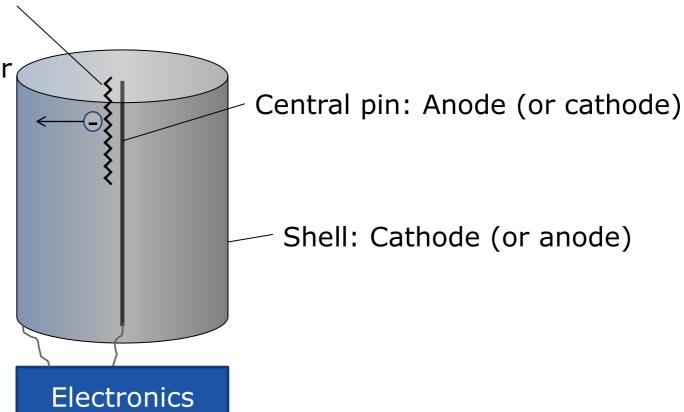


Nuclear Fuel Cycle 2011

Lecture 5: Detection of Ionizing, Radiochemistry

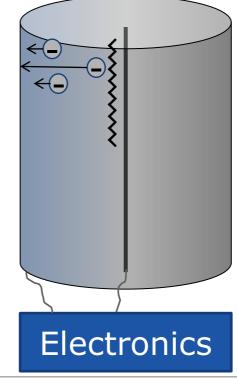

Principle for many of detectors (GM counters for instance)

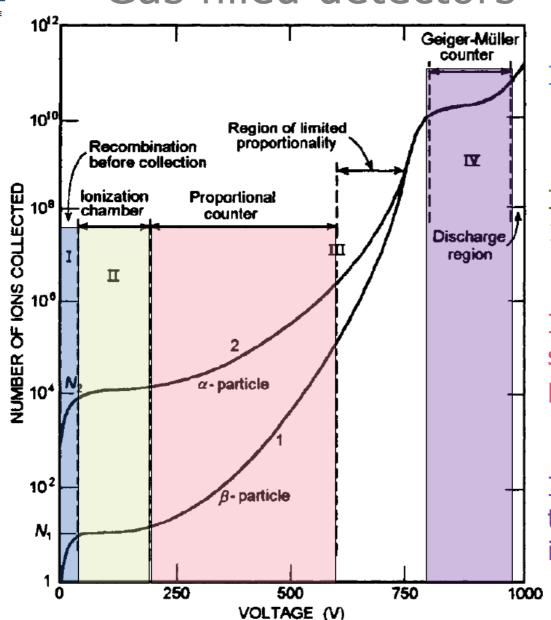
Radiation enters chamber

Ionizes gas in chamber

Ions travel towards cathode/anode

=> Currency detected by electronics


- Energy of α -particle is about 4 MeV
- 100 000 ionizations
- The charge = $10^5 \times 1.602 \times 10^{-19} \text{ C} \sim 10^{-14} \text{ A}$
 - The signal needs to be amplified greatly


If the potential between anode and cathode is large, the created ion will accelerate and initiate

secondary ions

=> Stronger signal

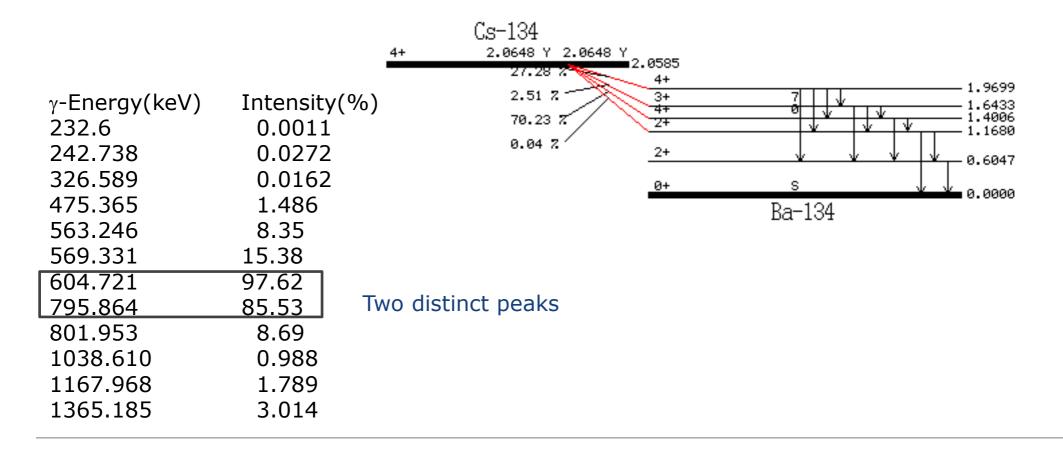
I: ions and electrons recombine before reaching electrodes

