

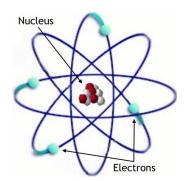
Nuclear Fuel Cycle 2011

Lecture 2: Basic Nuclear Chemistry, Part 1

ROYAL INSTITUTE OF TECHNOLOGY

Home page of the course: KTH Social

https://www.kth.se/social/course/KD2430/

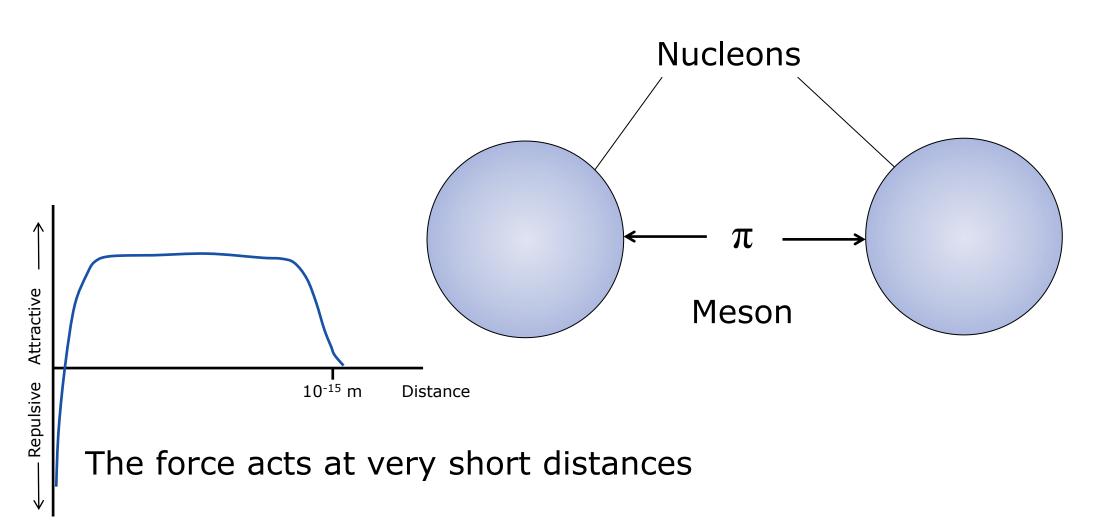


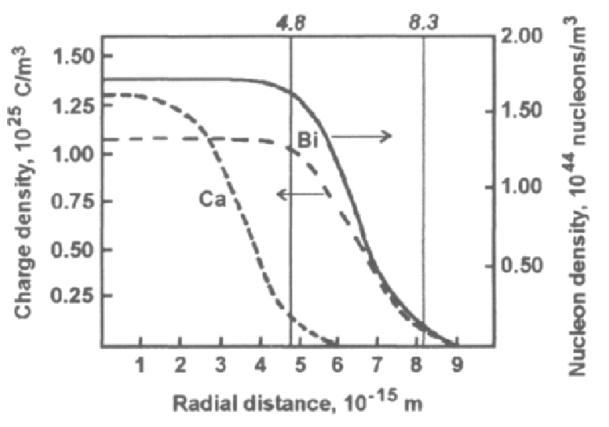
What is Nuclear Chemistry?

- Chemistry related to nuclear technology
- Chemistry of radionuclides
- Studies of chemical processes by using radionuclides as tracers: Radiochemistry
- Radiation induced chemical reactions: Radiation Chemistry

The Nucleus

- Building blocks: Protons and neutrons
- Forces: Electromagnetic forces and the strong nuclear force


	Proton	Neutron
Mass	1.673×10 ⁻²⁴ g	1.675×10 ⁻²⁴ g
Charge	+1	0
Spin	$s = \frac{1}{2}$	$s = \frac{1}{2}$


OF TECHNOLOGY

The Strong Nuclear Force

Exchange of mesons keep the nucleons together

Measured charge and nuclear density for ⁴⁰Ca and ²⁰⁹Bi as a function of nuclear radius

Density: 0.2 nucleons/fm³ => 10^{14} g/cm³!

The Nucleus

$$^{A}_{Z}R$$
 $Z+N = A$

- Z = Number of protons
- N = Number of neutrons

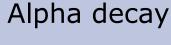
A = Mass number (number of nucleons)

Nuclide	Specific nuclear species	Examples							
Isotopes	Identical Z	$^{234}_{92}$ U $^{235}_{92}$ U $^{238}_{92}$ U							
Isotones	Identical N	$^{36}_{16}$ S $^{37}_{17}$ Cl $^{38}_{18}$ Ar $^{39}_{19}$ K $^{40}_{20}$ Ca							
Isobars	Identical A	$^{96}_{38}$ Sr $^{96}_{39}$ Y $^{96}_{40}$ Zr							
Isomers	Identical Z and A	^{99m} Tc ⁹⁹ Tc							

 $\stackrel{99m}{_{43}}\mathsf{TC} \xrightarrow{_{t_{1/2}}=6.01h} \xrightarrow{_{99}}_{43}\mathsf{TC} + \gamma$

Chart of Nuclides

Note! Colors may change between different charts


More than 1 700 isotopes

RROOKHAVER

- 80 elements have together 246 stable isotopes
- Lightest element with no stable isotopes: Tc
- Heaviest element with (almost) stable isotope: 209 Bi (t_{1/2}=2×10¹⁹y) (else Pb)
- Heaviest naturally occurring element: U
- Most stable isotopes: Sn; 10 stable isotopes
- 26 monoisotopic elements

