content: 24 h lectures week 3-10 (see Daisy schedule).
Approximately 8 h laboratory exercises (2 labs), to be scheduled in groups of 4-5.

Language: English

Course PM cont'd

Lecturer and Course Director: Prof. Mikael Östling, Division of Integrated Devices \&
Circuits (EKT), School of ICT, KTH.
E-mail: ostling@kth.se, phone: 08-790 4301
Lectures will also be given by: Dr Christop Henkel 08-790 4177, chenkel@kth.se
and Assoc. prof Gunnar Malm, gunta@kth.se, 08-790 4332, same department
Laboratory asisstants are Ms Maryam Olyaei, olyaei@kth.se and Mr Sam Vaziri, vaziri@kth.se, same department.

Literature: Plummer, Deal and Griffin, Silicon VLSI Technology: Fundamentals, Practice and Modeling. Prentice-Hall 2000, ISBN 0-13-085037-3. (725 kr THS Bookstore in Kista)
Examples from other VLSI books and journal articles
Strong Suggestion: Read chapters before class - Concept Tests will help you much more

Examination: Two written lab reports on time and 1 h Oral examination.
Signup sheets for labs and exam through Daisy.

Course PMcont'd

NOTE: LAB REPORTS ARE DUE ONE WEEK AFTER THE LAB!

IF YOUR LAB REPORT IS LATE YOUR MAXIMUM GRADE IS E

Individual laboratory reports are required and please observe that any signs of plagiarism will directly be reported to the Disciplinary board

Schedule

$\#$	Date	Time	Room	Subject
1	17-Jan	$13-15$	Ka431	Introduction. Technology roadmap. Overview of fabrication flow
2	18-Jan	$10-12$	Ka431	Wafer fabrication and silicon epitaxy.
3	23-Jan	$13-15$	Ka431	Wafer clean and wet processing, Screening of "Silicon Run" DVD: fabrication process,
	25-Jan	$13-15$		NO LECTURE
4	30-jan	$13-15$	Ka431	Electrical characterization. (G Malm)
5	1-Feb	$10-12$	Ka431	Oxidation of silicon (C Henkel)
6	8-Feb	$10-12$	Ka431	Annealing (FA \& RTA) Diffusion and ion implantation, (C Henkel)
7	$10-\mathrm{Feb}$	$10-12$	Ka431	Deposition of dielectrics and metal gate stacks (C Henkel)
8	15-Feb	$10-12$	Ka431	Dry etching (C Henkel)
9	17-Feb	$13-15$	Ka431	Microlithography
10	21-Feb	$13-15$	Ka431	Thin film deposition / Back-end processing
11	22-Feb	$10-12$	Ka431	Process integration: MOS and Bipolar (C Henkel)
12	28-Feb	$13-15$	Ka431	Nanostructures / nanophysics
	29-Feb	$10-12$		NO LECTURE
13	5-Mar	$13-15$	Ka431	Reserve time (prel no lecture)
13	7-Mar	$13-15$	Ka431	Reserve time (prel no lecture)

Microelectronic processing

Clean room environment

Source: Infineon

Transistor level

Wafer level

...so why should you care if you plan to work in Nanoscience, MEMS, PV or Photonics?

Top down AND Bottom Up

Structure size

Source: website Univ. Wien

IH2655: Lego for grown-ups

wafer

Baba, Nature Photonics 3, 190-192 (2009)

IH2655 Aim

This course is about the process technology used to manufacture semiconductor devices. It aims to familiarize with the related technical vocabulary and to provide the students with a tool kit of fabrication methods for a range of devices.

After the course the student should be able to
describe the technological processes involved in the fabrication of nano- and microelectronic devices and circuits
compare alternative fabrication methods
apply the knowledge to specific device requirements through careful selection among a number of choices
assess pros and cons of different fabrication methods
combine fabrication methods to develop complex process flows for functional devices and circuits in a range of applications (e.g. transistors, solar cells, optoelectronics...)