II: ionization chamber:
1 ionization = 1 signal

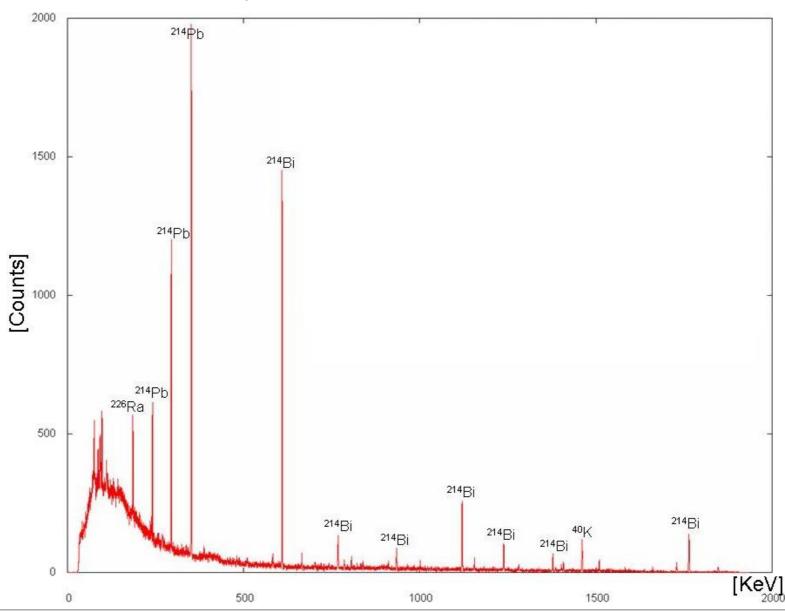
III: <u>proportional region:</u> signal is proportional to primary ionizations

