

Nuclear Fuel Cycle 2011

Lecture 4: Interaction of Ionizing Radiation with Matter

ROYAL INSTITUTE OF TECHNOLOGY



# Ionizing radiation (Nuclear radiation)

#### Radiation with energy > 100 eV

Ionize an atom < 15eV

Break a bond 1-5 eV



#### Typical decay energies

- α: 4-9 MeV
- β: 0.02-4 MeV
- γ: 0.1-2 MeV

 $\approx$  100 000 – 1 000 000 ionizations per decay



### Radiation types

- Protons and heavy ions (*e.g.*  $\alpha$ -particles)
- Electrons ( $\beta^+$  and  $\beta^-$ )
- Photons (γ)
- Neutrons



# Absorption of ionizing radiation

- Interactions with the <u>electrons</u> of the absorber
- (Neutrons): Interactions with <u>nuclei</u> resulting in radioactive decay and High energy  $\gamma$ , resulting in pair production



OF TECHNOLOGY

# Linear Energy Transfer (LET)

The energy lost per length unit

LET = -dE/dx

LET depends on the electron density of the absorber (usually proportional to the physical density)

| Radiation (3 MeV)                                | LET (keV/µm) | cm in air |
|--------------------------------------------------|--------------|-----------|
| Electron                                         | 0.20         | 1400      |
| Proton ( ${}^{1}_{1}H^{+}$ )                     | 21           | 14        |
| Deuteron ( ${}^{2}_{1}H^{+}$ )                   | 34           | 8.8       |
| $\alpha \left( {}^{4}_{2}\text{He}^{2+} \right)$ | 180          | 1.7       |



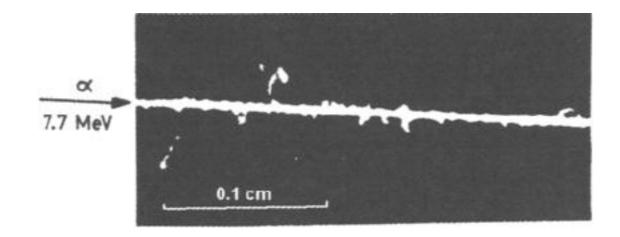
# Protons and heavy ions

The LET of protons and heavy ions follow the Bethe equation:

$$-\frac{dE}{dx} = \frac{4\pi z^2 e^4}{mv^2} NZ \ln\left(\frac{2mv^2}{I}\right) \Rightarrow -\frac{dE}{dx} \propto \frac{z^2}{v^2}$$

- Z = absorber's atomic number
- z = particle's atomic number
- N = number of absorbing atoms per unit volume
- v = Velocity
- I = Ionization potential
- m = electron mass
- e = particle charge

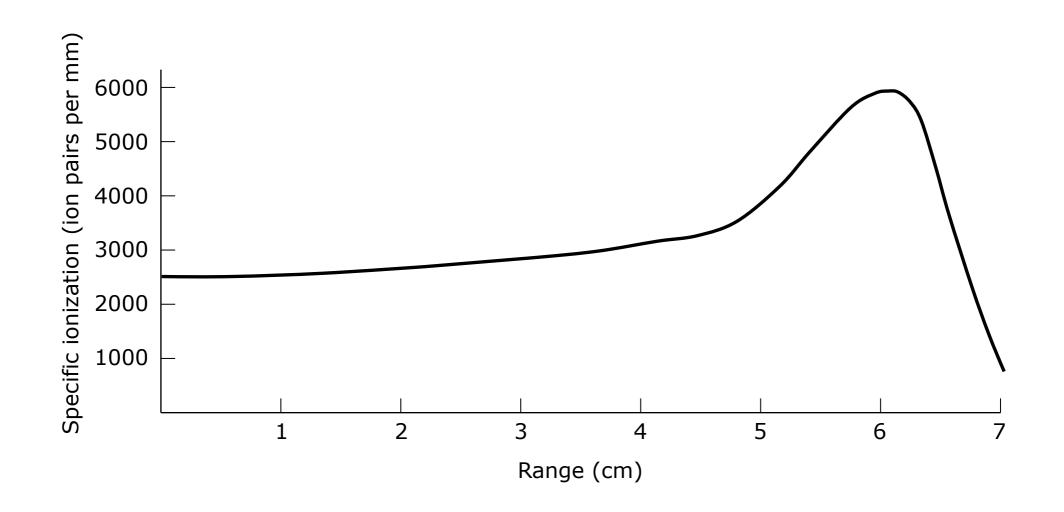



OYAL INSTITUT

#### $\alpha$ -particles

• Heavy charged particle: <sup>4</sup><sub>2</sub>He<sup>2+</sup>

=> Interaction very strong (high LET)


