
Java EE architecture, part two 1

Java EE Architecture, Part Two

Java EE architecture, part two 2

Content

• Requirements on the Business layer
• Framework Independent Patterns
• Transactions
• Frameworks for the Business layer

Java EE architecture, part two 3

Requirements on the Business Layer

• Statefullness
– Should the model retain state, that is should the result

of one call still be present in the model when the next
call is made?

– State that is user independent is fine.

– User dependent state (conversational state) causes
problems since the presentation needs to associate
different instances of model objects with each user.

Java EE architecture, part two 4

Requirements on the Business Layer,
Cont'd

• When to synchronize with the database?
– One alternative is to start every call to the model by

loading model data from the database and to end it by
storing new or updated data.

– Another alternative is to cache data in the model.

– Caching improves performance, but to keep the cache
coherent introduces a lot of extra complexity.

Java EE architecture, part two 5

Requirements on the Business Layer,
Cont'd

• Transactions
– When should transactions start and stop?

– What transaction isolation should be used?

– Since the data handled by the transactions is inside the
model, the transactions as well should start and stop
inside the model. It would be very high coupling to let
presentation manage transactions.

Java EE architecture, part two 6

Requirements on the Business Layer,
Cont'd

• Error management
– What exceptions should be reported to presentation?

– Which component is responsible for logging error
messages (preferably the same as for presentation)?

– How do information about errors arrive to those
components (preferably the same way as in
presentation)?

– What information shall be logged?

Java EE architecture, part two 7

Requirements on the Business Layer,
Cont'd

• Internationalization and localization
– The model does not show anything to the user but it

delivers data and error messages that must be
internationalized.

Java EE architecture, part two 8

Requirements on the Business Layer,
Cont'd

• Interprocess communication
– Should presentation and business be in the same or

separate processes?

– A reason to use separate processes is that they can run
on separate nodes which may give better performance
and higher availability.

– Another reason is that it must be possible to call the
model directly from clients.

Java EE architecture, part two 9

Requirements on the Business Layer,
Cont'd

• Interprocess communication, Cont'd
– The first reason applies only to extremely big or

heavily loaded applications.

– The second reason can be avoided by putting a web
service in front of the model.

– Because of this and because interprocess
communication is slow and a possible source of failure
it is almost never a good idea to use different processes
for presentation and business.

Java EE architecture, part two 10

Requirements on the Business Layer,
Cont'd

• Security
– We do not have to worry about security in the business

layer if presentation and business run in the same
process and database calls are also made from that
process.

Java EE architecture, part two 11

Requirements on the Business Layer,
Cont'd

• What data shall be used for communication with
presentation?
– Not the business logic object, that would give

presentation the possibility to bypass the controller
which would lead to extremely high coupling.

– Not primitive data since that would lead to very long
and complicated method signatures.

– Some kind of data transfer objects must be used.

Java EE architecture, part two 12

Framework Independent Patterns,
Controller

• A controller is a facade for the model.

• Decouples view and model.

• Its task is to know which methods in the model to
call (and in what order) to perform the task the
user ordered.

• Its task is also to store user state (conversational
state) between user interactions if there is such
state.

Java EE architecture, part two 13

Framework Independent Patterns,
Controller, Cont'd

• The controller does not perform any work, it just
delegates to the model.

• The controller must not have any dependencies on
the presentation layer.

• It might be a good idea to start development with
one controller class. As functionality is added it
might become too big (bloated controller). Then it
is time to divide it, for example in groups of
related functionality.

Java EE architecture, part two 14

Framework Independent Patterns,
Controller, Cont'd

• The controller must have only one method per
system operation.
– Otherwise presentation will have to know the order to

call the controller methods which means it is dependent
on the model's internals.

– Presentation will also become responsible for starting
and stopping transactions if it is necessary to make
more than one method call per system operation.

Java EE architecture, part two 15

Framework Independent Patterns,
Data Transfer Object (DTO)

• The problem is how to send data between
controller and presentation.
– Sending primitive data creates very long parameter list

in the controller and fills it with get/set methods for all
that data.

