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Homework 2

due 30/1-2012

Task 1 : Machine Epsilon

The following code can be used in MATLAB to determine the machine accuracy ε.

numprec=double(1.0); % Define 1.0 with double precision

numprec=single(1.0); % Define 1.0 with single precision

while(1 < 1 + numprec)

numprec=numprec*0.5;

end

numprec=numprec*2

a) Determine ε using the above program, both for single and double precision.

Note: The implementation of single/double precision arithmetics differs between versions
of MATLAB. If runs with both single and double precision give the same answer, please try
another computer/version of MATLAB if possible. Otherwise, write down your MATLAB
version and move on. The above code is working properly on release 2009a on Linux, for
instance.

b) Give a definition of the machine accuracy based on the code above. Try to use words and not
mathematical expressions.

Task 2 : Round-off Error

In this exercise, the errors involved in numerically calculating derivatives are examined. For exam-
ple, the derivative of a function f can be approximated with central differences:

f ′num(x) =
f(x+ ∆x)− f(x−∆x)

2∆x
(1)

a) Determine the relative error ε of the derivative of the function f(x) =
1

1 + x
+ x when using

the central difference approximation defined above:

ε =
|f ′(x)− f ′num(x)|

|f ′(x)|

at the location x = 2. In the calculation use the stepsizes ∆x = 10−20 . . . 100. Use both single
and double precision for the calculation, and present the results in a double logarithmic plot
(ε vs. ∆x). In MATLAB double logarithmic plots are obtained by the function loglog().
Remember that all variables used here should be defined as double or single precision as in
Task 1.
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b) The general formula for the propagation error, for a function h(xj) with n variables xj is
given by:

εh =
n∑

j=1

∣∣∣∣xjh ∂h

∂xj

∣∣∣∣ εxj ,

where εxj is the relative error. Based on that, show that the propagation error εh, when
adding two numbers x and y, is given by:

εh =
|x|
|x+ y|

εx +
|y|
|x+ y|

εy

where εx and εy are the corresponding errors for each number.

c) Show that the relative discretisation error of using equation (1) is given by:

εd =
∆x2|f ′′′(x)|

6|f ′(x)|

(Hint: Taylor expansion)
and the propagation error is given by (round-off error):

εr =
ε · |f(x)|
∆x|f ′(x)|

(Hint: Use equation from part b)
with the machine accuracy ε. Find the value of ∆x that minimises the total error:

εg = εr + εd

Plot the results for εr, εd, εg together with the results from part a).

Task 3 : Integration of differential equation

In this problem the stability and convergence order of some simple integration methods is exam-
ined. The first order, ordinary, linear differential equation with constant coefficient is considered
(Dahlquist equation)

du

dt
= A(u) = λu , u(0) = 1

where 0 ≤ t ≤ T and λ = const ∈ C. The time interval [0, T ] is split into N parts with the same
length ∆t. The following integration methods should be used:

• explicit Euler
un+1 − un = ∆tA(un)

• implicit Euler
un+1 − un = ∆tA(un+1)
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• Crank-Nicolson

un+1 − un =
1

2
∆t(A(un+1) +A(un))

where n = 0, ..., N . Calculate until T = 16 and use the discretization with N = 20, 40, 50, 100, 200
steps.

a) Derive the analytical solution uex.

b) For λ = −0.2 + i, calculate the numerical solution with the given discretisations N and
the three integration methods. Plot the real part of the analytical solution and the three
numerical solutions for each value of N .

c) Discuss the usefulness and accuracy of the methods.

d) For λ = −0.2 + 0.1i, do as in b) and calculate the numerical and analytical solutions. Show
also the error |uex−unum| at the time t = 16 as a function of N in a double logarithmic plot.
Explain the differences between the methods.

Note (for all tasks): Together with your solutions, hand in the MATLAB-codes that you have
written yourself.


