

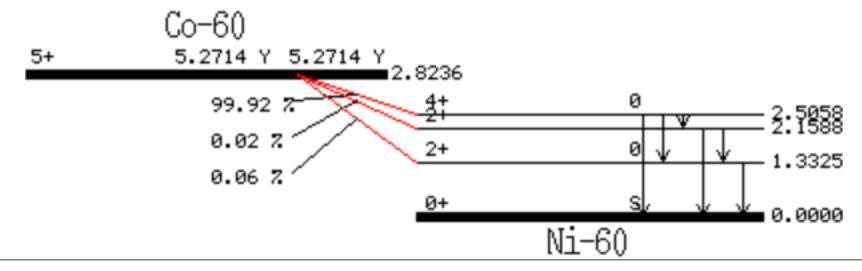
Nuclear Fuel Cycle 2011

Lecture 3: Basic Nuclear Chemistry, Part 2

Radioactive decay

$$N \rightarrow Daughter + particle$$
 $t_{\frac{1}{2}}[s]$

- The energy of the mother is higher than that of the daughter.
- The difference in energy is transferred
 - to the particle (as kinetic energy; velocity)
 - o and often also to the daughter.
- The daughter loses the "remaining" energy in one or more γ -photons



Radioactive decay

$$N \rightarrow Daughter + particle$$

$$\lambda [s^{-1}]$$

The disappearance of N is a 1st order reaction with respect to N

$$A = -\frac{dN}{dt} = \lambda N$$

The Activity equals the rate of disappearance of N

$$-\int_{N_0}^{N} \frac{1}{N} dN = \int_{0}^{t} \lambda dt \Rightarrow \ln N - \ln N_0 = -\lambda t$$

$$N = N_0 e^{-\lambda t}$$

$$N = \frac{N_0}{2} \implies t_{1/2} = \frac{\ln N_0 - \ln \left(\frac{N_0}{2}\right)}{\lambda} = \frac{\ln 2}{\lambda}$$

$$A = A_0 e^{-\lambda t} = A_0 e^{-\frac{\ln 2}{t_{1/2}}t}$$

Radioactive equilibrium

Often the daughter is also radioactive: Nuclide1 $(t_{1/2})_1$, $\lambda_1 \rightarrow$ Nuclide2 $(t_{1/2})_2$, $\lambda_2 \rightarrow$ Nuclide3

$$\frac{dN_2}{dt} = -\frac{dN_1}{dt} - \lambda_2 N_2 = \lambda_1 N_1 - \lambda_2 N_2$$

$$N_1 = N_{1(0)} e^{-\lambda_1 t}$$

$$\frac{dN_{2}}{dt} + \lambda_{2}N_{2} - \lambda_{1}N_{1(0)}e^{-\lambda_{1}t} = 0$$

$$N_{2} = \frac{\lambda_{1}}{\lambda_{2} - \lambda_{1}} N_{1(0)} \left(e^{-\lambda_{1}t} - e^{-\lambda_{2}t} \right) + N_{2(0)} e^{-\lambda_{2}t}$$

Radioactive equilibrium

Nuclide1 $(t_{1/2})_1$, $\lambda_1 \rightarrow$ Nuclide2 $(t_{1/2})_2$, $\lambda_2 \rightarrow$ Nuclide3

$$N_{2} = \frac{\lambda_{1}}{\lambda_{2} - \lambda_{1}} N_{1(0)} \left(e^{-\lambda_{1}t} - e^{-\lambda_{2}t} \right) + N_{2(0)} e^{-\lambda_{2}t}$$

Assuming that at t=0 a quantitative separation between Nuclide 1 and 2 has been achieved, then $N_{2(0)}=0$ and

$$N_2 = \frac{\lambda_1}{\lambda_2 - \lambda_1} N_{1(0)} \left(e^{-\lambda_1 t} - e^{-\lambda_2 t} \right)$$

Expressed as radioactivity, this is

$$A_2 = \frac{\lambda_2}{\lambda_2 - \lambda_1} A_{1(0)} \left(e^{-\lambda_1 t} - e^{-\lambda_2 t} \right)$$
 (since $A_i = N_i \lambda_i$)