Stable

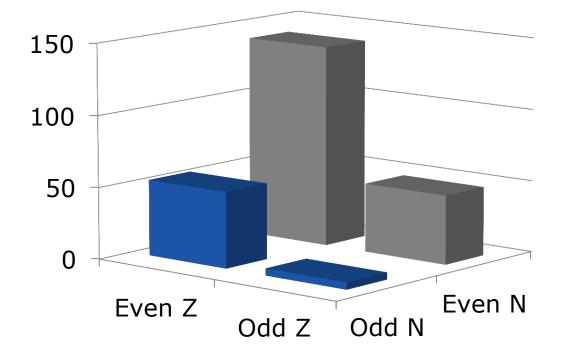
Positron decay

Electron capture

Negatron decay

Spontaneous fission

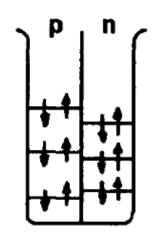
Proton decay

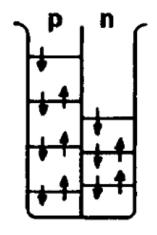


Neutron decay

Number of Nucleons on the Stability of the Nuclei

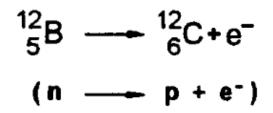
Magic numbers of protons or neutrons: 2, 8, 20, 82 and 126 ${}^{135}_{54} Xe \quad \left(\sigma_n = 2.6 \times 10^6 \text{ barns}\right) N = 81$ ${}^{136}_{54} Xe \quad \left(\sigma_n = 0.28 \times 10^6 \text{ barns}\right) N = 82$




Nuclear Stability: Nucleon Orbitals

ROYAL INSTITUTE OF TECHNOLOGY

¹²₅B ¹²₆C ¹²₇N



UNSTABLE

UNSTABLE

$$^{12}_{7}N - ^{12}_{6}C + e^+$$

(p - - n + e^+)

Mass Defect (ΔM) and Mass Excess (δ_A)

$$\begin{split} \Delta M_A &= M_A - Z M_p - N M_n \\ M_A &= Mass of atom \\ M_H &= Mass of Proton (hydrogen) \\ M_n &= Mass of Neutron \end{split}$$

Deuterium, ${}_{1}^{2}$ H $M_{p} + M_{n} = 1.007\ 825 + 1.008\ 665$ $= 2.016\ 490\ u$ $M_{A} = 2.014\ 102\ u$ $= > \Delta M_{\Delta} = -0.002\ 388\ u$

All stable isotopes have negative mass defect, ΔM_A

Mass excess: $\delta_A = M_A - A$ (sometimes used in tables, no practical use)

M = atomic mass unit, measured in u.

Binding energy

$$\Delta E = \Delta mc^2$$
 "Nuclear Heat of formation"

$$\Delta m = M_A - (Z m_p + N m_n)$$

$$c = 3 \times 10^8 \text{ m/s}$$

Nucleus: 5-10 MeV / nucleon (5-10 \times 10¹¹ J/mol) Covalent bond: 4.4 \times 10⁵ J/mol

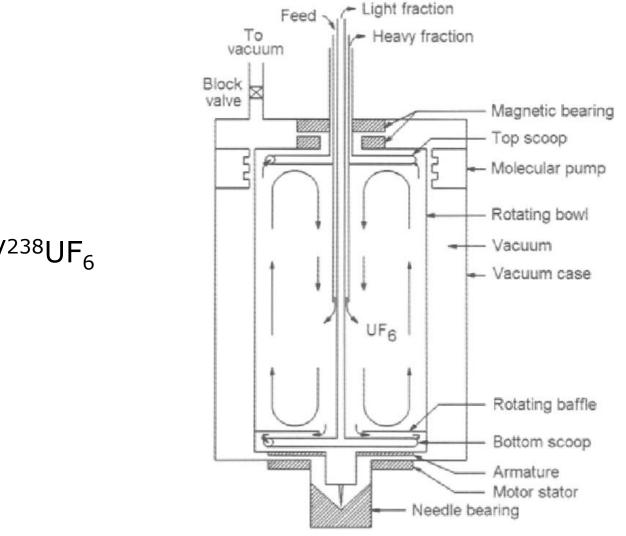
FTECHNOLOGY

Isotope effects

Due to the difference in nucleons there are very small differences between two isotope's

- Freezing point
- Boiling point
- Density
- Heat of vaporization
- Viscosity
- Surface tension
- Optical emission spectra