Particles travels in a straight path, leaving a "spur" with lots of ionizations behind. The number of ionizations in an  $\alpha$ -spur is in the order of 1 mol/liter





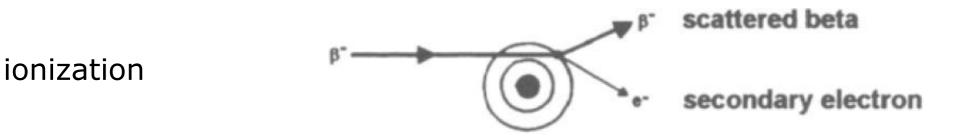
OF TECHNOLOGY

# The Bragg curve (heavy charged particles)





## β-particles (=electrons and positrons)


β-particles from nuclear decay have the same mass and velocity as orbital electrons and can lose much of the energy in one collision

When colliding with electrons  $\beta$ -particles are deflected and greatly scattered

Much higher velocity than alpha and protons => the range is longer



## β-particles (=electrons/positrons)

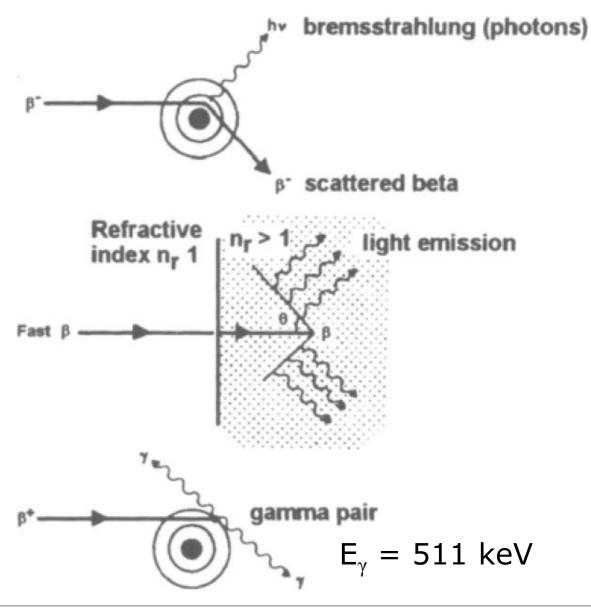


50% of the energy is lost by ionization and 50% by excitation



excitation




OF TECHNOLOGY

# β-particles (=electrons/positrons)

bremsstrahlung

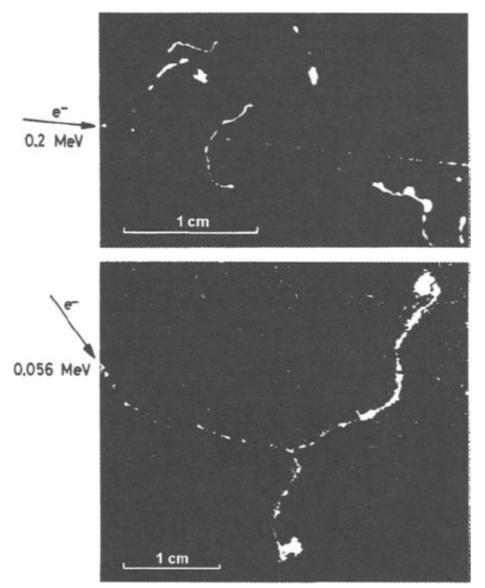
Čerenkov radiation

positron annihilation





#### Backscattering


# $\beta^{\mbox{-}}\mbox{-}$ particles can scatter as much as 180° from the original direction.

#### This phenomena is called backscattering



#### Tracks from $\beta$ -particles

ROYAL INSTITUTE OF TECHNOLOGY



Normal energy  $\beta^{-}$ 

Meandering tracks

LET much lower

Low energy  $\beta^{-}$ 

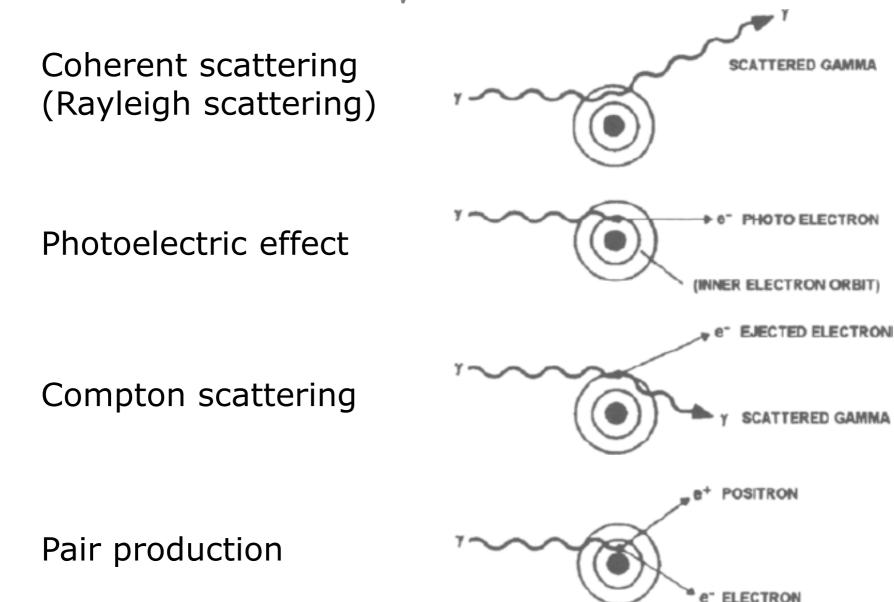


## $\gamma$ -radiation

 $\gamma\text{-photons}$  have no mass or charge

 $\Rightarrow$  Very little interaction with absorber