Radioactive equilibrium $(t_{1/2})_1 >> (t_{1/2})_2$

$$N_{2} = \frac{\lambda_{1}}{\lambda_{2} - \lambda_{1}} N_{1(0)} \left(e^{-\lambda_{1}t} - e^{-\lambda_{2}t} \right) + N_{2(0)} e^{-\lambda_{2}t}$$

If $(t_{1/2})_1 >> (t_{1/2})_2$ then $\lambda_2 >> \lambda_1$ and the equilibrium can be simplified to

$$N_{2} = \frac{\lambda_{1}}{\lambda_{2}} N_{1(0)} \left(1 - e^{-\lambda_{2} t} \right)$$

$$A_{2} = A_{1(0)} \left(1 - e^{-\lambda_{2} t} \right)$$

At equilibrium

$$A_1 = A_2 = N_1 \lambda_1 = N_2 \lambda_2 (= N_3 \lambda_3 \dots)$$

Example:

Radioactive equilibrium $(t_{1/2})_1 >> (t_{1/2})_2$

Radioactive equilibrium $(t_{1/2})_1 > (t_{1/2})_2$

"The whole expression" with out simplifications must be used:

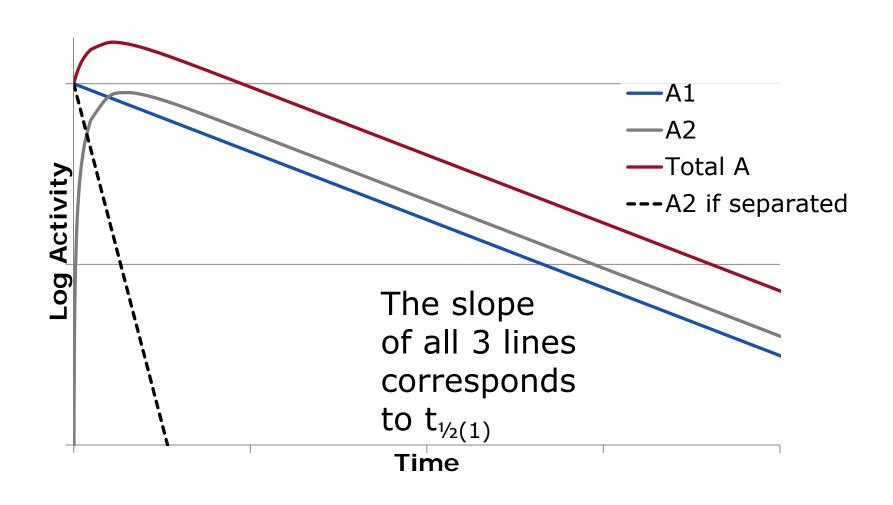
$$N_2 = \frac{\lambda_1}{\lambda_2 - \lambda_1} N_{1(0)} \left(e^{-\lambda_1 t} - e^{-\lambda_2 t} \right) \qquad \text{or} \qquad \qquad A_2 = \frac{\lambda_2}{\lambda_2 - \lambda_1} A_{1(0)} \left(e^{-\lambda_1 t} - e^{-\lambda_2 t} \right)$$

Transient equilibrium is reached when

 $e^{-(\lambda_2-\lambda_1)t}$ approaches 0. i.e. when $\lambda_2 t$ can be neglected compared with $\lambda_1 t$

$$\frac{N_2}{N_1} = \frac{\lambda_1}{\lambda_2 - \lambda_1} = \frac{(t_{1/2})_2}{(t_{1/2})_1 - (t_{1/2})_2}$$

Radioactive equilibrium $(t_{1/2})_1 > (t_{1/2})_2$



Radioactive equilibrium $(t_{1/2})_1 < (t_{1/2})_2$

"The whole expression" with out simplifications must be used:

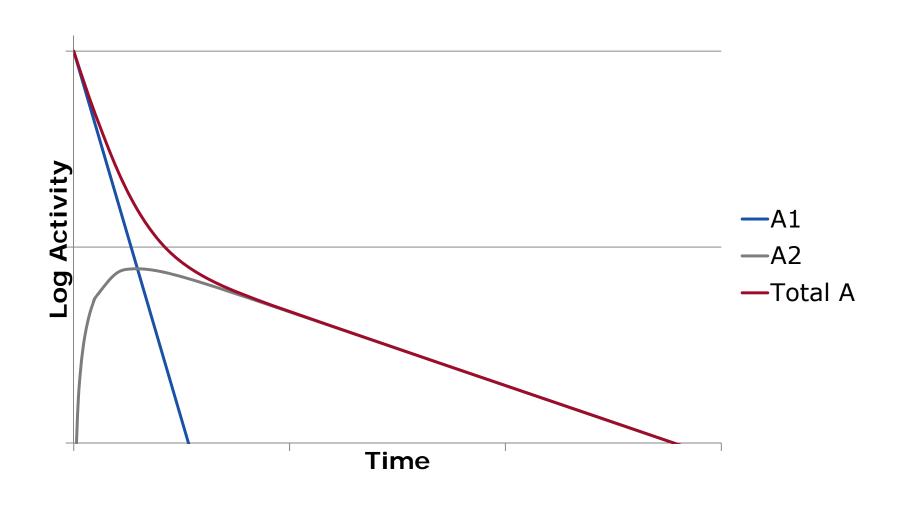
$$N_{2} = \frac{\lambda_{1}}{\lambda_{2} - \lambda_{1}} N_{1(0)} \left(e^{-\lambda_{1}t} - e^{-\lambda_{2}t} \right) \qquad \text{or} \qquad \qquad A_{2} = \frac{\lambda_{2}}{\lambda_{2} - \lambda_{1}} A_{1(0)} \left(e^{-\lambda_{1}t} - e^{-\lambda_{2}t} \right)$$

Equilibrium is never reached,

but when $e^{-(\lambda_1-\lambda_2)t} <<1$,

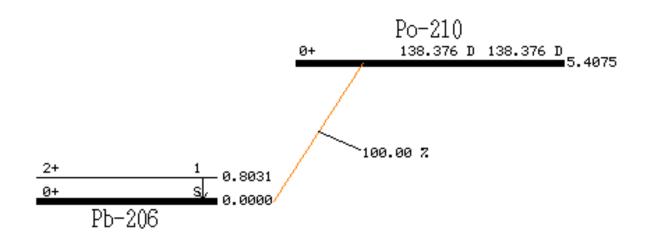
only the decay of the daughter is seen

Radioactive equilibrium $(t_{1/2})_1 < (t_{1/2})_2$



²¹⁰Po production

How much pitchblende containing 40% $\rm U_3O_8$ is needed to produce 1 gram $\rm ^{210}Po$? (assuming $\rm ^{210}Po$ can be extracted quantitatively)



²¹⁰Po production

How much pitchblende containing $40\% \ U_3O_8$ is needed to produce 1 gram ^{210}Po ? (assuming ^{210}Po can be extracted quantitatively)

	γ 545; 782; 790	γ 1181; 245; 1483	γ (687) g	γ 63 e γ 63 e e	α 9.08	α 8.877 γ g
7 84 h + 116 92;	Po 208 2.898 a α 5.1152 γ (292; 571)	Po 209 102 a α 4.881 ξ γ (895; 261; 263)	Po 210 138.38 d α 5.30438 γ (803); σ <0.0005 + <0.030; σ _{n,α} 0.002; σ _f <	Po 211 25.2 s α 7.275; 8.883 γ 570; 1064 γ (898; 570)	Po 212 45.1 s 17.1 ns 0.3 μs α 11.65 ly 728; γ 2615; 406; 583 ly α10.22 α8.785	Po 2 4.2 μ α 8.376 γ (779)
5 5 5 5 16;	Bi 207 31.55 a ^ε _β + γ 570; 1064; 1770	Bi 208 3.68 · */ a	Bi 209 100 1.9 · 10 ¹⁹ α α 3.137 σ 0.011 + 0.023 σ _{n,α} <3E-7	Bi 210 3.0·10 ⁶ a α 4.946; 4.908 γ 266; 304 σ 0.054 3.0·10 ⁶ a 5.013 d β ⁻ 1.2 α 4.649; 4.686 γ (305; 266)	Bi 211 2.17 m α 6.6229; 6.2788 β γ 351 $\alpha \rightarrow g$; β $\rightarrow g$	Bi 2 ¹ 9 m 25 m a 6.34 6.39 0.22; 0.11
5 7 a	Pb 206 24.1 σ 0.027	Pb 207 22.1 σ 0.61	Pb 208 52.4 σ 0.00023 σ _{n, α} <8E-6	Pb 209 3.253 h β ⁻ 0.6 no γ	Pb 210 22.3 a β-0.02; 0.06 γ 47; e-; g α 3.72 σ < 0.5	Pb 2 36.1 β-1.4 γ 405; 832 427
4	TI 205 70.48	TI 206	TI 207	TI 20800	TI 209 2.16 m	TI 21 1.30