IV: <u>Geiger-Müller counter:</u> tube is discharged by every ionization

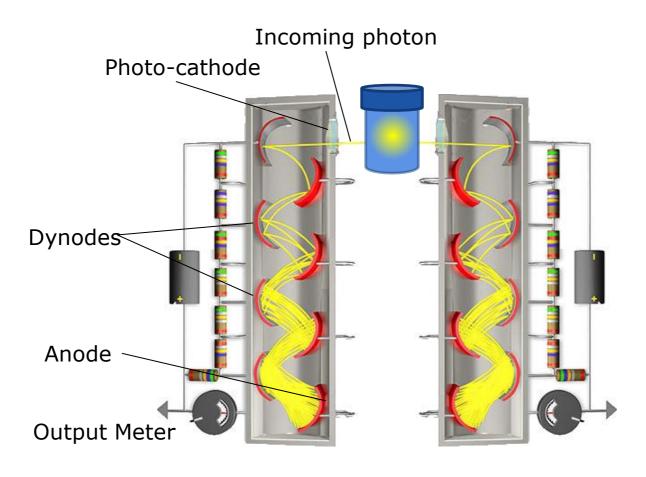
γ-radiation

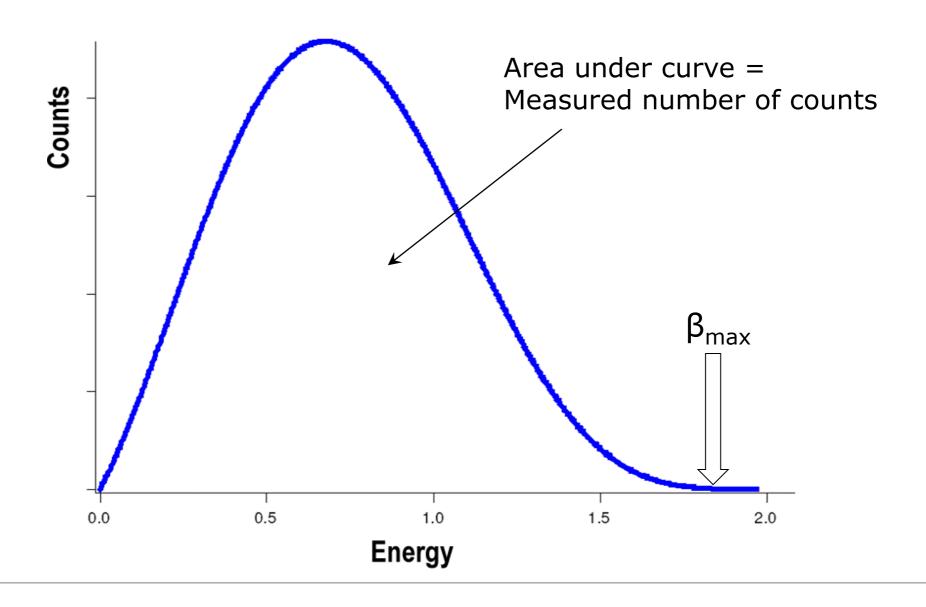

- Gamma radiation has much longer range (lower LET) and will travel through air-filled detector with very few interactions.
- Instead: Use denser material in detector:
 Semiconductor
- When ionizing radiation interacts with the semiconductor an electron is excited to the conduction band.
 The electron then travels towards the anode.
- Gamma spectrometer (or Multichannel analyzer)

γ-counter


Almost every radioactive decay has quantified γ

Cs-134
$$\rightarrow$$
 Ba-134 + β


Example γ -spectrum (mineral sample)


Liquid scintillation

α/β radiation is absorbed by scintillation liquid The energy is given back as light

β-spectrum

Efficiency of a detector

- Some of the activity will never enter detector due to geometry reasons. This has to be considered but is NOT the efficiency
- Some radiation will not interact with detector

$$Efficiency = \frac{What is detected}{What enters the detector}$$

NOTE!

Bq is absolute activity. cps (counts per second) is measured value!

Example

A portable detector is used to measure the activity of a sample. The surface area of the detector is 4 cm² and the efficiency is 2 %. At a distance of 2m from the sample the signal is 10 counts per second.

What is the activity of the sample?

 4 cm^2

200 cm

Area of sphere = $4\pi R^2 = 502654$ cm²

Fraction that enters detector= $4/502654=8\times10^{-6}$

$$A = \frac{10}{0.02 \times 8 \times 10^{-6}} = 62.8 MBq$$

Radiochemistry I

The use of radioactive isotopes (radionuclides) as tracers to follow chemical processes

Why are radionuclides used?

- The exact same element is used, it has the same chemical and physical properties
- Radionuclides are independent of pressure, temperature, chemical and physical state
- Radionuclides are easy to detect and are measured with high precision
- Does not affect the system (if activity is not too high)
- > No interference of other elements
- Cheap (compared with for instance ICP-MS)

With radionuclides low amounts can be detected

$$A = N\lambda \qquad \Longleftrightarrow \qquad m = A \frac{M}{\ln 2 N_A} t_{1/2}$$

 Assume that 1 Bq can be measured with sufficient accuracy:

t _{1/2}	Number of atoms	mol
1 h	5 200	8.64×10^{-21}
1 d	125 000	2.08×10^{-19}
1 y	4.55×10^{7}	7.55×10^{-17}
10 ⁵ y	4.55×10^{12}	7.55×10^{-12}
10 ⁹ y	4.55×10^{16}	7.55×10^{-8}

Issues to keep in mind when working with very low concentrations

- Adsorption to walls of vessel
- Formation of radiocolloids
- Equilibrium reactions $mUO_2^{2+} + p H_2O \Leftrightarrow (UO_2)_m (OH)_p^{2m-p} + p H_2^{+s}$ at mM U-conc. 50% is $(UO_2)_m (OH)_p^{2m-p}$ at μ M U-conc. $(UO_2)_m (OH)_p^{2m-p}$ is negligible
- Precipitation $La(OH)_3(s) \leftrightarrows La^{3+} + 3 OH^- K_{s0} = 10^{-19} M^4$

At [OH-]= 1 mM does 100 MBq/l 130La³⁺ not exceed solubility product

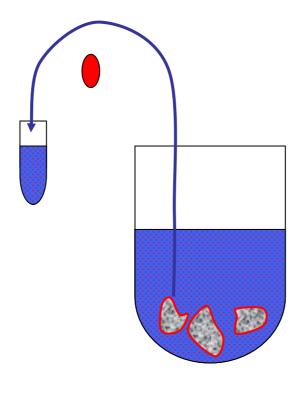
Working with radionuclides Carrier

A non-radioactive carrier is usually added to a system to ensure normal chemical behavior

