
Java EE architecture, part one 1

Java EE Architecture, Part One

Java EE architecture, part one 2

Content

• The Layer pattern
• Layers in a Java EE application
• The client layer
• Framework overview
• Do not write infrastructure code
• Requirements on the Presentation layer
• Security
• Frameworks for the Presentation layer

Java EE architecture, part one 3

A Short Repetition of the Layer
Pattern

• Problems:
– Business logic should not be mixed with the view.

– Services (like persistence) should not be mixed with
business logic.

– Need low coupling between subsystems.

– Components and subsystems should be easy to modify
or change.

– The code should be easy to understand.

– The code should be easy to modify and extend.

Java EE architecture, part one 4

A Short Repetition of the Layer
Pattern, Cont'd

• Solution:
– Divide the system in layers. Layers are the coarsest

parts of the system and a layer typically consist of
several components, packages and subsystems.

– Each layer should have high cohesion.

– Only allow coupling from higher (closer to the user
interface) layers to lower, since higher layers are less
stable and lower layers do not need higher ones.

– If possible, only allow coupling to the nearest lower
layer.

Java EE architecture, part one 5

A Short Repetition of the Layer
Pattern, Cont'd

• Advantages:
– Higher cohesion and lower coupling.

– Easier to reuse components both in the same
application and between applications.

– Easier to divide responsibility between developers.

– Easier to distribute the system on different nodes.

– Easier to change, extend and modify subsystems.

Java EE architecture, part one 6

A Short Repetition of the Layer
Pattern, Cont'd

• Disadvantages:
– Might be difficult to decide which layers are needed.

Too many layers means unnecessary work.

– Might cause performance problems. The problem here
is how many interprocess calls are made, ordinary
method calls take very little time.

Java EE architecture, part one 7

Layers in a Java EE Application

Java EE architecture, part one 8

The Client Layer

• Browser
– Easiest kind of client since browsers are without

unknown bugs and since there will be little problem
with firewalls.

– Use browsers as clients if there are no very good reason
for another choice.

– The only possible client if the application is to be used
by “anyone who happens to surf by”.

Java EE architecture, part one 9

The Client Layer, Cont'd

• Browser, Cont'd
– Necessary to decide which browsers to support (both

product and version). This is a non-functional
requirement that must be decided early and tested
throughout the entire development.

Java EE architecture, part one 10

The Client Layer, Cont'd

• Browser with applet or Java Web Start
– Lots of things can be done with HTML, CSS, Java

Script etc.

– Applets and Java Web Start cause problems since most
browsers are delivered without Java Support and
downloading and installing a JRE requires quite a lot
from the user.

– None are a good idea if the application is meant for
anyone.

Java EE architecture, part one 11

The Client Layer, Cont'd

• Browser with applet or Java Web Start, Cont'd
– If it is important to run a program on the user's

computer is it most likely better to choose Java Web
Start than applets.

– Java Web Start allows the user to store the program
locally instead of contacting the server every time it
shall be used.

– The conclusion is that applets are “out”.

Java EE architecture, part one 12

The Client Layer, Cont'd

• Fat client
– An ordinary Java (or other language) program that

opens a network connection to the Java EE server.

– Might be a choice for a very closed community, for
example staff using a company's intranet.

– Use only if really necessary.

– Why not use Java Web Start to distribute and install the
clients?

Java EE architecture, part one 13

The Client Layer, Cont'd

• Java EE client (application client)
– Part of the Java EE specification.

– Can be packaged in an ear together with the Java EE
application.

– Has deployment descriptor like web components and
EJBs.

– Has access to some Java EE apis like JMS and web
services.

Java EE architecture, part one 14

The Client Layer, Cont'd

• Java EE client (application client) , Cont'd
– The specification does not tell how to distribute the

clients.

– Almost never used.

– Does not add much value to fat clients.

– Developers must learn a new product.

– Little support.