²¹⁰Po production

Secular equilibrium: $A_1 = A_2 = N_1\lambda_1 = N_2\lambda_2$ (= $N_3\lambda_3$...) $N_{Po-210}\lambda_{Po-210} = N_{U-238}\lambda_{U-238}$

$$N_{Po-210} = \frac{1}{210} \times 6.022 \times 10^{23} = 2.87 \times 10^{21} \text{ atoms}$$

$$t_{\frac{1}{2},Po-210} = 138.38 \text{ d} => \lambda_{Po-210} = ln2/138.38 = 5.01 \times 10^{-3} \text{ d}^{-1}$$

$$\lambda_{U-238} = ln2/(4.5 \times 10^{9} \times 365) = 4.25 \times 10^{-13} \text{ d}^{-1}$$

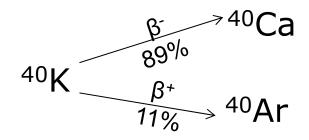
$$N_{U-238} = \frac{2.87 \times 10^{21} \times 5.01 \times 10^{-3}}{4.25 \times 10^{-13}} = 3.38 \times 10^{31} \text{ atoms}$$

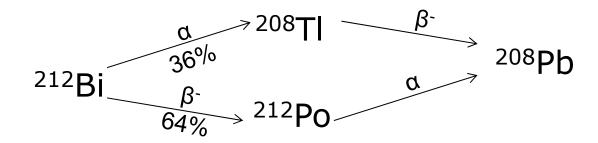
$$N_{U-238} = \frac{3.38 \times 10^{31}}{6.023 \times 10^{23}} = 5.61 \times 10^7 \text{mol} \Rightarrow N_{U_3O_8} = \frac{5.61 \times 10^7}{3} = 1.87 \times 10^7 \text{ mol}$$

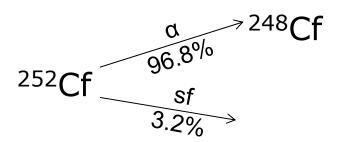
= 15 750 tonnes U_3O_8 and 39 400 tonnes pitchblende

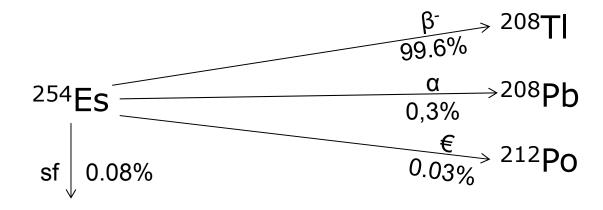
Dual (triple) decay

Some radionuclides can decay in several ways. Examples:









Dual (triple, etc.) decay

For a dual decay, the decay law is written:

$$A \xrightarrow{\lambda_B} B \qquad -\frac{dN_A}{dt} = (\lambda_B + \lambda_C)N_A$$

The formation of B and C can be expressed as

$$\frac{dN_B}{dt} = \lambda_B N_A$$
 and $\frac{dN_C}{dt} = \lambda_C N_A$

The decay constant can be written $\lambda = \lambda_1 + \lambda_2 + ... \lambda_i = \sum_{i=1}^{n} \lambda_i$

The partial half-lives are related
$$\frac{1}{(t_{1/2})} = \frac{1}{(t_{1/2})_1} + \frac{1}{(t_{1/2})_2} + \dots + \frac{1}{(t_{1/2})_i} = \sum_{1}^{i} \frac{1}{(t_{1/2})_i}$$

Radionuclides in nature

• Primordial ("original"): $t_{1/2} > 10^8$ years

• <u>Cosmogenic</u> Cosmic radiation: γ -photons, mesons, neutrons, protons, α -particles, heavier particles

Anthropogenic
 Fission products

Primordial radionuclides for Z<82 (Pb)