Isotopic exchange

$$AX + BX^* \Leftrightarrow AX^* + BX$$

is required


Working with radionuclides ALARA

- As
- Low
- •As
- Reasonable
- Achievable

Example continued

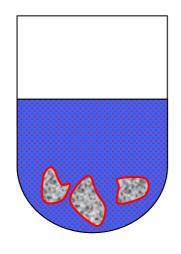
Determination of Sr-distribution between granite and solution

Water

Add granite

Add tracer (Sr-90)

Wait for equilibrium


Take sample from solution

Sr-90 is a β --emitter with β_{max} at 550 keV $t_{1/2} = 28.5 \text{ y}$

Example continued

Determination of distribution of cation between granite and solution

To be able to detect the radionuclide, a reasonable concentration of radionuclide would be very low (nM or lower, depending on $t_{1/2}$)

⇒ Very low concentrations: any sorption to glass wall or other loss of radionuclide would have large impact

Adding 10⁶ times more radionuclide to obtain a reasonable concentration would cause significant water radiolysis which would change the system

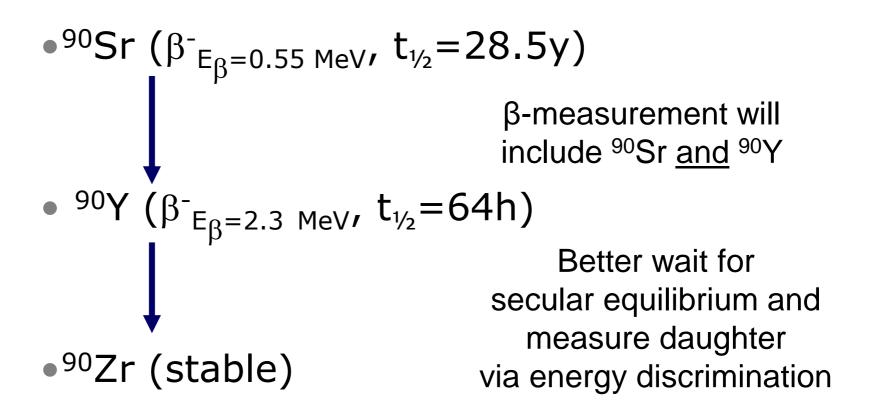
Example continued

Carrier

- We need to add a carrier to our radioactive solution to ensure normal chemical behaviour and obtain reasonable concentrations.
- Isotopic exchange

$$\bullet$$
 AX + BX* \Leftrightarrow AX* + BX

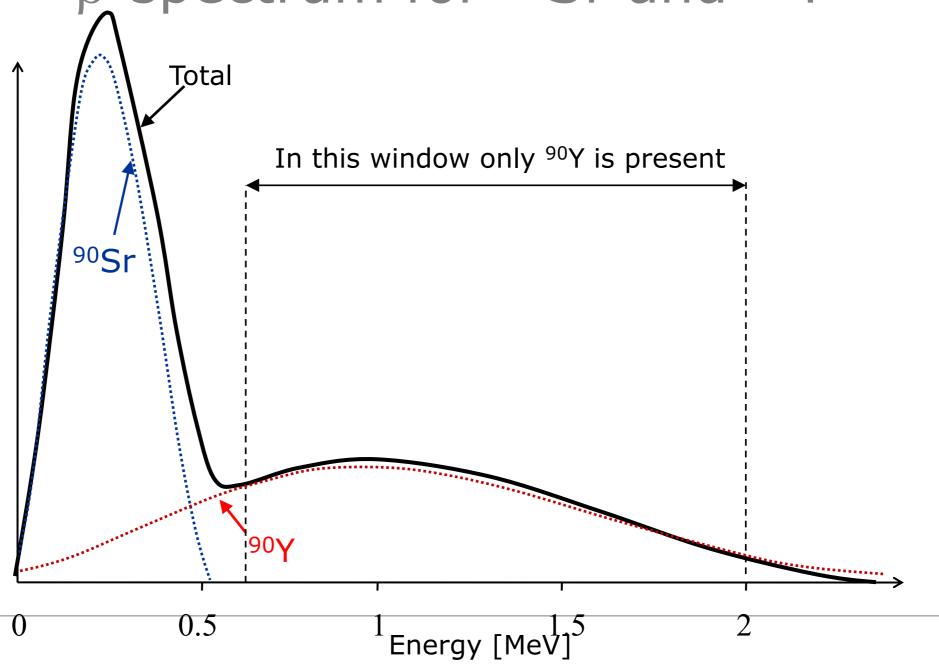
Granite-Sr + 90 Sr(aq) \Leftrightarrow Granite- 90 Sr + Sr(aq)