– Sending the actual business logic objects couples
presentation to business.

– If operations are not performed in a single call
transactions must be handled by presentation.

• Thus, it is not a good idea to have the view retrieve data by
calling a number of getters in the controller.

Java EE architecture, part two 16

Framework Independent Patterns,
Data Transfer Object (DTO), Cont'd

• The solution is to create data container objects
(value object, vo, data transfer object, dto) without
any logic.

Java EE architecture, part two 17

Framework Independent Patterns,
Data Transfer Object (DTO), Cont'd

• This seems like a simple solution, but there is one
quite big problem. The application will become
flooded with DTOs.
– For a start there will be the need for one DTO for more

or less each entity.

– Then there will be the need for DTOs that only contain
part of an entity's data, or data from many entities.

Java EE architecture, part two 18

Framework Independent Patterns,
Data Transfer Object (DTO), Cont'd

• There are many (but no perfect) ways to handle
this:
– DTOs are not objects but interfaces with only the get

methods in the entities. The actual entities are sent to
presentation but presentation only knows about the
interface type. This way we do not have to write new
objects, but can not have DTOs that combine data from
different entities.

– DTOs are instances of java.util.Map. A drawback
is that presentation and business must agree on key
names. These might be constants in enums or
interfaces. Another drawback is that maps are not type
safe.

Java EE architecture, part two 19

Framework Independent Patterns,
Data Transfer Object (DTO), Cont'd

– If the data consists of rows from the database that shall
be presented in a table in the view, then the DTO might
be a javax.sql.rowset.CachedRowSet, which
is like a result set without database connection. This
avoids transformation of database tables to DTOs, but
might make presentation dependent on the database
design. It also makes us use plain JDBC instead of an
O/R-mapping framework.

– Let each DTO be a new, unique object. This means lots
of code but is easy to understand.

Java EE architecture, part two 20

Framework Independent Patterns,
Data Transfer Object (DTO), Cont'd

• No matter which solution is used the DTOs should
as far as possible be immutable, that is it should
not be possible to change their data.
– Variables and classes are final.

– Frees us from a lot of thread and transaction problems
since there is no risk that more than one object updates
the same DTO.

Java EE architecture, part two 21

Framework Independent Patterns,
Data Transfer Object (DTO), Cont'd

• Make a special model package for DTOs.
– Easy to see that only the DTO model package is

imported in presentation.

Java EE architecture, part two 22

Framework Independent Problems,
Database Synchronization

• Cache data in the model.
– Might be faster because the number of database calls

are reduced.

– Far more complicated since there might be problems to
keep the cache up to date and since it most certainly
introduces thread problems.

– Blocks other applications using the same data in the
database.

Java EE architecture, part two 23

Framework Independent Problems,
Database Synchronization, Cont'd

• Read from the database at the beginning of each
system operation and write to the database at the
end of the same operation.
– The only realistic choice because of the drawbacks with

the previous alternative.

– Causes lots of calls to the integration layer.

– Is slower, if that is a problem we must solve
performance problems with a good design of the
database and the database calls. For example caching
can be handled by the database itself or by the O/R-
mapping framework.

Java EE architecture, part two 24

Transactions

• A transaction is a group of operations that are:
– Atomic, either all or no of the operations are

performed.

– Consistent, The data is left in a valid state.

– Isolated, transactions do not affect each other even if
they are concurrent.

– Durable, once a transaction has finished the data is
saved, no matter what happens afterwards.

– These four properties are referred to as ACID.

Java EE architecture, part two 25

Transactions, Cont'd

• There are two operations that can end a
transaction:
– Commit, all changes made during the transaction are

saved permanently.

– Rollback, All changes made during the transaction are
unmade and the data is left in the same state it had
before the transaction started.

Java EE architecture, part two 26

Transactions, Cont'd

• Servers are multi threaded.

• Transactions is the mechanism to solve threading
problems (for example race conditions).
– Never set locks or use synchronized in the business

layer.