Nuclide	Isotpoic abundance %	Decay mode	t _½ , years
⁴⁰ K	0.0117	β-, EC	1.26×10 ⁹
50 V	0.25	β⁻, EC	>1.4×10 ¹⁷
⁸⁷ Rb	27.83	β-	4.88×10 ¹⁰
¹¹⁵ In	95.72	β-	4.4×10 ¹⁴
¹²³ Te	0.905	EC	1.3×10 ¹³
¹³⁸ La	0.092	β⁻, EC	1.05×10 ¹¹
¹⁴⁴ Nd	23.8	α	2.1×10 ¹⁵
¹⁴⁷ Sm	15	α	1.06×10 ¹¹
¹⁴⁸ Sm	11.3	α	7×10 ¹⁵
¹⁷⁶ Lu	2.59	β-	3.8×10 ¹⁰
¹⁷⁴ Hf	0.162	α	2×10 ¹⁵
¹⁸⁷ Re	62.6	β-	4.2×10 ¹⁰
¹⁹⁰ Pt	0.012	α	6.5×10 ¹¹

Cosmogenic radionuclides

Inflow:

$$R_i = \sigma_i \cdot \Phi_{cosm.} \cdot N_i$$
Cross section Flux

Examples:

$$n(fast) + {}^{14}N \rightarrow {}^{12}C + {}^{3}H$$

$$n(slow) + {}^{14}N \rightarrow {}^{14}C + {}^{1}H$$

Cosmogenic radionuclides

Long-lived cosmogenic radionuclides appearing in meteorites and rain water

³H, ¹⁰Be, ¹⁴C, ²²Na, ²⁶Al, ³²Si, ³⁵S, ³⁶Cl, ³⁹Ar, ⁵³Mn, ⁸¹Kr

Short-lived cosmogenic radionuclides appearing in rain water

⁷Be, ²⁴Na, ²⁸Mg, ³²P, ³³P, ³⁹Cl

Radiometric dating -Accumulation

Determine age of geologic samples

Decay of mother nuclide: $A = A_0 e^{-\lambda t}$

Build up of daughter: $B = A_0(1-e^{-\lambda t})$

$$\Rightarrow t = \frac{\ln(1 + \frac{B}{A})}{\lambda}$$

- t and t½ should be in same order of magnitude
- Mother and daughter must be stuck in matrix

Radiometric dating

• Th-serie:
232
Th ($t_{\frac{1}{2}}$ =1.41×10 10 y) $\xrightarrow{6\alpha,4\beta^{-}}$ 208 Pb

• Np-serie:
237
Np ($t_{1/2}$ =2.1×10⁶y) $\xrightarrow{^{7}\alpha, 4\beta^{-}}$ $\xrightarrow{^{209}}$ Bi

• U-series:
238
U ($t_{1/2}$ =4.5×10 9 y) $\xrightarrow{8\alpha,6\beta^{-}}$ 206 Pb

²³⁵U (
$$t_{1/2}$$
=7.08×10⁸y) $\xrightarrow{7\alpha,4\beta^{-}}$ ²⁰⁷Pb

²⁰⁶Pb, ²⁰⁷Pb and ²⁰⁸Pb are of radiogenic origin while ²⁰⁴Pb is not.

U and Th containing minerals can be dated by measuring the ratio of Pb and mother nuclide.

Another way is to measure the Pb-ratio: $\frac{^{207}\text{Pb}}{^{206}\text{Pb}} = \frac{1}{138} \frac{e^{\lambda_{235}t} - 1}{e^{\lambda_{238}t} - 1}$

Radiometric dating

- 87Rb $(t_{1/2}=1.41\times10^{10}y) \rightarrow 87Sr$
- 40 K ($t_{1/2}$ =1.27×10 9 y) \rightarrow 40 Ar (most of the argon in the atmosphere has been created this way)
- 187 Re $(t_{1/2} = 5 \times 10^{10} \text{y}) \rightarrow ^{187}\text{Os}$

87Rb/87Sr is the most reliable method of dating old minerals

The oldest material found in the Earth's crust are 3.5×10⁹years Metoritic stones have been dated 4.5×10⁹years

An approximative age of our solar system (5.9×10⁹years) can be calculated assuming that the ratio ²³⁵U/²³⁸U was 1