F TECHNOLOGY


Isotope separation

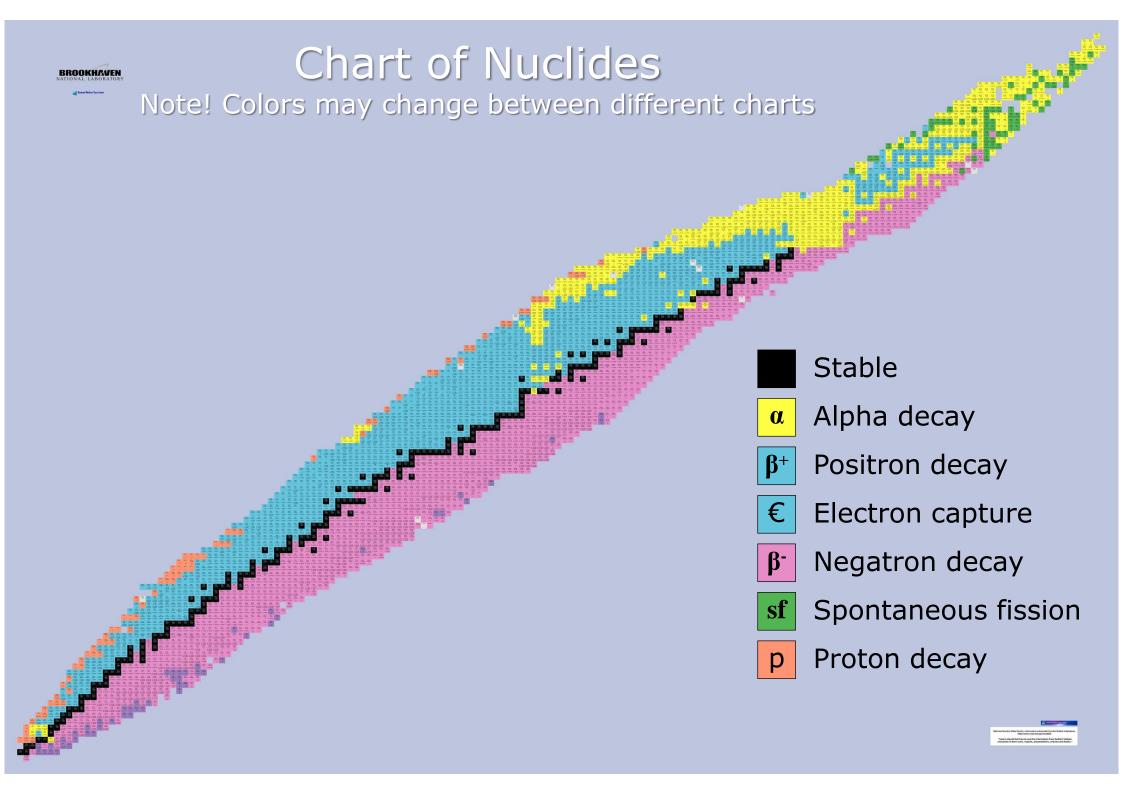
- i. Equilibrium processes (light elements)
- ii. Rate processes
- Multi-stage processes (for instance distillation)
- Chemical exchange
- Electrolysis
- Gaseous diffusion
- Electromagnetic separation
- Gas centrifugation

Gaseous diffusion

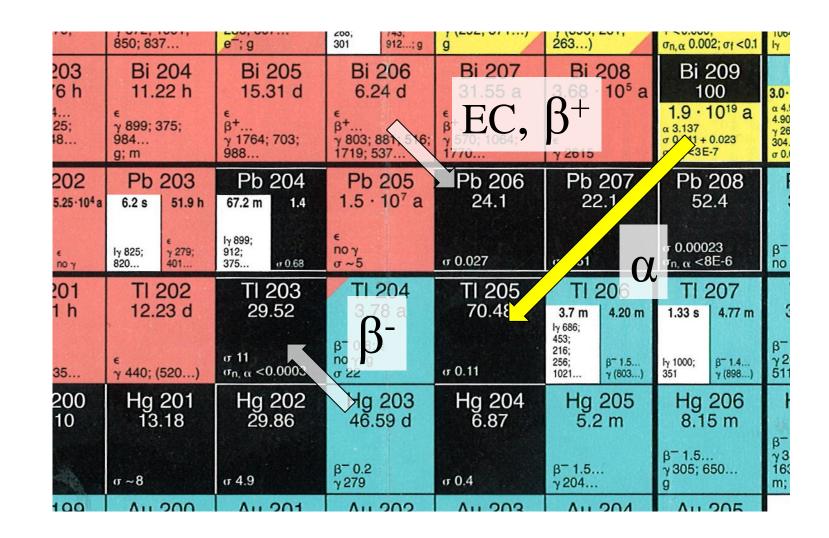
Lighter isotopes diffuse faster than heavy isotopes

 $^{235}\text{UF}_6/^{238}\text{UF}_6$

Other methods of isotope separation


- Distillation
- Extraction
- Ion-exchange
- Photoionization
- Photoexcitation

OF TECHNOLOGY


Radioactive decay

- α-decay (He-nucleus)
- β -decay (electron/positron)
- γ-decay
- Unusual modes of decay (proton, neutron, heavy particles)
- Spontaneous fission