 $\Rightarrow$  Long range

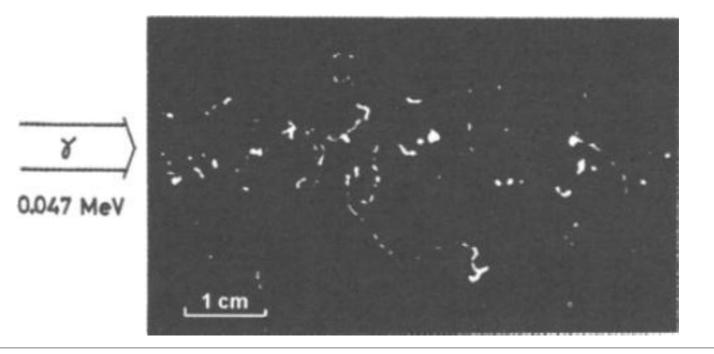

Unlike particles with mass,  $\gamma$ -photons loose all energy in one or two interactions.

γ-photons interacts with absorber in four different ways:
 coherent (Rayleigh) scattering, photoelectric effect,
 Compton scattering and pair production



# Interaction of $\gamma$ -radiation

ROYAL INSTITUTE OF TECHNOLOGY






# Interaction of $\gamma$ -radiation

Since a  $\gamma$ -photon can interact immediately and loose all energy or travel several cm before interacting the range is not possible to determine

But half-thickness can be determined





#### Neutrons

- No charge, interaction with matter similar to that of gamma (scattering).
- No range can be determined



# Radiation shielding

ROYAL INSTITUTE OF TECHNOLOGY

| Radiati<br>on | Relative<br>penetration<br>depth | Shielding         | Range in<br>water |  |
|---------------|----------------------------------|-------------------|-------------------|--|
| α             | 1                                | Paper, skin       | 30-40 µm          |  |
| β             | 100                              | 3 mm Al           | 3-6 mm            |  |
| γ             | 10 000                           | Concrete,<br>Lead | _                 |  |

Remember: The ability ability to interact (=absorb energy) of a material is proportional to its (electron) density.