Java EE architecture, part one 15

The Client Layer, Cont'd

• Mobile phones and other hand held devices
– Either browser or fat client.

– From the view of the Java EE application they are not
different from browsers or fat clients running on
ordinary computers.

Java EE architecture, part one 16

The Client Layer, Cont'd

• Clients using web services
– Java EE supports servlets and EJBs as endpoints.

– Java EE supports ordinary objects, servlets and EJBs as
clients.

– No need to write code for SOAP, UDDI, WSDL or
anything like that.

– Web services are a way to do RPC.

– Not object oriented.

– Widespread standard.

Java EE architecture, part one 17

The Client Layer, Cont'd

• Clients using web services
– Format that is easy to handle (text over HTTP).

– Good choice for communication with other web based
applications.

Java EE architecture, part one 18

What is a framework?

• Subsystem that handles infrastructure (non-
functional requirements).
– transactions, security, networking, persistence etc.

• Part of Java EE or third party (or in-house).

• Callbacks, not just api.

Java EE architecture, part one 19

Framework advantages

• Often used frameworks are thoroughly tested and
proven to work well.

• Lots of documentation, easy to get help.

• New code means new bugs.

Java EE architecture, part one 20

Framework advantages, Cont'd

• Non-functional requirements are difficult to code.

• Callback style makes sure all calls to non-
functional requirements code are made at the right
time.
– Handled by the framework.

Java EE architecture, part one 21

Frameworks Covered Here

• Presentation layer:
– Struts, Spring, JSF

• Business logic layer:
– Spring, EJB

• Persistence layer:
– Spring, JPA, Hibernate

Java EE architecture, part one 22

Do not Write Infrastructure Code

• There are enough frameworks to handle all needs.

• Only write application specific code.

• No need to reinvent the wheel.

• It might take time to get started with a framework,
but quite soon it saves time.

Java EE architecture, part one 23

Which Framework Should We Use?

• That depends...
– Developper knowledge.

– How easy to use?

– Will it be maintained in the future?

– Compatible with previous, current and coming versions
of java EE and other frameworks?

– Does it meet our needs?

– Customer requierements.

– Frameworks used in existing applications.

Java EE architecture, part one 24

Requirements on the Presentation
Layer

• Navigation

– What calls should be made to the model and which is
the next view, provided the user has clicked YYY in
view ZZZ.

– The next view may differ depending on the outcome
of the call to the model.

– Answers to the above should be stated as a set of
navigation rules.

– Navigation rules must be easy to understand and to modify.

Java EE architecture, part one 25

Requirements on the Presentation
Layer, Cont'd

• Validation
– Control of data entered by the user.

– The presentation layer does not know the meaning of
the data. It can only check for example that a certain
field is a date or contains only digits. It is up to the
model to check things that require business logic or
database calls, for example to match a user id and a
password.

Java EE architecture, part one 26

Requirements on the Presentation
Layer, Cont'd

• Validation, Cont'd
– If validation fails the same view should be shown again

together with error messages explaining why the
validation failed.

– Which validations are to be made on which fields and
which error messages to show if they fail should be
specified as a set of validation rules.

– Validation rules should be easy to understand and to
modify.

Java EE architecture, part one 27

Requirements on the Presentation
Layer, Cont'd

• Validation, Cont'd
– It should be easy to reuse validation code since the

same validations will probably be done on many
different fields.

– It is a good idea to use client side validation with Java
Script since that does not require data to be sent to the
server. Server side validation must also be active since
the user may turn off Java Script.

Java EE architecture, part one 28

Requirements on the Presentation
Layer, Cont'd

• Flow control
– To force the user to visit the views in a certain order.

– Stop user from using the browser's reload, forward and
back buttons and from using deep links.

– For example only view the receipt directly after buying
something, or not press reload if it takes a while to
transfer money between bank accounts.