Nuclide chart

Decay chain of ²³⁸U

ROYAL INSTITUTE OF TECHNOLOGY

										U 226	U 227	U 228	U 229	U 230	U 231	U 232	U 233	U 234	U 235	U 236	U 237	U 238
										0.28 s	1.1 m	9.1 m α 6.68; 6.59	58 m ε; α 6.362;	20.8 d	4.2 d ε; α 5.456; 5.471; 5.404	68.9 a α 5.320; 5.262	1.592 · 10 ⁵ a α 4.824; 4.783	a 0.0054 2.455 · 10*4	0.7204 a 26 m 7.038-10 ⁴ a	120 ns 2.342 · 10 ⁷ a α 4.494; 4.445;	6.75 d β ⁻ 0.2 γ 60; 208	99.2742 298 ns 4.468 · 10 ⁹ a
										555; 7.374 12	α 6.86; 7.06; 6.74 γ247; 310; e	ε γ (246; 187) e ⁻	6.334; 6.297 γ 123; 88; 199; e	γ (72; 154; 230); e ⁻ σι~25	5.471; 5.404 γ 26; 84; 102 e ; σ ₁ ~250	Ne 24; γ (58; 129); e ⁻ σ 73; σ ₁ 74	Ne 25; γ (42; 97); e ⁻ σ 47; σ ₁ 530	1 15 121. of 0.0	4.398; s Ne; γ 186 σ 95; σγ 585	ly 1783: sf; γ (49; 642 df e ⁻ ; σ 5.3	φ ⁻ σ~100; σ ₁ <0.35	4.198
										Pa 225 1.8 s	Pa 226 1.8 m	Pa 227 38.3 m	Pa 228 22 h	Pa 229 1.50 d	Pa 230 17.4 d	Pa 231 3.276 · 10 ⁴ a	Pa 237	Pa 233 27.0 d	Ra 234	Pa 235 24.2 m	Pa 238 9.1 m	Pa 237 8.7 m
										.25; 7.20	α 6.86; 6.82 ε	α 6.456; 6.416 ε γ 65; 110	ε; α 6.078; 6.105 5.799; 6.118 γ 911; 463; 969;	ε; α 5.580; 5.670; 5.615 γ(119; 40; 146	ε; β ⁻ 0.5 α 5.345; 5.326 γ 952; 919; 455; 899; 444; στ 1500	α 5.014; 4.952; 5.028; Ne 24; F 23 γ 27; 300; 303; e σ 200; σ: 0.020	β ⁻ 0, 13, 14 7 99 89 1 7 469, στ 1500	β ⁻ 0.3; 0.6 γ 312; 300; 341; e ⁻ σ 20 + 19; σ ₁ < 0.	В 0.5; 1 (100); 767) 1 у (74); е	$\beta^{-} 1.4$ $\gamma 128 - 659$	1	β 1.4; 2.3 γ 854; 865; 529; 541
										Th 224	Th 225 8.72 m	Th 226 31 m	Th 227 18.72 d	Th 228 1.913 a	Th 229 7880 a	Th 250 7.54 · 10 ⁴ a	Th 231 25.5 h	Th 232 100	Th 233 22.3 m	h 2	Th 235 7.1 m	Th 236 37.5 m
										17; 7.00	α 6.482; 6.445; 6.504	α 6.336; 6.230 γ111; (242; 131)	α 6.038; 5.978; 5.757 γ 236; 50; 256	α 5.423; 5.340 γ 84; (216); e ⁻ Ο 20	α 4.845; 4.901; 4.815; γ 194; 211; 86; 31; e ⁻	α 4.687; 4.621 γ 68; 144); e		1.405 · 10 ¹⁰ a a 4.013; 3.950; s	β-1.2	β ⁻ 0.2 γ 63; 92; 93	β ⁻ 1.4 γ 417; 727;	β ⁻ 1.0
Ac 213	Ac 214	Ac 215	Ac 216	Ac 217	Ac 218	Ac 219	Ac 220	Ac 221	Ac 222	Ac 223	γ 321; 246; 359; 306 Ac 224	Ac 225	γ 236; 50; 256 e ⁻ ; σ _f 200	σ 120; σt <0.3 Ac 227	c ~60; σ ₁ 30 Ac 228	Ac 229	e ⁻ Ac 230	γ (64); e ⁻ σ 7.37; σ _f 0.000000 Ac 231	409; e σ 1500; σ ₁ 15 Ac 232	o 1.8; σt <0.01	Ac 234	γ 111; (647; 196)
0.80 s	8.2 s α 7.215; 7.081	0.17 s α 7.600; 7.211	0.44 ms α 9.029; 9.105	0.74 μs 69 ns ly 660; 486;	1.1 μs	11.8 µs	26 ms	52 ms	63 s 5.0 s α 6.81;	2.10 m	2.9 h	10.0 d α 5.830; 5.793;	29 h B ⁻ 0.9; 1.1	21.773 а в= 0.04	6.18 h β ⁻ 12:2.1	62.7 m	122 s	7.5 m	119 s	145 s	44 s	
α 7.36	ε γ 139; 244	α 7.600; 7.211 ε γ (396)	γ 83; 854; 771	486; 382 α 10.54 α 9.65	α 9.205 9	α 8.664	α 7.85; 7.61; 7.68 γ 134	α 7.65; 7.44; 7.38	6.89; 7.00; m fy ?; ε g	α 6.647; 6.662; 6.564; ε γ (99; 191; 84)	α 6.142; 6.060; 6.214 γ 216; 132	5.732; C 14 γ 100; (150; 188; 63); e ⁻	ε; α 5.34 γ 230; 158; 254; 186	α 4.953; 4.941 γ(100; 84); e ⁻ σ 880; σ ₁ <0.0003	911:69; 338:965	β ⁻ 1.1 γ 165; 569; 262; 146; 135	γ 455; 508; 1244 e	β ⁻ γ 282; 307; 221; 186; 369	γ 665; 1899; 1959; 1948; 612	β γ 523; 540	β γ 1847; 1912; 689; 1954	
Ra 212 13.0 s	Ra 213 2.1 ms 2.74 m b 546 g 6.624	Ra 214 2.46 s	Ra 215 1.67 ms	Ra 216 2.0 ns 0.18 μs	Ra 217 1.6 μs	Ra 218 25.6 μs	Ra 219 10 ms	Ra 220 23 ms	Ra 221 28 s	Ra 222 38 s	Ra 223 11.43 d	Ra 224 3.66 d	Ra 225 14.8 d	Ra 226 1600 a	Ra 227 42.2 m	Ra 228 5.75 a	Ra 229 4.0 m	Ra 230 93 m	Ra 231 103 s	Ra 232 4.2 m	Ra 233 30 s	Ra 234 30 s
. α 6.899 ε ? γ (635)	1063; 6.731; 161;e ⁻ 6.521. α 8.466; ε; γ 110; 8.357 215e ⁻	α 7.137; 6.505 €; g γ (642)	α 8.700; 7.879 γ 834; 540	476; 344 α 9.551; 11.028 α 9.349	α 8.99	α 8.39	α 7.679; 7.989 γ 316; 214; 592	α 7.46 γ 465	α 6.613; 6.761; 6.668 γ 149; 93; 174 C 14	α 6.559; 6.237 γ 324; (329; 473) C 14	α 5.7162; 5.6067 γ 269; 154; 324 C 14; σ 130; σ ₁ <0.7	α 5.6854; 5.4486 γ 241; C 14 σ 12.0	β 0.3; 0.4 γ 40	α 4.7843; 4.601 γ 186; C 14	β ⁻ 1.3	β ⁻ 0.04 γ (14; 16) θ ⁻	β= 1.8	β ⁻ 0.8 γ 72; 63; 203; 470	β γ 410; 205;	β ⁻ γ 471; 98; 479;		