Dose decreases with square of distance due to geometric reasons



#### Absorbed dose

$$D = \frac{dE_{abs}}{dm}$$

$$E_{abs} = E_{in} - E_{out}$$

• <u>Dose rate:</u> Gray/s. (absorbed dose/s)



OF TECHNOLOGY

#### Equivalent dose

• Weights in the damage different radiation will do to tissue and organs (*i.e.* biologically significant)

• Units: 1 J/kg = 1 Sv (sievert)

• Old unit: 1 Sv = 100 rem



#### Equivalent dose

The equivalent dose  $(H_T)$  to an organ or tissue is the sum of mean absorbed dose  $D_{T,R}$  in T, multiplied by a weighing factor  $w_R$  for each type of radiation R.

$$H_{T} = \sum_{R} W_{R} D_{T,R}$$

| Radiation type & energy           | W <sub>R</sub>                  |
|-----------------------------------|---------------------------------|
| Photons, all energies             | 1                               |
| Electrons and muons, all energies | 1                               |
| Neutrons of Energy E (MeV)        | $5+17e^{\frac{-(ln(2E))^2}{6}}$ |
| Protons, energy > 2MeV            | 5                               |
| α, heavy nuclei                   | 20                              |



# Effective Dose (Effective Equivalent Dose)

 Weights in the damage different radiation will do to specific tissues and organs (radiation does different damage to different organs)

• Units: 1 J/kg = 1 Sv (Sievert)

• Old unit: 1 Sv = 100 rem



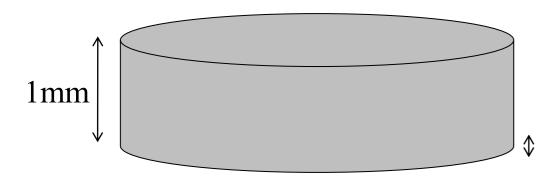
#### Effective Dose

The equivalent dose is multiplied by a factor depending for each tissue/organ that is exposed to radiation

$$\mathsf{E} = \sum_{\mathsf{T}} \mathsf{W}_{\mathsf{T}} \sum_{\mathsf{R}} \mathsf{D}_{\mathsf{T},\mathsf{R}}$$

| Organ or tissue   | w <sub>T</sub> | Organ or tissue        | w <sub>T</sub> |
|-------------------|----------------|------------------------|----------------|
| Gonads            | 0.20           | Liver                  | 0.05           |
| Bone marrow (red) | 0.12           | Oesophagus (matstrupe) | 0.05           |
| Colon             | 0.12           | Thyroid (Sköldkörtel)  | 0.05           |
| Lung              | 0.12           | Skin                   | 0.01           |
| Stomach           | 0.12           | Bone surface           | 0.01           |
| Bladder           | 0.05           | Remainder              | 0.05           |
| Breast            | 0.05           |                        |                |




### Recommended dose limits

| Dose limits for persons working with ionizing radiation |                                |  |  |
|---------------------------------------------------------|--------------------------------|--|--|
| Period of time                                          | Limits of effective dose (mSv) |  |  |
| Annual                                                  | 50                             |  |  |
| Effective dose                                          | 150                            |  |  |
| Equivalent dose to the lens of the eye                  | 500                            |  |  |
| Equivalent dose to the skin, hands,                     | 500                            |  |  |
| forearms, feet and ankles                               |                                |  |  |
| In addition, for 5 consecutive years,                   | 100                            |  |  |
| Effective dose                                          |                                |  |  |



# Example calculating dose rate

• A 1 mm thick radiation source of  ${}^{238}UO_2$  ( $\rho_{UO2} = 11 \text{ g} \cdot \text{cm}^{-3}$ ) is used to irradiate water. Assume that the range in H<sub>2</sub>O is 35 µm and calculate the dose rate in the water. Assume furthermore that the range in an absorber is proportional to the density, that for geometrical reasons only 25 % of the alpha particles will reach the water and that they have lost 50 % of their energy while traversing UO<sub>2</sub>.