– Transactions solve race conditions in the database and
entity objects loaded from the database, not for instance
variables in non-entity objects in the business layer
(like for example the controller).

Java EE architecture, part two 27

Transactions, Cont'd

• Transactions must leave objects in a consistent
state. If a method fails, for example with an
exception, the transaction must be rolled back.
– The same transaction must be used in all methods

involved in the operation so that all entities are left in a
consistent state.

– Everything that was updated during the transaction
must be undone. Some state will be rolled back by the
transaction manager, exactly what differs between
transaction managers.

– What is not undone by the transaction manager must be
undone “manually”, in the code.

Java EE architecture, part two 28

When do we need transactions?

• Do we need transactions when we read data?
When we write data? When we read-update-write
data?
– The answer is that we always need a transaction when

we access the database. Otherwise we will access the
data without caring about locks and that will cause race
conditions.

Java EE architecture, part two 29

When do we need transactions?,
Cont'd

– However, it is only at read-update-write that we need
transactions that span an entire system operation.

– Otherwise we can do with transactions that only live
during access to the database.

Java EE architecture, part two 30

Non Transactional Resources

• Some resources (for example an ATM) can not
participate in a transaction.

• Such resources must always be handled last in
transactions because they can not be rolled back.

Java EE architecture, part two 31

Always use declarative transactions

• Most frameworks allows to handle transactions
either declarative or programmatically.

• Always use declarative transaction management
since that hands over control to the framework.
– It is far to easy to forget transaction management or to

start/stop transactions in the wrong place if we code
transaction handling manually.

– Programmatic transaction handling causes low
cohesion in the business logic code. Its task is not to
handle transactions.

Java EE architecture, part two 32

Use Cases Spanning More Than One
Transaction

• Suppose a user reads some data, updates it and
then saves the updated data.

• With a web based user interface this means one
HTTP request to read the data and another, later,
request to write the updates.

• With Java EE it is not possible to have
transactions live longer than an HTTP request.
– Even if it had been possible it would not bee a good

solution since that long-lived transactions would cause
performance problems.

Java EE architecture, part two 33

Use Cases Spanning More Than One
Transaction, Cont'd

• The scenario in the previous slide introduces a
race condition since the following might happen.
1. User 1 reads some data.

2. User 2 reads the same data.

3. User 1 updates the data and saves it.

4. User 2 updates the data and saves it. The updates made
by user 1 are now lost.

Java EE architecture, part two 34

Use Cases Spanning More Than One
Transaction, Cont'd

• The solution to this problem is to associate a version
number with the data. The version number should be
stored both on the server and the client.
1. When the data shall be saved the client sends both data and

version number to the server.

2. Before the data is saved, the server checks if the current
version number is equal to the number sent by the client.

3. If the numbers are equal, the operation succeeds. The data is
saved and the version number incremented.

4. If the numbers are not equal the operation fails and nothing
is saved. In this case the user should get information that the
used data is stale and perhaps also see both the data used and
the current state of the data.

Java EE architecture, part two 35

Frameworks for the Business Layer

• Spring (VMware)

• Enterprise JavaBeans, EJB (Oracle, part of Java
EE)

Java EE architecture, part two 36

Spring, Architecture

• Dependency injection works the same way in
business as in presentation.
– Very similar to CDI.

• Both annotations and xml config files can be used
for configuration.
– Xml files are easier to edit for non-programmers and do

not require recompilation.

– Annotations make the association between the
configuration and the configured properties much
clearer as they are placed next to each other.

Java EE architecture, part two 37

Spring, Transactions
• Enable transactions by adding the line
<tx:annotation-driven/> in the
applicationContext.xml configuration
file.

• Put a @Transactional annotation before each
class or method that shall use transactions.
– It is possible to use the annotation above to specify

isolation level, how transactions propagate between
method calls, time-out period, if the transaction is read-
only and for which exceptions the transaction shall be
rolled back.

Java EE architecture, part two 38

Spring, Transactions, Cont'd

• Spring's transaction handling does not involve
instance variables in non-entity objects. This
means that race conditions can occur in for
example the controller.
– The best way to solve this is to avoid writing to such

variables.