- Introduction to IH2655
- Brief historic overview
- Moore's Law and the ITRS Roadmap
- From Geometrical to Material-based scaling
- CMOS Process Flow

Brief retrospect : A great invention based on Sciences

>Bardeen, Brattain, Shockley, First Ge-based bipolar transistor invented 1947, Bell Labs. Nobel prize 1956 >Atalla, First Si-based MOSFET invented 1958, Bell Labs.
$>$ Kilby (TI) \& Noyce (Fairchild), Invention of integrated circuits 1959, Nobel prize
>Planar technology, Jean Hoerni, Fairchild, 1960
$>$ First CMOS invented early 1960’s
$>$ "Moore's law" coined 1965, Fairchild
$>$ Dennard, scaling rule presented 1974, IBM
$>$ First Si technology roadmap published 1994, USA

Bardeen, Brattain, Shockley, First Ge-based bipolar transistor invented 1947, Bell Labs. Nobel prize 1956 1st point contact transistor -- by Bell Lab

(Reprinted with permission of Lucent Technologies).

Polycrystalline Ge 1956 Nobel Physics Prize

Transistor=transfer + resistor --Transferring electrical signal across a resistor

FIRST INTEGRATED CIRCUIT BY J. S. KILBY
(US Patent 3,138,763 filed Feb. 1959, granted 1964)

Kilby (TI) \& Noyce (Fairchild), Invention of integrated circuits 1959, Nobel prize

FIRST MONOLITHIC IC BY R. N. NOYCE
 (US Patent 2,981,877 filed July 1959, granted 1961)

This marked the start of an amazing development -> Increasing integration of components

Planar technology, Jean Hoerni, Fairchild, 1960

Planar process

Invented by Jean Hoerni at Fairchild Semiconductor (late 50's)

Dennard, scaling rule presented 1974, IBM

NMOS technology

Fig. 14 Perspective viow of an n-channel MOSFET. ${ }^{9}$

Fig. 13 Reduction in the aroa of MOSFET as the gate langth (minimum featura length) is reduced:

First Si technology roadmap published 1994, USA

Started by Semiconductor Industry Association (SIA) in USA 1994: creation of an American style roadmap

The National Technology Roadmap for Semiconductors (NTRS)
1998, the SIA became closer to its European, Japanese, Korean and Taiwanese counterparts by creating the first global roadmap

The International Technology Roadmap for Semiconductors (ITRS).
Today: Over 1000 companies and research institutions

First Si technology roadmap published 1994, USA

Started by Semiconductor Industry Association (SIA) in USA 1994: creation of an American style roadmap

The National Technology Roadmap for Semiconductors (NTRS)
1998, the SIA became closer to its European, Japanese, Korean and Taiwanese counterparts by creating the first global roadmap

The International Technology Roadmap for Semiconductors (ITRS).
Today: Over 1000 companies and research institutions Teams for:
-System Drivers
-Design
-Test \& Test Equipment
-Process Integration, Devices, \&
Structures
-RF and A/MS Technologies for
Wireless Communications
-Emerging Research Devices
-Emerging Research Materials
-Front End Processes
-Lithography

- Interconnect
- Factory Integration
-Assembly \& Packaging
-Environment, Safety, \& Health
-Yield Enhancement
- Metrology
-Modeling \& Simulation
- Introduction to IH2655
- Brief historic overview
- Moore's Law and the ITRS Roadmap
- From Geometrical to Material-based scaling
- CMOS Process Flow
"Moore's law": coined 1965, Fairchild

Gordon Moore’s original Ideas in 1965

Source; Intel

"Moore's law": coined 1965, Fairchild

1965: Components per „integrated function"

Source: G.E. Moore, Cramming more components onto integrated circuits, Electronics, Volume 38, Number 8, April 19, 1965

"Moore’s law": rewritten in 1975, INtel

1975: Transistors per chip. Basis: Exponential behavior...

Source: G.E. Moore, No exponential is forever..., I SSCC, February 2003

"Moore's law": the real motivation

Woriduide Semiconductor Revenues

... Driven by $\$ \$$...