Java EE architecture, part one 29

Requirements on the Presentation
Layer, Cont'd

• Flow control, Cont'd
– Do not confuse with navigation. Navigation tells in

which order the user is allowed to visit the views, flow
control stops the user from breaking this order.

Java EE architecture, part one 30

Requirements on the Presentation
Layer, Cont'd

• Composite views
– Views often consist of several parts: header, footer,

navigation menus, main content etc.

– Many of these parts are common for many views.

– In order to avoid duplicated code it must be possible to
reuse both page fragments (html) and page layout (html
tables or css).

Java EE architecture, part one 31

Requirements on the Presentation
Layer, Cont'd

• Internationalization (i18n) and localization (l10n)
– Internationalization means to make it possible to switch

language. To add the possibility to show the user
interface in a new language should only require to write
the words in the new language, not any additional
coding.

– Localization means to add support for a new language.
This is quite easy, it is internationalization that is the
tricky part.

Java EE architecture, part one 32

Requirements on the Presentation
Layer, Cont'd

• Session management
– A session starts when the user accesses the site the first

time and ends when the server decides to end it or when
the user closes the browser.

– Since Http is stateless it is necessary to use sessions to
identify that two requests come from the same user.

– The presentation layer must decide when sessions start
and stop, how to associate users with sessions and how
to associate data with sessions.

Java EE architecture, part one 33

Requirements on the Presentation
Layer, Cont'd

• Security
– The presentation layer must handle authentication,

authorization, logging and secure communication with
the browser.

Java EE architecture, part one 34

Requirements on the Presentation
Layer, Cont'd

• Error handling
– Which component is responsible for showing error

messages?

– Which component is responsible for logging error
messages?

– How do information about errors arrive to those
components?

– What information shall be logged and what information
shall be shown to the user?

Java EE architecture, part one 35

Requirements on the Presentation
Layer, Cont'd

• Caching
– Lots of time can be saved with good use of caches. It is

probably not necessary neither to call the database nor
to generate html dynamically for every call.

– The most powerful cache is the browser's since it can
be reached by the user without any interprocess call at
all. We could for example cache all non-html pages
(images, javascript, css etc) one hour in the browser
and all html pages one minute.

Java EE architecture, part one 36

Requirements on the Presentation
Layer, Cont'd

• Caching, Cont'd
– Another type of cache is a web cache, a separate

product somewhere between the user and the server.

– It takes longer for the user to reach but can serve more
than one user. Such cashes are good for dynamic pages
that are updated seldom, for example news sites.

Java EE architecture, part one 37

Requirements on the Presentation
Layer, Cont'd

• Caching, Cont'd
– Yet another idea is to put an ordinary web server in

front of the Java EE application server.

– It is not a good idea to use a web server only as a cache,
in that case a web cache is better.

– It might be good to use a web server to serve static
pages. The question is if the web server is so fast and
the number of static pages so high that we gain the cost
of the extra interprocess call from the web server to the
Java EE application server.

Java EE architecture, part one 38

Security

• Logging is done by the server and is thus server
specific. It is not part of Java EE or any
framework.
– Well known log APIs are log4j from apache and the

logging API in the JDK, often referred to as jdk 1.4
logging as it exists from that version.

– These only handles how to write to the logs.

– What and when to log is up to the server and the
application code.

Java EE architecture, part one 39

Security, Cont'd

• Authentication, authorization, privacy and
integrity are handled by Java EE itself, so there is
no need for a framework to do that.

Java EE architecture, part one 40

Security, privacy and integrity,
Cont'd

• Privacy and integrity are achieved by using
HTTPS for communication.

• It can be specified in web.xml that all access to
certain URLs should be with HTTPS. How that is
implemented is up to the server, the developer
need only worry about the lines in web.xml.

Java EE architecture, part one 41

Security, privacy and integrity,
Cont'd

• Specifying that HTTPS should be used:
<security-constraint>
 <web-resource-collection>
 <url-pattern>/some/url/*</url-pattern>
 <http-method>GET</http-method>
 <http-method>POST</http-method>
 </web-resource-collection>
 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
</security-constraint>

– The URL for which HTTPS shall be used.