Fr 211 3.10 m	Fr 212 20.0 m	Fr 213 34.6 s	Fr 214 3.35 ms 5.0 ms	Fr 215 0.09 μs	Fr 216 0.70 μs	Fr 217	Fr 218	Fr 219	Fr 220	Fr 221	Fr 222	Fr 223	Fr 22	Fr 225	γ 27; 300; 303 Fr 226	Fr 227	γ Fr 228	Fr 229	469; 456 Fr 230	105; 373 Fr 231	β ⁻ Fr 232	β-
α 6.535 ε γ 540; 918;	ε α 6.262; 6.384;	α 6.775		0.05 μ5		16 μs	22 ms 1.0 ms α 7.615; 7.680; 7.656 α 7.867;	21 ms	27.4 s α 6.68; 6.63: 6.58	4.9 m α 6.341; 6.126 γ 218; (101;	14.2 m β ⁻ 1.8 γ 206; 211; 242	21.8 m β ⁻ 1.1	3.3 m	4.0 m β ⁻ 1.6	48 s β ⁻ 3.2; 3.5	2.47 m	39 s β ⁻	50.2 s	19.1 s β ⁻	17.5 s	5 s	146
Rn 210	6.408; 6.340 γ 1274; 227; 1185 Rn 211	e 8.775 Rn 212	α 8.477; 8.547 Rn 213	α 9.36 Rn 214	α 9.01 g Rn 215	α 8.315 Rn 216	7.656 m; g hγ g Rn 217	α 7.312 γ (352; 517) Rn 218	γ 45; 106; 162 Rn 219	411) C 14 Rn 220	α? Rn 221	α 5.34 γ 50; 80; 235 Rn R22	Rn 223	γ 182; 32; 225; 200 Rn 224	β ⁻ 3.2; 3.5 γ 254; 186; 1323	β ⁻ 1.8; 2.4 γ 90; 586	γ 474; 410; 141; 835	γ 310; 336; 143; 350	γ 711; 129; 728; 677	β γ 433; 454; 96	β ⁻ γ 125	
2.4 h α 6.040	14.6 h	24 m	19.5 ms	6.5 ns 0.7 ns 0.27 μs		45 µs	0.54 ms	35 ms	3.96 s	55.6 s	25 m β ⁻ 0.8; 1.1	3.825 d	23.2 m	1.78 h	Rn 225 4.5 m	Rn 226 7.4 m	Rn 227 22.5 s	Rn 228 65 s		144		
€ γ 458; (571; 649; 73…)	α 5.783; 5.851 γ 674; 1363; 678; g	α 6.264 γ	α 8.088; 7.252 γ 540	hy 182 446; m1 302 α10.63 α10.46 α9.037	α 8.67 g	α 8.05 g	α 7.740	α 7.133 γ (609)	α 6.819; 6.553; 6.425 γ 271; 402	α 6.288 γ (550) σ <0.2	α 6.037; 5.788; 5.778 γ 186; 150	α 5.48948 1 (50) σ 0 4	β γ 593; 417; 636; 655	β γ 261; 266	β γ 29-207	β-	β γ 162; 739; 686; 805	β γ 125; 63; 156; 112		144		
At 209 5.4 h	At 210 8.3 h	At 211 7.22 h	At 212	At 213 0.11 μs	At 214 0.76µs 0.27µs 0.56µs	At 215 0.1 ms	At 216 ? 0.3 ms	At 217 32.3 ms	At 218 ~2 s	At 219 0.9 m	At 220 3.77 m	At 221 2.3 m	At 222 54 s	At 223 50 s					_			
ε α 5.647 γ 545; 782;	ε; α 5.524; 5.442; 5.361 γ 1181; 245;	ε α 5.867 γ (687)	α 7.84; α 7.68; 7.90 7.62 γ 63 γ 63 e ⁻ e ⁻		α 8.782 ; m α8.877; g	α 8.026	α 7.488 α 7.804; α 7.488 7.691; g m ₁ γ (115; γ 103 418)	α 7.069 β γ (259; 334; 595)	α 6.694; 6.653 β ⁻	α 6.27	β ⁻ 0, 493 1, 241, 293;					140		142				
Po 208	1483 Po 209	Po 210	Po 211	α 9.08 Po 212	Po 213	γ (405) Po 214	Po 215	Po 216	γ Po 217	β ⁻ Po 216	422 / Po 219	β ⁻ Po 220	β-	β-	1							
2.898 a	102 a α 4.881 ε	138.38 d α 5.30438 γ (803); σ < 0.0005	25.2 s 0.516 s α 7.275; 8.883 γ 570; α 7.450	45.1 s 17.1 ns 0.3 μs α 11.65 ly 728; y 2615; 406;		164 μs	1.78 ms	0.15 s	1.53 s	3.05 m <	>300 ns	>300 ns		138								
γ (292; 571) 9 Bi 007	γ (895; 261; 263)	γ (803); σ <0.0005 + 0.30; 0.22; σ <0.1	1064 γ (898; 570)	583 223 hy α 10.22 α 8.785	α 8.376 γ (779)	Bi 213	β ⁻ γ (439)	α 6.7783 γ (805)	α 6.543 β ⁻	\sim	β ⁻ ? α?	β-?										
Bi 207 31.55 a	Bi 208 3.68 · 10 ⁵ a	Bi 209 100 1.9 · 10 ¹⁹ a	3.5 10 ⁶ 5.013 d 4.9 6 ^{-1.2}	Bi 211 2.17 m α 6.6229; 6.2788	Bi 212 9m 25m 6.50m	45.59 m	Ri 214	Bi 215 36.9 s 7.7 m ^{1γ 414;} 746; 187 β	Bi 210 3.6 m 2.17 m	Bi 217 98.5 s	Bi 218 33 s	100										
β ⁺ γ 570; 1064; 1770	201	α 3.137 σ 0.011 + 0.023 σ _{n,α} <3E-7	4.908 γ 266; 4 86 304 σ 0.054 2	$\beta^- \dots$ $\gamma 351 \dots$ $\alpha \rightarrow 9; \beta^- \rightarrow 9$	3- 10.55	α 5.87 γ 440; (293; 1100)	α 5.450; 5.513 γ 609; 1764; 1120 βα 9.079	746; 187 β ⁻ γ 294; γ 308; 271; 256; 419 1105	8-550; 419; 360; 223	β γ 265; 254; 890; 436	β 3.5; 3.7 γ 510; 386; 426; 263	136										
Pb 206 24.1	Pb 207 22.1	Pb 208 52.4	Pb 209 3.253 h	223 a	7b 211 36.1 m	Pb 212 10.64 h	Pb 213 10.2 m	No.														
		or 0.00023	β ⁻ 0.6	β ^{-0.02; 0.06} γ 47; e ⁻ ; g α 3.72 σ < 0.5	β ⁻ 1.4 γ 405; 832; 427	β 0.3; 0.6 γ 239; 300		β ⁻ 0.7; 1.0 γ 352; 295; 242		134		×										
τι 205	σ 0.61 TI 206	σ _{n. α} <8E-6 TI 207	πο γ TI 208	TI 209	TI 210	g TI 211	β ⁻ TI 212	242														
70.48	3.7 m ¹ y 686; 453; 216; 453;	1.33 s 4.77 m	3.053 m	2.16 m	1.30 m β ⁻ 1.9; 2.3	>300 ns	>300 ns	132														
σ 0.11	216; 256; β [~] 1.5 1021 γ (803)	ly 1000; β ⁼ 1.4 351 y (898)	γ2615; 583; 511; 860; 277	γ 1567; 465; 117	γ 800; 298 βn	β-?	β- ?				3											