Source: G.E. Moore, No exponential is forever..., ISSCC, February 2003

"Moore's law": enabled by scaling

Source: G.E. Moore, No exponential is forever..., I SSCC, February 2003
"Moore's law": enabled by scaling

"Moore's law": enabled by scaling

MOSFET metrics provide additional advantage

A simple model for $\mathrm{I}_{\text {Don }}$ is given by the MOSFET "Square-Law" Equation:

$$
I_{\text {Don }}=(W / L)\left(\mu \varepsilon_{o x} / t_{o x}\right)\left(V_{G S}-V_{T}\right)^{2}
$$

Chips are faster if the gate length L is reduced

"Moore's law": enabled by scaling

IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 4, NO. 2, MARCH 2005 , p153
Benchmarking Nanotechnology for High-Performance and Low-Power Logic Transistor Applications

Robert Chau et al
Transistor Scaling

"Moore's law": still going strong in 2010

Transistors are found in processors, memories etc.
Number of transistors grows
exponentially, approaching 1,000,000,000!
Continuous down-scaling of transistor dimensions

Source: Intel

Intel Transistor Leadership

"Moore's law": However! (or: The notorious „e")

Costs are rising exponentially, too!!!

Source: G.E. Moore, No exponential is forever..., I SSCC, February 2003

"Moore's law": ...and its consequences

...limited by power dissipation???
Source: G.E. Moore, No exponential is forever..., I SSCC, February 2003

"Moore's law": ...and its consequences

Yes, if Pcontinues exponentially !

Source: G.E. Moore, No exponential is forever..., ISSCC, February 2003
"Moore's law": ...not

Projected 2000 Wafer, circa 1975

Moore was not always aceliate

Source: G.E. Moore, No exponential is forever..., I SSCC, February 2003

ITRS Roadmap - Moore's Heirs

Started by Semiconductor Industry Association (SIA) in USA 1994: creation of an American style roadmap

The National Technology Roadmap for Semiconductors (NTRS)
1998, the SIA became closer to its European, Japanese, Korean and Taiwanese counterparts by creating the first global roadmap

The International Technology Roadmap for Semiconductors (ITRS).
Today: Over 1000 companies and research institutions
Teams for:
-System Drivers
-Design
-Test \& Test Equipment
-Process Integration, Devices, \& Structures
-RF and A/MS Technologies for
Wireless Communications
-Emerging Research Devices
-Emerging Research Materials
-Front End Processes
-Lithography

- Interconnect
-Factory Integration
-Assembly \& Packaging
-Environment, Safety, \& Health
-Yield Enhancement
- Metrology
-Modeling \& Simulation

ITRS Roadmap

Moving Closer to the "Red Brick Wall" 2001 Results
Challenges/Opportunities for Semiconductor $R \& D$

Year of Production:	2001	2003	2005	2007	2010	2016
DRAM Half-Pitch [nm]:	130	100	80	65	45	22
Overlay Accuracy [nm]:	46	35	28	23	18	9
MPU Gate Length [nm]:	90	65	45	35	25	13
CD Control [nm]:	8	5.5	3.9	3.1	2.2	1.1
T_{OX} (equivalent) [nm$]$:	1.3-1.6	1.1-1.6	0.8-1.3	0.6-1.1	0.5-0.8	0.4-0.5
Junction Depth [nm]:	48-95	33-66	24-47	18-37	13-26	7-13
Metal Cladding [nm]:	16	12	9	7	5	2.5
Inter-Metal Dielectric K:	3.0-3.6	3.0-3.6	2.6-3.1	2.3-2.7	2.1	1.8
2001 ITRS		T1RS			IRC	

- Introduction to IH2655
- Brief historic overview
- Moore's Law and the ITRS Roadmap
- From Geometrical to Material-based scaling
- CMOS Process Flow

"Moore's law": scaling parameters

MOSFET metrics provide additional leverage: Materials

A simple model for $I_{\text {Don }}$ is given by the MOSFET "Square-Law" Equation:
$\mathrm{I}_{\text {Don }}=(\mathrm{W} / \mathrm{L})\left(\mu \varepsilon_{\mathrm{ox}} / \mathrm{t}_{\mathrm{ox}}\right)\left(\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}\right)^{2}$
geometric

Gate length
Gate width

Geometric scaling is determined by improvements in process technology

Geometric Scaling: Isolation modules 1/2

Recessed oxidation (ROX) (fully recessed)
$\mathrm{SiO}_{2} \mathrm{pad}$

Pros: Improved geometric scalability Higher device density
Con: Increased process complexity

Geometric Scaling: Isolation modules $\mathbf{2 / 2}$

Bird's head and beak in LOCOS and ROX exhibit 0.6-0.4 $\mu \mathrm{m}$ encroachment

Further process technology improvements

Shallow Trench Isolation (STI)

- High-density plasma fills etched and lineroxidixed trenches with SiO_{2}

b)

Thermally grown, high quality liner oxide
 quality filler oxide

Chemical Mechanical polishing planarization

"Moore's law": still going strong in 2010 - Why?