Only 25% will reach the water =>A = 9.6 Bq

Range in UO<sub>2</sub>=35/11=3.2  $\mu$ m

Assume 1cm×1cm×3.2µm

$$V = 3.2 \times 10^{-4} \text{ cm}^{-3}$$

 $N_U = V \times \rho / M_{UO2} \times N_A = 7.85 \times 10^{18} \text{ atoms}$ 

 $\lambda_{\rm U} = \ln 2/(4.5 \times 10^9 \times 365^* 24^* 3600) = 4.9 \times 10^{18} \, {\rm s}^{-1}$ 

A=Nλ=38.35 Bq



# Example, continued

$$A = 9.6 Bq$$



Dose rate = Absorbed energy/kg,s

```
E_{\alpha}=4.2 MeV = 6.73×10<sup>-13</sup> J (1 eV = 1.602×10<sup>-19</sup> J)
50% will be lost => E = 3.36×10<sup>-13</sup> J
```

Volume of the water =  $1 \text{ cm} \times 1 \text{ cm} \times 35 \mu \text{ m} = 35 \times 10^{-4} \text{ cm}^{-3}$ 

```
Mass of the water \approx 35 \times 10^{-7} kg
```

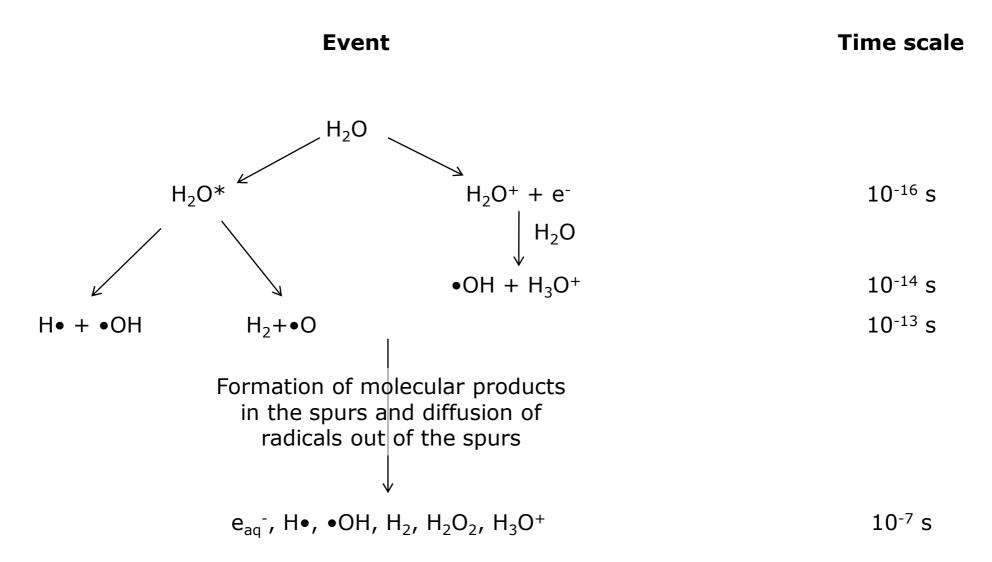
Dose rate =  $A \times E/m = 9.6 \times 3.36 \times 10^{-13}/35 \times 10^{-7} = 9.2 \times 10^{-7} \text{ Gy/s}$ 



# Radiation chemistry

Radiation chemical yield

• G-value: 
$$G_X = \frac{d[X]}{dE_{abs}}$$


• <u>Unit</u>: mol/J

• <u>Older unit</u>: number of molecules/100 eV



#### Water Radiolysis

ROYAL INSTITUTE OF TECHNOLOGY





LET (keV/ $\mu$ m) and G-values ( $\mu$ mol/J) for radiolysis of water

| Radiation         | LET  | G(H <sub>2</sub> O) | G(H <sub>2</sub> ) | G(H <sub>2</sub> O <sub>2</sub> ) | G(e <sub>aq</sub> -) | G(H●) | G(HO●) | G(HO₂•) |
|-------------------|------|---------------------|--------------------|-----------------------------------|----------------------|-------|--------|---------|
| γ, β <sup>-</sup> | 0.24 | -0.43               | 0.047              | 0.073                             | 0.28                 | 0.062 | 0.28   | 0.0027  |
| α                 | 92   | -0.294              | 0.115              | 0.112                             | 0.0044               | 0.028 | 0.056  | 0.007   |

 $\Rightarrow$  Different radiation types give different products



# Radiation effects in nuclear reactors

- Oxidation of metals
- Brittleness (H<sub>2</sub>)
- Explosion  $(H_2 + O_2)$