 238 U(α) 234 Th(β ⁻) 234 Pa(β ⁻) 234 U(α) 230 Th(α) 226 Ra...

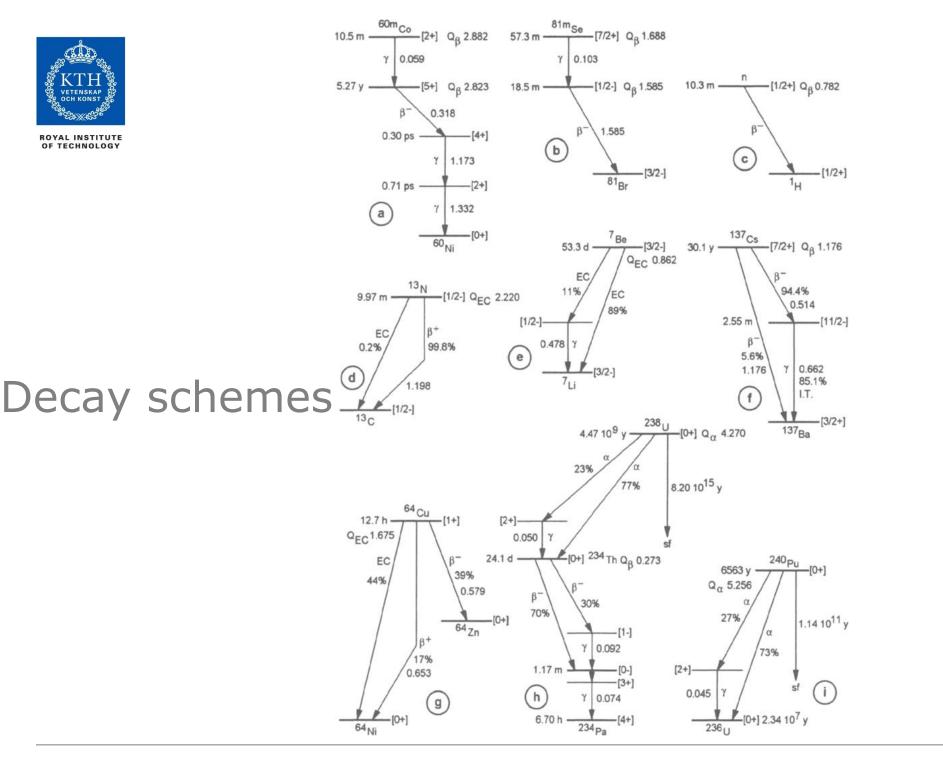
Or simplified

. . .