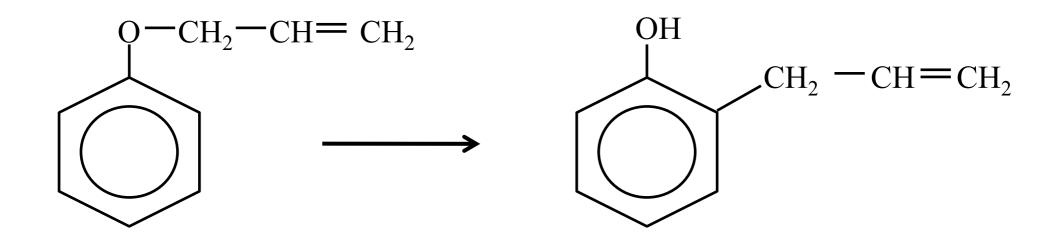
Working with radionuclides Selecting radionuclide

- Has sufficient $t_{1/2}$ for the process to be studied to take place
- Same oxidation state as carrier (isotopic exchange)
- When very low activities are used the background has to be carefully attended
- Examine the nature of any radioactive daughters

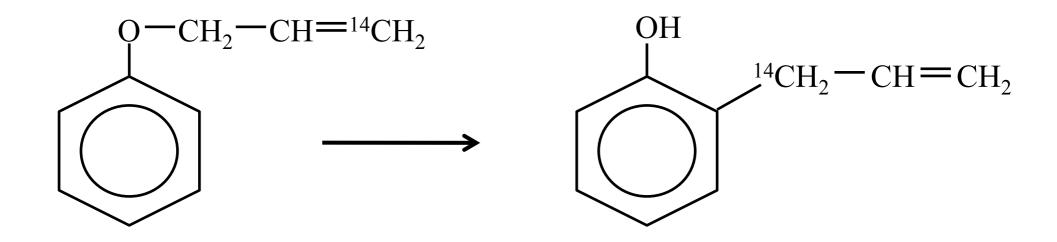
Working with radionuclides Be careful with daughters



At secular equilibrium $A_{Sr-90} = A_{Y-90}$


Intensity [a.u.]

β-spectrum for ⁹⁰Sr and ⁹⁰Y



Determine reaction mechanisms -For instance, the Claisen allyl rearrangement

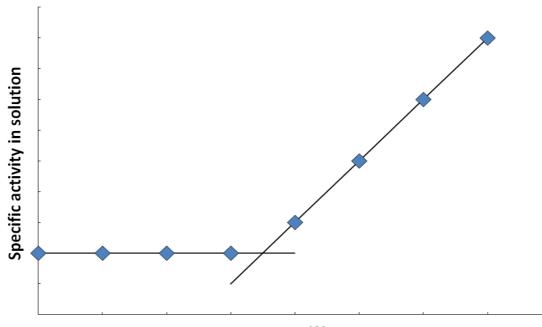
Determine reaction mechanisms -For instance, the Claisen allyl rearrangement

 From decomposition products the mechanism can be determined

Using isotope exchange rates to determine characteristics of a compound

$$H^{35}Cl$$
 + Cl

- The rate of exchanging the CI at the
- orto and para positions differs


Radiometric analysis Radiometric titration

Two phase titration in the presence of radionuclide

For instance determine Ag⁺ concentration in a solution

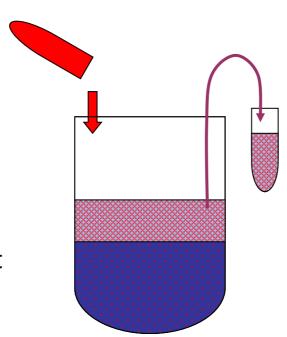
$$Ag^{+} + {}^{129}I^{-} \rightarrow Ag^{129}I(s)$$

Add ¹²⁹I⁻ and monitor activity in solution

Radiometric analysis Radiometric titration

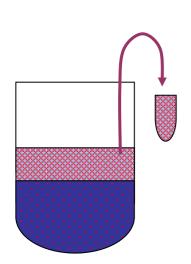
- Very low concentrations can be detected
- Used as calibration for other instrumental methods