Java EE architecture, part two 39

Spring, Transactions, Cont'd

– Another way is to use stateful controllers, but that
introduces the problem to associate different controllers
with each user.

– Do not use locks or synchronized since that may
give performance problems.

Java EE architecture, part two 40

Spring, Transactions, Cont'd

• Remember that transactions must leave objects in
a consistent state. If a method fails, for example
with an exception, the transaction must be rolled
back.
– Spring's default behavior is to roll back transactions if

unchecked exceptions occur. Checked exceptions must
be explicitly specified to cause roll backs.

– When Spring rolls back a transaction it does not reset
instance variables in non-entity objects, e.g. the
controller. This must be done manually.

Java EE architecture, part two 41

Spring, Interprocess Communication

• When using spring the business layer must be in
the same process as the presentation layer.

• Thus there can not be any interprocess
communication.

Java EE architecture, part two 42

Spring, Security

• Since the business layer can only be called from
the presentation layer, not directly from a remote
client, we do not need to worry about security in
the business layer.

Java EE architecture, part two 43

EJB, Architecture

• Dependency injection managed by CDI.

• Both annotations and xml config files can be used
for configuration.
– Xml files are easier to edit for non-programmers and do

not require recompilation.

– Annotations make the association between the
configuration and the configured properties much
clearer as they are placed next to each other.

Java EE architecture, part two 44

EJB, Architecture, Cont'd

• Makes difference between EJBs and ordinary
objects.
– Only EJBs are managed and can be configured.

Java EE architecture, part two 45

EJB, Architecture, Cont'd

• Each EJB consists of an interface defining the
business methods and a class implementing this
interface.
– With EJB, as with Spring, this is not mandatory but an

advise.

– The interface must be annotated @Remote if it is
accessed from another process and @Local if it is
accessed from a client within the same process.

– The class must be annotated @Stateless if it has no
client specific state and @Stateful if it has.

Java EE architecture, part two 46

EJB, Architecture, Cont'd

• At the first glance EJB might seem quite similar to
spring but it is much more powerful and
heavyweight.
– Remote creation and invocation of objects.

– Asynchronous method calls.

– Resource management of objects (pooling, storing to
disc).

– Objects can have conversational state.

– Manages security.

Java EE architecture, part two 47

EJB, Transactions

• EJBs are transactional by default.
– The default is that a transaction starts when a method

begins and commits when the method ends.

• Transaction behavior can be modified with the
@TransactionAttribute annotation.

– The only thing that can be modified is transaction
propagation.

Java EE architecture, part two 48

EJB, Transactions, Cont'd

• The specification does not say anything about how
to specify transaction isolation, timeout period or
if a transaction is read-only.

Java EE architecture, part two 49

EJB, Transactions, Cont'd

• The EJB container rolls back transactions
automatically if exceptions are thrown by the JRE
or the EJB container, but not when the application
throws exceptions.
– In that case the application must cause the transaction

to roll back by calling setRollbackOnly().

– When EJB rolls back a transaction it does not reset
instance variables in EJBs. This must be done
manually.

Java EE architecture, part two 50

EJB, Interprocess Communication

• EJBs can be accessed either locally or remotely.
– If accessed remotely the interface shall be annotated
@Remote, if accessed locally it shall be annotated
@Local.

– When accessed locally, parameters are object
references (as usual). When accessed remotely the
objects themselves are copied and sent to the called
method.

Java EE architecture, part two 51

EJB, Interprocess Communication,
Cont'd

• No matter how they are accessed, EJBs can not be
created with the new operator.

• They must be declared with the @EJB annotation
and will be injected by the servlet container:
– @EJB
MyEjb theEjbInstance;

– The above works only in a servlet container, it is a bit
more complicated in a standalone client.

Java EE architecture, part two 52

EJB, Interprocess Communication,
Cont'd

• For stateless beans the calls to the EJB might be
routed to whatever EJB instance in the containers
EJB instance pool.
– The container will only route one call at a time to each

instance, so there is no need to worry about thread
problems.