 230 Th $\rightarrow ^{226}$ Ra + α

 $^{234}U \rightarrow ^{230}Th + \alpha$

 234 Pa $\rightarrow ^{234}$ U + β^{-}


 234 Th $\rightarrow ^{234}$ Pa + β^{-}

 $^{238}U \rightarrow ^{234}Th + \alpha$

ROYAL INSTITUTE OF TECHNOLOGY

OYAL INSTITUTE

Conservation laws

Nuclear Reaction: $X_1 + X_2 \rightarrow X_3 + X_4$

Energy:
$$E_1 + E_2 = E_3 + E_4$$

Linear momentum: p=mv $p_1 + p_2 = p_3 + p_4$

Charge: $Z_1 + Z_2 = Z_3 + Z_4$

Mass number: $A_1 + A_2 = A_3 + A_4$

 α -decay

 $^{A}_{Z}X \rightarrow ^{A-4}_{Z-2}Y + ^{4}_{2}He$

$^{238}U \rightarrow ^{234}Th + ^{4}He$

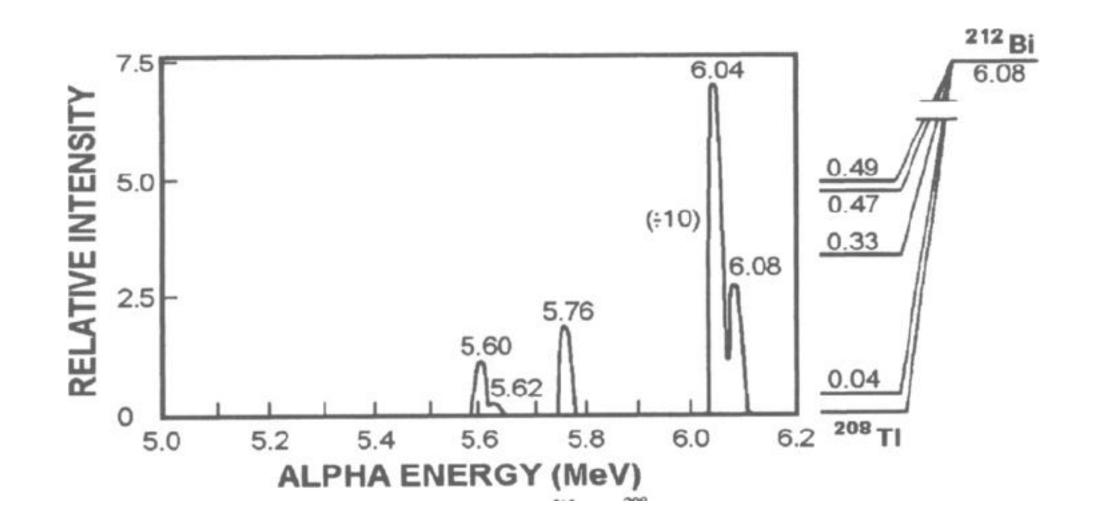
Decay energy (Q-value)

$$E=mc^{2}$$
1 u = 1/6.022×10²³ = 1.66×10⁻²⁴ g
 $c^{2} = 8.99\times10^{16} m^{2}/s^{2}$
1 J = 6.24×10¹² MeV
E = 1.66×10⁻²⁴ * 8.99×10¹⁶ * 6.24×10¹² = 931.5 MeV/u

 $Q(MeV) = -931.5 \Delta M(u)$

$$Q_{\alpha} = -931.5 (M_{Z-2} + M_{He} - M_Z)$$

$$Q_{\alpha} > 0$$
 if $(M_{Z-2} + M_{He} - M_Z) < 0$


 $Q_{\alpha} > 0 =>$ Spontaneous decay

For α -particles the Q-value is 2–10 MeV

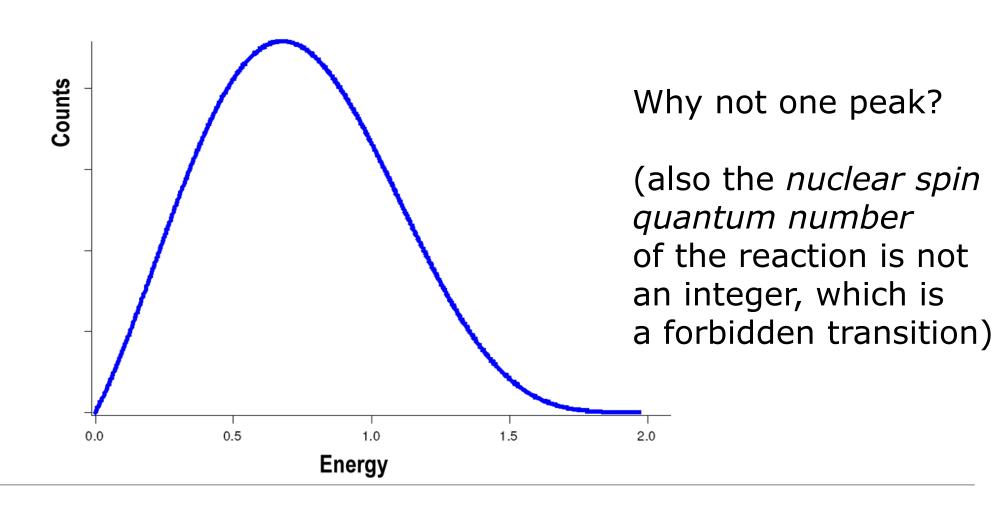
OF TECHNOLOGY

Alpha spectrum

 β -decay

 $^{A}_{7}X \rightarrow ^{A}_{7+1}Y + \beta^{-}$

A negatron (electron) is emitted A proton in the nucleus is 'coverted' to a neutron