– The HTTP methods for which HTTPS shall be used.
HTTP methods not listed here are not allowed at all.

Java EE architecture, part one 42

Security, privacy and integrity,
Cont'd

• Specifying that HTTPS should be used:
<security-constraint>
 <web-resource-collection>
 <url-pattern>/some/url/*</url-pattern>
 <http-method>GET</http-method>
 <http-method>POST</http-method>
 </web-resource-collection>
 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
</security-constraint>

– Means to use HTTPS instead of plain HTTP

Java EE architecture, part one 43

Security, authentication
• There are many ways to log in to a web

application, the most common is called form based
login.

• It is specified in this way in web.xml:
<login-config>
 <auth-method>FORM</auth-method>
 <form-login-config>
 <form-login-page>/login.html</form-login-page>
 <form-error-page>/login.html</form-error-page>
 </form-login-config>
</login-config>

• The URL of the page with the login form

• The URL of the page to be shown if login fails.

Java EE architecture, part one 44

Security, authentication, Cont'd

• The name of the user id field in the login form
must be j_username, the name of the password
field must be j_password and the form action
must be j_security_check.

• A form could look like this:
 <form method=”POST” action=”j_security_check”>
 <input type=”text” name=”j_username”>
 <input type=”password” name=”j_password”>
 </form>

Java EE architecture, part one 45

Security, authentication, Cont'd

• Always use HTTPS when the login form is
presented. Otherwise the password will be
transmitted in plain text.

Java EE architecture, part one 46

Security, authorization

• Authorization is specified in web.xml by telling
which user roles are allowed access to specified
URLs.

• If a user has not logged in the container presents a
login page.
– The login page is the form specified above if form

based login is used.

Java EE architecture, part one 47

Security, authorization, Cont'd

• In web.xml:
 <web-resource-collection>
 <web-resource-name>Bank customer resorce</web-resource-name>
 <url-pattern>/some/url/*</url-pattern>
 <http-method>GET</http-method>
 <http-method>POST</http-method>
 </web-resource-collection>
 <auth-constraint>
 <role-name>customer</role-name>
 </auth-constraint>
</security-constraint>

• The URL of the pages with restricted access

• The HTTP methods for which access is restricted. HTTP
methods not specified here are not allowed at all.

• Only users in this role are allowed access

Java EE architecture, part one 48

Security, authorization, Cont'd

• User ids, passwords and roles are checked by login
modules, as specified in the Java Authentication
and Authorization Service (JAAS).

• How to install new login modules and add new
users is not covered by any specification, it is up
to the server.

Java EE architecture, part one 49

Security, authorization, Cont'd

• How to handle login modules in Tomcat is
specified in the Tomcat documentation, see
http://tomcat.apache.org/tomcat-
7.0-doc/realm-howto.html

• In GlassFish login modules are managed in the
administration console, which is available on port
4848 when the server is running.

Java EE architecture, part one 50

Security, GlassFish Configuration

• In brief, these are the steps required to make
GlasdFish query a database for usernames and
passwords.

1. Create a connection pool for the database where you keep
usernames and passwords.

2. Create a JDBC resource referring to this connection pool.

3. Create a realm on the administrator panel (localhost:4848 by
default) using Configurations > server-config > Security >
Realms > New Realm

Java EE architecture, part one 51

Security, GlassFish Configuration,
Cont'd

4. The settings for the newly created realm are:
Name: Whatever you want. This is the name you should specify
in the realm-name tag in web.xml.
Class name: choose the JDBCRealm class form the dropdown.
JAAS Context: write exactly 'jdbcRealm'.
JNDI: use the JNDI name of your JDBC Resource created in
Step 2.

5. Fill in the User table, Group Table, User column, Password
column, Group Name column, Database User, Database
Password, and Digest Algorithm entries according your
database.