U-238/U-235 = 1

$$N_{238} = N_{238}^{0} e^{-\lambda_{238}t} \qquad \Longrightarrow \qquad N_{238}^{0} = \frac{N_{238}}{e^{-\lambda_{238}t}}$$

$$N_{238}^{0} = N_{235}^{0} \qquad \qquad \frac{N_{238}}{e^{-\lambda_{238}t}} = \frac{N_{235}}{e^{-\lambda_{235}t}}$$

$$\frac{N_{238}}{N_{235}} = \frac{e^{-\lambda_{238}t}}{e^{-\lambda_{235}t}}$$

$$\ln\left(\frac{N_{238}}{N_{235}}\right) = (\lambda_{235} - \lambda_{238}) t$$

$$t = \frac{ln\left(\frac{N_{238}}{N_{235}}\right)}{\lambda_{235} - \lambda_{238}} = 5.9 \times 10^9 \text{ y}$$

Radiocarbon dating

• The 14 C-method ($t_{1/2}$ =5 736y) is by far the most used for determining the age of biologic material.

$$n(slow) + {}^{14}N \rightarrow {}^{14}C + {}^{1}H$$

- It is assumed that the neutron flux has been constant.
 - => the production of ¹⁴C has been constant
 - => equilibrium between production and decay of ¹⁴C
 - => constant ¹⁴CO₂ in atmosphere
- When organism dies it ceases to take in new ¹⁴C-isotopes

Example

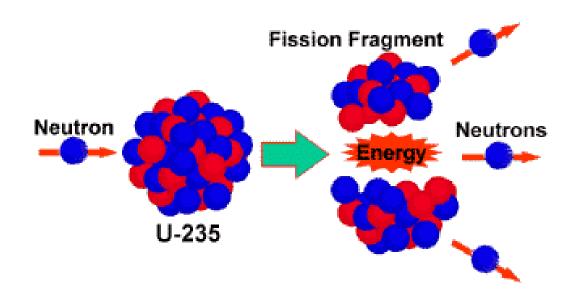
• Before 1952 (when atmospheric nuclear bomb tests started) the specific activity of 14 C was ≈ 15 decays/min,g (today it's closer to 20 dpm/g).

In a sample containing 250 mg carbon, 2480 C-14 decays occurred during 20 hours. How old is the sample? [$t_{\frac{1}{2},C-14}$ = 5 736y]

Specific activity = 2480/(20*60*0.25) = 8.267 dpm/g

$$A = A_0 e^{-\lambda t} \Rightarrow t = \frac{\ln(A_0/A)}{\lambda} = \frac{\ln(15/8.267)}{\ln(2/5736)} = 4930$$

Fission



Typically 200 MeV is released in a fission event

Fission

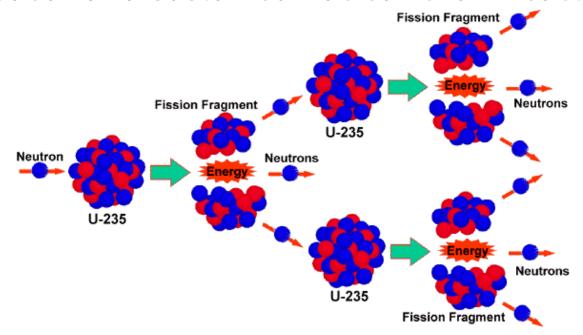
Spontaneous fission

- Induced fission
 - oWhen an isotope is struck by a fast neutron: fissionable
 - oWhen an isotope is struck by a thermal (slow) neutron: fissile

(235U and 239Pu are fissionable and fissile)

Nuclear chain reaction

- A nuclear chain reaction will take place if sufficient amount of neutrons are produced and captured.
- <u>Critical mass</u>: the smallest amount of fissile material needed for a sustained nuclear chain reaction



Calculation example

What is the decay rate of K-40 in 1 g of natural K?

Nuclide	Isotpoic abundance %	Decay mode	t _{1/2} , years
⁴⁰ K	0.0117	β-, EC	1.26×10 ⁹

$$A=N\lambda$$

$$N_{^{40}\text{K}} = \frac{1}{M_{^{\text{K}}}} \times I_{^{40}\text{K}} \times 6.023 \times 10^{23} = \frac{1}{39.1} \times 0.000117 \times 6.023 \times 10^{23} = 1.80 \times 10^{18}$$

$$\lambda_{40_{K}} = \frac{\ln 2}{1.26 \times 10^{9} \times 365.25 \times 24 \times 3600}$$

$$A_{40_{K}} = N_{40_{K}} \lambda_{40_{K}} = 31,4Bq$$