Java EE architecture, part two 53

EJB, Interprocess Communication,
Cont'd

• For statefull beans each call is routed to the same
instance.

• Concurrent access to bean instances is forbidden.
– It is up to the client to avoid calling a bean before the

previous call has finished.

– If clients make concurrent calls to statefull beans the
container will either throw an exception or serialize the
calls.

Java EE architecture, part two 54

EJB, Interprocess Communication,
Cont'd

• EJBs can also be called asynchronously by clients
using the Java Message Service (JMS) api.

• EJBs can also be used as web services endpoints.

Java EE architecture, part two 55

EJB, Security

• The @RolesAllowed annotation can be used on
each EJB method (or class) to specify which roles
a user may be in to access the EJB.
– If there is no such annotation then everyone is allowed

to access the EJB.

– The annotation only works if the EJB is called by a
client that can authenticate the users, for example a web
container. It does not work with for example clients that
are standalone Java programs.

Java EE architecture, part two 56

EJB, Security, Cont'd

• If the EJB is accessed locally it is enough to check
roles in the web container.
– It may still be a good idea to use the
@RolesAllowed annotation so that the EJB is not
called by mistake from code executed by users not in
the correct role.

Java EE architecture, part two 57

A Third Option, Our Own Very
Lightweight Framework Instead of

EJB or Spring
• The only reason to use EJB or Spring is often that

we need transaction management.
– Both of them are quite big and introduces extra

complexity, which in this case is unnecessary.

Java EE architecture, part two 58

Our Own Very Lightweight
Framework, Cont'd

• We could instead write our own very small
transaction aware framework. It will consist of just
one component, an interceptor that manages
transaction boundaries.
– CDI interceptors are described in lecture 3.

– There is an outline of a transaction interceptor in the

CDI manual,
http://docs.jboss.org/weld/reference/
1.0.0/en-US/html/interceptors.html

Java EE architecture, part two 59

Evaluation of Our Own Very
Lightweight Framework

• Advantages compared to Spring and EJB.
– Less complexity, easier to start and configure.

– We have full control over the functionality.

– Can run on any server with CDI support.

• Disadvantages compared to Spring and EJB.
– New code means new bugs, which can be very tricky to fix

since this is multi-threaded code.

– We must write all functionality ourselves instead of using
existing code.

• Regarding execution speed there is probably not much
difference between different frameworks.

Java EE architecture, part two 60

A Comparison of Spring and EJB

• Advantages of Spring compared to EJB.
– Integrates easily with more other frameworks.

– Has more configurable properties.

– Covers also the presentation and integration layers,
even though it has less functionality and is seldom used
for those layers.

– Can run in the servlet container, more comments on this
below.

Java EE architecture, part two 61

A Comparison of Spring and EJB,
Cont'd

• Advantages of EJB compared to Spring.
– Contains more functionality for the business layer.

– Easier to use.

– Has easy-to-use development environment (Netbeans)
and server (GlassFish).

Java EE architecture, part two 62

Servers for Spring and EJB

• The Spring container is far more lightweight than
the EJB container.

• EJB requires a Java EE application server while
Spring does not require any server at all.
– We still need a servlet container for the presentation

layer.

Java EE architecture, part two 63

Servers for Spring and EJB, Cont'd

• To step up from a servlet server to a Java EE
server has traditionally been very big step in
complexity, learning cost and server hosting cost.

• Starting from Java EE 6, there are specifications
for Java EE Web Profile which is a subset of the
Java EE technologies, and includes EJB Lite
which is a subset of the EJB specification.
– We can very often do fine with the web profile.

Java EE architecture, part two 64

Servers for Spring and EJB, Cont'd

• The Java EE web profile, even though more
complex than just the servlet container, reduces
the overhead of a Java EE application server a lot.

• Examples of Java EE web profile servers are
GlassFish, SIwpas, Resin and JBoss.

• An alternative to a web profile server is to run EJB
in a servlet container, using for example OpenEJB
from Apache. This way we can use a plain servlet
server like Tomcat or Jetty.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