Java EE architecture, part one 52

Frameworks for the presentation
layer

• Struts (Apache)

• JSF (Sun, part of Java EE)

• Spring (VMware)

• And lots of other

Java EE architecture, part one 53

Struts

Homepage:
http://struts.apache.org/

Documenation:
https://struts.apache.org/2.3.1.1/index.html

Description of the architecture:
https://struts.apache.org/2.3.1.1/docs/nutshell.html

Java EE architecture, part one 54

Struts, navigation

• Configured in the struts.xml file in WEB-INF
 <action name="HelloWorld" class="tutorial.HelloWorld">
 <result>/HelloWorld.jsp</result>
 </action>

– The logical name of the action. This action is reached
with the url
http://url.for.my.server/HelloWorld.action.
All requests pass through the FilterDispatcher filter
which instantiates actions and calls them.

– The class name of the Action class. Its method
execute() is called if nothing else is specified.

– Actions are automatically populated with form data.

Java EE architecture, part one 55

Struts, navigation, Cont'd

• Configured in the struts.xml file in WEB-INF
 <action name="HelloWorld" class="tutorial.HelloWorld">
 <result>/HelloWorld.jsp</result>
 </action>

– The next view. After the call to
HelloWord.execute() returns, the http request is
forwarded to /HelloWorld.jsp. It is possible to
define different views depending on the outcome of
the call to execute().

Java EE architecture, part one 56

Struts, validation

• Configured in separate files for each action,
named after the action. To validate input in a
request for HelloWorld.action the file is
called HelloWorld-validation.xml

• Validators are called by an interceptor that is run
before invoking the action, see the architecture
description above.

Java EE architecture, part one 57

Struts, validation, Cont'd
<validators>
 <field name="username">
 <field-validator type="requiredstring">
 <message>Username is required</message>
 </field-validator>
 </field>
</validators>

– The name of the http request parameter, that is the
name of the field in the html form.

– The name of the validator.

– The error message if the validation fails.

Java EE architecture, part one 58

Flow Control

• This is not handled by Struts.

Java EE architecture, part one 59

Flow Control, Cont'd

• A way to code it is to always save a unique value,
for example a random long, in the session object
and also send the value to the client (cookie,
hidden field or URL rewriting). When a request
arrives the client and server values are compared
and if they do not match the client has not
followed the correct flow.

Java EE architecture, part one 60

Flow Control, Cont'd

• Remember to decide what shall happen if the
client has not followed the flow.

Java EE architecture, part one 61

Struts, Composite Views

• This is not a core Struts functionality but there is
another Apache project called Tiles that handles
the problem very well,
see http://tiles.apache.org/.

Java EE architecture, part one 62

Struts, Internationalization

• There is good support in Java SE itself for
internationalization, see
http://download.oracle.com/javase/6/docs/technotes/guides
/intl/index.html

• Struts internationalization support is described in the
following guide:

– http://struts.apache.org/2.2.1.1/docs/localization.html

Java EE architecture, part one 63

Struts, Error Handling
• Struts can show different views dependent on the

outcome of an action. This is specified in
struts.xml:
<action name="MyAction" class="example.MyAction">
 <result name="result1">/somejsp.jsp</result>
 <result name="result2">/anotherjsp.jsp</result>
</action>

• The name of the actual outcome is specified by the
action as a String return value from the
execute method.

Java EE architecture, part one 64

Java EE, Error handling
• It is possible to define error pages. If an exception

occurs in a jsp or servlet the container forwards
the call to the error page.
– Error pages are defined like this in the web.xml

deployment descriptor:

<!-- An error page for a Java exception. The call is
forwarded to the error page if the specified exception
or a subclass of it is thrown. -->
<error-page>
 <exception-type>java.lang.Throwable</exception-type>
 <location>/errorpage.jsp</location>
</error-page>

<!-- An error page for an HTTP error -->
<error-page>
 <error-code>404</error-code>
 <location>/errorpage.jsp</location>
</error-page>

65

JavaServer Faces, JSF

javax.faces

JSF Home page:
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html

JSF tag library documentation:
http://download.oracle.com/javaee/6/javaserverfaces/2.0/docs/pdldocs/facelets/

Lecture 11: JavaServer Faces (JSF), JavaServer Pages (JSP) 66

JSF, Navigation

• Static Navigation
– If the outcome is the name of a XHTML page then that

page is displayed.