"Moore's law": old \& new scaling parameters

MOSFET metrics provide additional leverage: Materials

A simple model for $\mathrm{I}_{\text {Don }}$ is given by the MOSFET "Square-Law" Equation:

All scaling parameters are determined by improvements in process technology

＂Moore＇s law＂：still going strong in 2010 －Why？

23	

Funst

1	$\begin{aligned} & 1 \\ & \mathrm{H} \\ & \hline \end{aligned}$	
	3	4
2	L	E4
	11	42
3	Hz	H_{7}
	19	20
，	H	Cal
	37	15
5	Rt	\＄r
	色	3E
＊	ts	䭫
	07	46
7	Fr	Ha

Before 1990 s
Since 1990 s

－Lathende

17 Andide

$\begin{aligned} & 51 \\ & 01 \end{aligned}$	F	H	$\begin{aligned} & \hline 61 \\ & \text { Fm } \end{aligned}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{Em} \end{aligned}$	$\underline{51}$	$\begin{aligned} & 94 \\ & \text { Id } \end{aligned}$	T14		$\begin{aligned} & \Pi! \\ & H 0 \end{aligned}$	$\begin{aligned} & 46 \\ & 5 r \end{aligned}$	$\begin{gathered} \mathrm{CI} \\ \mathrm{~T} \end{gathered}$	$\begin{aligned} & 75 \\ & \mathbf{Y} 4 \end{aligned}$	$\begin{aligned} & T 1 \\ & H \end{aligned}$
E1	51	H2	91	5	5	46	97	g	45	101	\cdots	410	158
Th	P童	U	4	PII	ATm	ETI	BF	47	Es	Firi	Nㅏ	Hin	4 L

Source：fabtech．org／Sigma Aldrich
Today：New materials in connection with improvements in process technology

Strained silioon \& SiGe

A transistor built with strained silicon. The silicon is "stretched out" because of the natural tendency for atoms inside compounds to align with one another. When is silicon is deposited on top of a substrate with atoms spaced farther apart, the atoms in silicon stretch to line up with the atoms beneath, stretching - "straining" - the silicon. In the strained silicon, electrons experience less resistance and flow up to 70 percent faster, which can lead to chips that are up to 35 percent faster - without having to shrink them. Image Reproduced with Permission of IBM Almaden Research Center, IBM.

Intel 45nm dual-core processor die

http://www.intel.com/pressroom/kits/45nm/photos.htm

Processors on an Intel 45nm Hafnium-based High-k Metal Gate "Penryn" Wafer photographed with an original Intel Pentium processor die. Using an entirely new transistor formula, the new processors incorporate 410 million transistors for each dual core chip, and 820 million for each quad core chip. The original Intel Pentium Processor only has 3.1 million transistors.

22 nm Tri-Gate Circuits

- 364 Mbit array size
- >2.9 billion transistors
- $3^{\text {rd }}$ generation high $-\mathrm{k}+$ metal gate transistors
- Same transistor and interconnect features as on 22 nm CPUs

22 nm SRAM, Sept. '09

22 nm SRAMs using Tri-Gate transistors were first demonstrated in Sept. '09
Intel is now demonstrating the world's first 22 nm microprocessor (Ivy Bridge) and it uses revolutionary Tri-Gate transistors

- Introduction to IH2655
- Brief historic overview
- Moore's Law and the ITRS Roadmap
- From Geometrical to Material-based scaling
- CMOS Process Flow

CMOS structures

(c)

FIGURE 2
Various CMOS structures: (a) p-well, (b) n-well, (c) twin-well. (After Parrillo et al., Ref. 4. © 1980 IEEE.)