Isotope dilution


- Used when quantitative separation of one compound is not possible
- Qualitative separation is needed, though

System with element of unknown mass w_u

Add known weight (w₀) RN (same element)


Selectively separate element for instance via extraction

Take sample and measure activity and mass (Specific activity, S_m)

Isotope dilution

The specific activity is the same in the whole system.

$$S_m = S_{system} = \frac{\text{Total activity}}{\text{Total weight}} = \frac{w_0 S_0}{w_u + w_0}$$

And the unknown weight can be calculated from

Take sample and measure activity and mass (Specific activity, S_m)

$$w_u = \left(\frac{S_0}{S_m} - 1\right) w_0$$

Isotope dilution Applications

Determine

- The naphtalene concentration in tar
- Fatty acids in mixtures of natural fat
- Amino acids in biological material

Activation Analysis

- By irradiating a sample with neutrons, a small amount of the atoms in the sample will take up a neutron and become radioactive.
- The sample has been "activated"

Neutron Activation Analysis Equation

Consider a general nuclear reaction:

$$A + x \rightarrow B + y$$

A, B are elements, x and y are elementar particles.

The production of N_B can be expressed as

$$\frac{dN_B}{dt} = \Phi_x \ \sigma \ N_A$$

- Φ, Particle flux [neutron/cm²,s]
- σ, Cross-section for accepting particles [barn]
 (1 barn=10⁻²⁴ cm²/neutron)
- N_A, Number of atoms A

ASSUMPTIONS:

- -Flux and energy of particles constant through the target.
- $-N_A$ is constant (an insignificant amount is transmuted).
- $-\sigma$ is small (so that flux & energy remain constant).

Neutron Activation Analysis Equation

$$A + x \rightarrow B + y$$

$$\frac{dN_{B}}{dt} = \Phi_{x} \sigma N_{A}$$

When the nuclide produced is radioactive, its decay has to be taken into account.

$$\frac{dN_{B}}{dt} = (\Phi_{x} \sigma N_{A}) - \lambda N_{B}$$

Integrate between t=0 (N_B=0) and t=t

$$N_{t} = \frac{\Phi_{x} \sigma N_{A}}{\lambda} \left(1 - e^{-\lambda t} \right)$$

or writing it as activity $(A = N \lambda)$:

$$A_t = \Phi_x s N_A (1-e^{-\lambda t})$$

Neutron Activation Analysis Equation

$$A_{t} = \Phi_{x} \sigma N_{A} \left(1 - e^{-\lambda \lambda} \right)$$

The produced radionuclide will decay and we have to account for the activity loss:

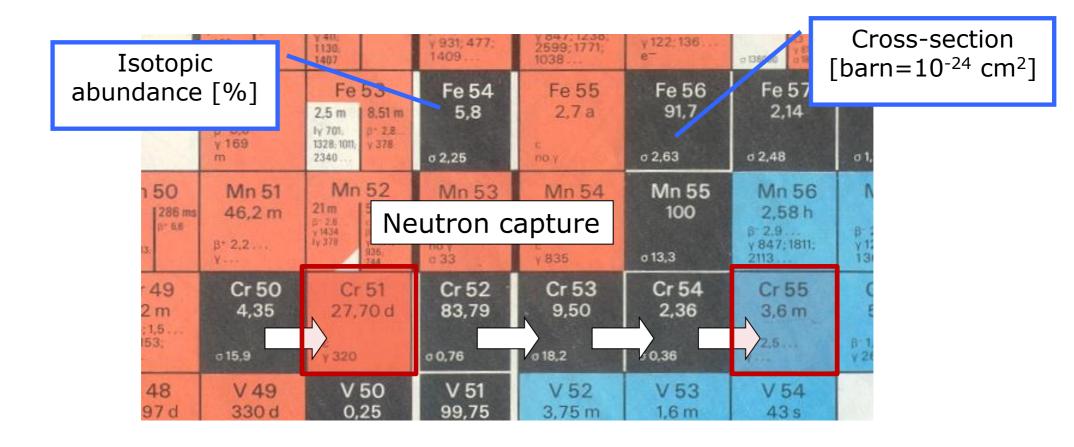
$$A_{t,t'} = A_t e^{-\lambda t'}$$

We get

$$A = \Phi \sigma N_A (1-e^{-\lambda t_{irr}}) e^{-\lambda t_{cool}}$$

- 5 g. Chrome is irradiated for 3 hours in a neutron flux of 10^{13} n/cm²,s.
- What is the activity 48 hours after the irradiation?

$$A = \Phi \sigma N_A (1-e^{-\lambda t_{irr}}) e^{-\lambda t_{cool}}$$


$$\Phi = 10^{13} \text{ n/cm}^2,\text{s}$$

$$\sigma$$
 = ?
 N = ? (total amount Cr=5/52*6*10²²)
 What is the amount of each isotope of Cr?