– This is called static navigation. The outcome is always

the same.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages (JSP) 67

JSF, Navigation, Cont'd

• Dynamic Navigation
– A user action can often have different outcomes, for

example a login attempt might succeed or fail.

– In this case dynamic navigation must be used.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages (JSP) 68

JSF, Dynamic Navigation, Cont'd

• Using dynamic navigation the value of the action attribute
must be an expression identifying a method, for example
#{loginManager.validateUser}, assuming that
there is a managed bean named loginManager that has a
method called validateUser.

• The outcome will be the value that is returned by this
method. If the return value is not a String it will be
converted to a String by calling its toString method.

• The outcome could be the name of a XHTML page, just like

with static navigation. If so this page will be displayed.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages (JSP) 69

JSF, Dynamic Navigation, Cont'd

• It is not a good design that methods in the model
knows names of XHTML files.

• Therefore we want to have the action handling
method return a logical view name that is mapped
to a XHTML file name.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages (JSP) 70

JSF, Dynamic Navigation, Cont'd

• This is achieved by adding a navigation rule to the faces-config.xml file
<navigation-rule>
 <from-view-id>/login.xhtml</from-view-id>
 <navigation-case>
 <from-outcome>success</from-outcome>
 <to-view-id>/welcome.xhtml</to-view-id>
 </navigation-case>
 <navigation-case>
 <from-outcome>failure</from-outcome>
 <to-view-id>/login.xhtml</to-view-id>
 </navigation-case>
</navigation-rule>

• The above means that if an action handling method specified on the

login.xhtml page returns success the welcome.xhtml page is displayed

next. If on the other hand the method returns failure the login.xhtml page

is displayed again.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages (JSP) 71

JSF, Dynamic Navigation, Cont'd

• Even though the action handling method now returns a
logical outcome, one could argue that we still have some
amount of mixture of business logic and view handling.

• Consider for example a method withdraw in a bank
application. Such a method would normally be void, but
would now instead have to return the string success
only to indicate to JSF that the withdrawal was successful.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages (JSP) 72

JSF, Dynamic Navigation, Cont'd

• To avoid this problem we can let the withdraw method
remain void, and instead add another method, success,
that returns true only if the last transaction was successful.
faces-config.xml would then look as follows.
<navigation-rule>
 <from-view-id>/withdraw.xhtml</from-view-id>
 <navigation-case>
 <if>#{bankManager.success}</if>
 <to-view-id>/success.xhtml</to-view-id>
 </navigation-case>
</navigation-rule>

Lecture 11: JavaServer Faces (JSF), JavaServer Pages (JSP) 73

JSF, Naviation, Cont'd

• No Matching Navigation Case
– If there is an outcome that does not correspond to a

XHTML file and that has no matching navigation case,
the last page is displayed again.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages (JSP) 74

JSF, Validation Example

<h:input id="name" label="Name"

 value="#{user.name}">

 <f:validateRequired/>

</h:inputText>

<h:message for="name"/>

• The validateRequired tag checks that the text field is not

empty.

• The message tag displays the error message if the validation failed.

• It is possible to customize the error message.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages (JSP) 75

JSF, Validation Cont'd

• When the Bean Validation Framework is used it is

better not to use the JSF validation described on the

previous slide.
– If both Bean validation and JSF validations are used it

becomes necessary to maintain two sets of validators, which
means duplicated code.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages (JSP) 76

JSF, Composite Views

 JSF, like Tiles, contains a lot of support for
composite views.