 $^{A}_{7}X \rightarrow ^{A}_{7-1}Y + \beta^{+}$

A positron (anti-partivle to the electron) is emitted. A neutron in the nucleus is 'converted' to a proton

 β -decay

$^{137}Cs \rightarrow ^{137m}Ba + \beta^{-}$

 β -decay continued

\Rightarrow Another particle is emitted: a neutrino (v)

The neutrino has no charge and very small or no mass and does not interact readily with matter

$^{137}Cs \rightarrow ^{137m}Ba + \beta^{-} + \overline{\nu}$

 $\overline{\nu}$ is an anti-neutrino, emitted in a $\beta^{\text{-}}$ -decay ν is a neutrino, emitted in a $\beta^{\text{+}}$ -decay

Energy of β^- decay

$$^{A}_{Z}X \rightarrow ^{A}_{Z+1}Y + \beta^{-} + \overline{\nu}$$

The formed Y has Z orbit electrons and must capture one electron from the surroundings.

=> The mass of the β^{-} -particle needs not to be included when calculating the energy of the decay.

$$Q_{\beta^-} = -931.513 (M_{Z+1} - M_Z)$$

Example: $n \rightarrow H + \beta^{-}$

$$Q_{\beta^-} = -931.513(1.007825 - 1.008665) = 0,782 \text{ MeV}$$

Energy of β^+ decay

$$^{A}_{Z}X \rightarrow ^{A}_{Z-1}Y^{-} + \beta^{+} + \nu \rightarrow ^{A}_{Z-1}Y + e^{-} + \beta^{+} + \nu$$

The formed Y has now one extra orbit electron which it must loose.

=> Both emitting a β^+ -particle and loosing an electron must be included when calculating the energy of the decay.

$$Q_{\beta^{-}} = -931.513 (M_{Z^{-1}} + 2 M_{e} - M_{Z})$$

Example: ${}^{13}_{7}N \rightarrow {}^{13}_{6}C + \beta^+$

 $Q_{\beta^-} = -931.513(13.003355 - 13.005739) + 2* 0.511) = 1,2 \text{ MeV}$

Electron capture

ROYAL INSTITUTE OF TECHNOLOGY

$$^{A}_{Z}X \xrightarrow{EC} ^{A}_{Z-1}Y + v$$

An inner shell electron is captured by the nucleus. Energy similar to β^{-} decay.

$$Q_{\beta^{-}} = -931.513 (M_{Z^{-1}} - M_Z)$$

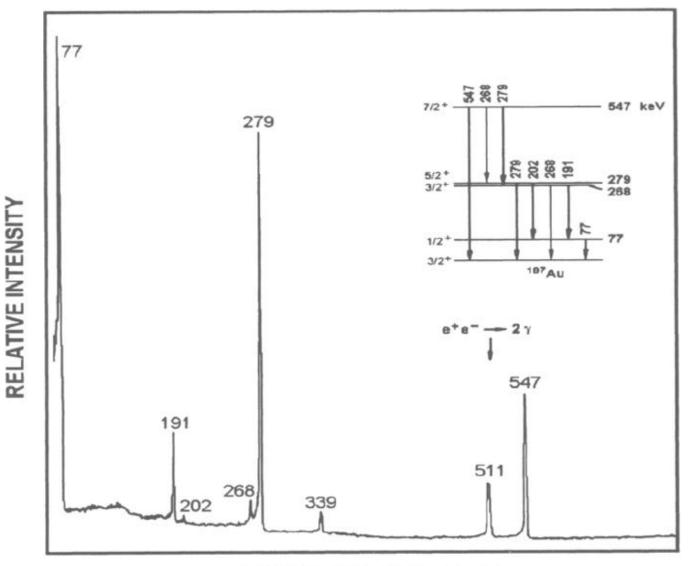
 γ -emisson

Most α and β -decays do not go all the way to the daughter's ground state. The remaining energy is released as γ -rays.

Isomeric transition

When the meta-stable state is more long-lived

Spontaneous fission


Some heavy radionuclides are so unstable that they undergo spontaneous fission

Rare modes of decay

Proton emission Neutron emission

Gamma spectrum

GAMMA ENERGY (keV)

Radioactive decay

$$A = -\frac{dN}{dt} = \lambda N$$

 $-\frac{dN}{N} = \lambda dt$

$$-\int_{N_0}^{N} \frac{1}{N} dN = \int_{0}^{t} \lambda dt \Longrightarrow InN - InN_0 = -\lambda t$$

$$N = N_0 e^{-\lambda t}$$

Half-life

$$-\int_{N_0}^{N} \frac{1}{N} dN = \int_{0}^{t} \lambda dt \Longrightarrow \ln N - \ln N_0 = -\lambda t$$

$$N = \frac{N_0}{2}$$

$$t_{\nu_{2}} = \frac{\ln N_{0} - \ln \left(\frac{N_{0}}{2}\right)}{\lambda} = \frac{\ln 2}{\lambda}$$

Units

<u>SI unit:</u> 1 Becquerel (Bq) = 1 decay / s

<u>Older unit:</u> 1 Curie (Ci) = 3.7×10^{10} Bq

(1 Ci is approximately the activity of 1 gram ²²⁶Ra)