Segré or http://atom.kaeri.re.kr/ton/

- 5 g. Chrome is irradiated for 3 hours in a neutron flux of 10¹³ n/cm²,s.
- What is the activity 48 hours after the irradiation?

- 5 g. Chrome is irradiated for 3 hours in a neutron flux of 10¹³ n/cm²,s.
- What is the activity 48 hours after the irradiation?

$$A = \Phi \sigma N_A (1-e^{-\lambda t_{irr}}) e^{-\lambda t_{cool}}$$

Stable Isotopes	Cr-50	Cr-52	Cr-53	Cr-54
Isotopic abundance [%]	4.35	83.79	9.5	2.36
t _{1/2} of neutron activated product	27.7 d	stable	stable	3.5 min
Cross section [barn]	15.9	0.76	18.2	0.36

Only Cr-51 will be radioactive after 48 hours

- 5 g. Chrome is irradiated for 3 hours in a neutron flux of 10¹³ n/cm²,s.
- What is the activity 48 hours after the irradiation?

$$A = \Phi \sigma N_A (1-e^{-\lambda t_{irr}}) e^{-\lambda t_{cool}}$$

$$\Phi = 10^{13} \text{ n/cm}^2, s \\ \sigma = 15.9 * 10^{-24} \text{ cm}^2/\text{n} \\ N = 5 / 52 * 6*10^{23} * 0.0435 = 2.5*10^{21} \\ \lambda = \text{ln 2} / (27.7*24*3600) = 2.9*10^{-7} \text{ s}^{-1} \\ t_{\text{irr}} = 3*3600 = 10 \ 800 \text{ s} \\ t_{\text{cool}} = 48*3600 = 172 \ 800 \text{ s} \\ \end{array}$$

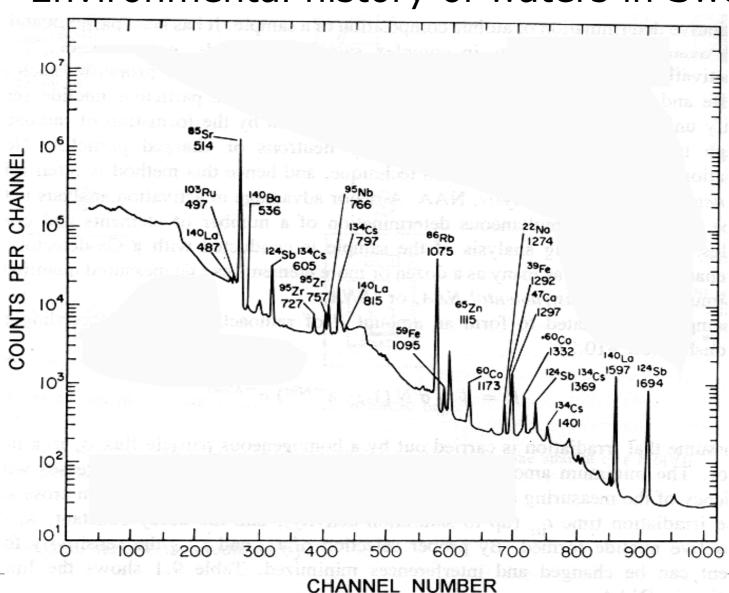
$$A = 1.2 GBq$$

Advantages with NAA

- Highly sensitive
- Nondestructive
- Determination of elements in complex samples;

- Environmental samples
- Mineral samples
- Archeological samples

Example


Environmental history of waters in Sweden

- Mussels were collected from rivers and lakes in Sweden.
 Mussels build shell thicker each year;
 The composition of the shell reflects the water chemistry.
- Shells were sliced.
- 3. Sent to neutron irradiation source.
- 4. Sample was measured directly at arrival from reactor (short lived nuclides dominate spectrum).
- 5. Sample was measured 2 weeks after irradiation (short lived nuclides not present anymore).
- 6. Evaluation of the spectra.

Example

Environmental history of waters in Sweden