 An easy way to handle composite views is to write a
template XHTML file to define the layout, see next
slide.

– The ui:insert tag defines where different
parts of the page are inserted.

– The ui:include tag defines default parts.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages (JSP) 77

JSF, Composite Views Example,
Layout Template

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:h="http://java.sun.com/jsf/html">

 <h:head>
 <title><ui:insert name="windowTitle"/></title>
 </h:head>

 <h:body>
 <ui:insert name="heading">
 <ui:include src="/default-header.xhtml"/>
 </ui:insert>

 <ui:insert name="sidebarLeft">
 <ui:include src="/default-sidebarLeft.xhtml"/>
 </ui:insert>

 <ui:insert name="content"/>
 </h:body>
</html>

Lecture 11: JavaServer Faces (JSF), JavaServer Pages (JSP) 78

JSF, Composite Views

• The views specifies which template to use and
which page parts to insert at the ui:insert
tags, see next slide..

– The ui:composition tag defines which
template to use.

– The ui:define tag defines which parts to
include.

Lecture 11: JavaServer Faces (JSF), JavaServer Pages (JSP) 79

JSF, Composite Views Example,
Layout Template

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://java.sun.com/jsf/facelets">

 <head><title>IGNORED</title></head>

 <body>
 <ui:composition template="/templates/masterLayout.xhtml">
 <ui:define name="windowTitle">
 The page title
 </ui:define>

 <ui:define name="content">
 The main content of the page
 </ui:define>
 </ui:composition>
 </body>
</html>

Java EE architecture, part one 80

JSF, Internationalization

• As a simple example, content of a web page can be
internationalized like this:
1. Load the resource bundle with the f:loadBundle tag. The

bundle is stored as a request attribute in a map:
<f:loadBundle basename="example.MyMessages"
 var="MyMessages"/>

 example.MyMessages is the name of the resource bundle
 MyMessages is the name of the map stored in the request

context.

2. Access the content of the bundle map with EL:
#{MyMessages.SomeMessageInTheBundle}

Java EE architecture, part one 81

JavaServer Faces, Flow Control

• Flow control is not handled by JSF.

Java EE architecture, part one 82

JavaServer Faces, Error Handling

• It is possible to specify different views depending
on the outcome of an operation, see slides
concerning navigation.

Java EE architecture, part one 83

Spring

• Home page,
http://www.springsource.org/

• Very common for the business layer but less
common for the presentation layer.

Java EE architecture, part one 84

Spring, Architecture

• Controller servlet like Struts and JSF.

Java EE architecture, part one 85

Spring, Architecture, Cont'd
• Based on the JavaBeans standard. All objects are

beans.

• Dependency injection, very similar to CDI.
– All beans can be configured in an xml configuration

file or with annotations.

– The beans, their relations and the initial values of their
properties are configured.

– This means that all relations between objects is already
in place when they are first used.

– It also solves the problem about initialization
parameters to singletons.

Java EE architecture, part one 86

Spring, Architecture, Cont'd

• Integrates very well with other frameworks.

• Contains no view technology but integrates easily
with a lot of others, for example Struts Tiles, plain
JSP or XSLT.

Java EE architecture, part one 87

A comparison of presentation layer
frameworks

• Struts:
Very widespread, probably because it came years
before the others. Relatively easy to use but has
grown bigger and thus more complicated.

• JSF:
Part of Java EE. Lots of improvements in version
2.0, which is notably easier to use and contains
more functionality then older versions. Has gained
a lot of popularity recently because of this.

Java EE architecture, part one 88

A comparison of presentation layer
frameworks, Cont'd

• Spring:
– Widely used, especially in the business layer.

– Quite easy to use relative to its richness.

– Integrates very easily with other frameworks (for
example Struts and JSF) so the fact that it is used in the
business layer is not an argument to use it in the
presentation layer.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88