CMOS Process Flow

- Substrate selection: moderately high resistivity, (100) orientation, P type.
- Wafer cleaning
- Thermal oxidation ($\approx 40 \mathrm{~nm}$)
- Silicon Nitride LPCVD deposition ($\approx 80 \mathrm{~nm}$)
- Photoresist spinning and baking ($\approx 0.5-1.0 \mu \mathrm{~m}$)

CMOS Process Flow

- Mask \#1 patterns the active areas
- Silicon Nitride is dry etched
- Photoresist is stripped

CMOS Process Flow

- Field oxide is grown using a LOCOS/ROX process
- Typically $90 \mathrm{~min} @ 1000^{\circ} \mathrm{C}$ in $\mathrm{H}_{2} \mathrm{O}$ grows $\approx 0.5 \mu \mathrm{~m}$

CMOS Process Flow

- Mask \#2 blocks a B^{+}implant to form the wells for the NMOS devices
- Typically $10^{13} \mathrm{~cm}^{-2} @ 150-200 \mathrm{KeV}$

CMOS Process Flow

- Mask \#3 blocks a P^{+}implant to form the wells for the PMOS devices
- Typically $10^{13} \mathrm{~cm}^{-2} @ 300^{+} \mathrm{KeV}$

CMOS Process Flow

- "Annealing"
- A high temperature drive-in produces the "final" well depths and repairs implant damage
- Typically $4-6$ hours @ $1000{ }^{\circ} \mathrm{C}-1100^{\circ} \mathrm{C}$

CMOS Process Flow

- Mask \#4 is used to mask the PMOS devices
- An Implant is done on the NMOS devices
- Typically a $1-5 \times 10^{12} \mathrm{~cm}^{-2} \mathrm{~B}^{+}$implant @ $50-75 \mathrm{KeV}$

CMOS Process Flow

Concept Test

CMOS Process Flow

- Mask \#4 is used to mask the PMOS devices
- A $\mathrm{V}_{T H}$ adjust implant is done on the NMOS devices
- Typically a $1-5 \times 10^{12} \mathrm{~cm}^{-2} \mathrm{~B}^{+}$implant @ $50-75 \mathrm{KeV}$

CMOS Process Flow

- Mask \#5 is used to mask the NMOS devices
- $\mathrm{A} \mathrm{V}_{\mathrm{TH}}$ adjust implant is done on the PMOS devices,
- Typically $1-5 \times 10^{12} \mathrm{~cm}^{-2} \mathrm{As}^{+}$implant @ $75-100 \mathrm{KeV}$.

CMOS Process Flow

- The thin oxide over the active regions is stripped
- A high quality gate oxide grown
- Typically 3-5 nm, which could be grown in 0.5-1 hrs @ $800^{\circ} \mathrm{C}$ in O_{2}
- Note: Today this could be entirely different for high end technology (high-k)

CMOS Process Flow

- Polysilicon is deposited by LPCVD ($\approx 0.5 \mu \mathrm{~m}$)
- An unmasked P^{+}or As^{+}implant dopes the poly (typically $5 \times 10^{15} \mathrm{~cm}^{-2}$)
- Note: Today this could be a metal gate

CMOS Process Flow

- Mask \#6 is used to protect the MOS gates
- The poly is plasma etched using an anisotropic etch

CMOS Process Flow

- Mask \#7 protects the PMOS devices
- AP^{+}implant forms the LDD regions in the NMOS devices
- Typically $5 \times 10^{13} \mathrm{~cm}^{-2} @ 50 \mathrm{KeV}$

CMOS Process Flow

- Mask \#8 protects the NMOS devices
- A B ${ }^{+}$implant forms the LDD regions in the PMOS devices
- Typically $5 \times 10^{13} \mathrm{~cm}^{-2} @ 50 \mathrm{KeV}$

CMOS Process Flow

- Aonformal layer of SiO_{2} is deposited (typically $0.5 \mu \mathrm{~m}$)

CMOS Process Flow

- Anisotropic etching leaves "sidewall spacers" along the edges of the poly gates

CMOS Process Flow

- Mask \#9 protects the PMOS devices
- An As ${ }^{+}$implant forms the NMOS source and drain regions
- Typically $2-4 \times 10^{15} \mathrm{~cm}^{-2} @ 75 \mathrm{KeV}$

CMOS Process Flow

- Intermetal dielectric and second level metal are deposited and defined in the same way as level \#1.
- Mask \#14 is used to define contact vias and Mask \#15 is used to define metal 2
- A final passivation layer of $\mathrm{Si}_{3} \mathrm{~N}_{4}$ is deposited by PECVD and patterned with Mask \#16
- This completes the CMOS structure

CMOS Process Flow

Final result of the process flow: One NMOS and one PMOS device, BUT... They were made in parrallel and we can make 1 Billion other at the same time

