Homework 3

Finite Differences and Absolut Stability

due 6/2-2012

Task 1: Finite Difference Scheme

Find the highest order approximation possible of the first derivative based on the grid values u_{i-1}, u_{i}, u_{i+1} and u_{i+2}. Assume equidistant grid spacing Δx.

$$
\begin{equation*}
\left.\frac{\partial u}{\partial x}\right|_{x=x_{i}} \approx f\left(u_{i-1}, u_{i}, u_{i+1}, u_{i+2}\right) \tag{1}
\end{equation*}
$$

a) Give the approximation for the derivative
b) What is the leading error term? Of what order is the scheme?
c) Implement this derivative in a similar way as in Task 2 of Homework 2 and assess numerically the order of its accuracy.

Task 2 : Stability criteria

The range of absolute stability of the Runge-Kutta $4^{\text {th }}$-order method is studied. This method for an initial value problem of the form $\frac{\mathrm{d} u}{\mathrm{~d} t}=f(u, t), u\left(t_{0}\right)=u_{0}$ is

$$
\begin{align*}
u^{n+1} & =u^{n}+\frac{\Delta t}{6}\left(f^{n}+2 k_{1}+2 k_{2}+k_{3}\right) \tag{2}\\
t^{n} & =n \Delta t \tag{3}
\end{align*}
$$

where

$$
\begin{align*}
f^{n} & =f\left(u^{n}, t^{n}\right) \tag{4}\\
k_{1} & =f\left(u_{1}, t^{n+\frac{1}{2}}\right), u_{1}=u^{n}+\frac{\Delta t}{2} f^{n}, t^{n+\frac{1}{2}}=t^{n}+\frac{\Delta t}{2} \tag{5}\\
k_{2} & =f\left(u_{2}, t^{n+\frac{1}{2}}\right), u_{2}=u^{n}+\frac{\Delta t}{2} k_{1} \tag{6}\\
k_{3} & =f\left(u_{3}, t^{n+1}\right), u_{3}=u^{n}+\Delta t k_{2} \tag{7}
\end{align*}
$$

Consider a simple linear test equation (Dahlquist equation):

$$
\begin{equation*}
\frac{\mathrm{d} u}{\mathrm{~d} t}=\lambda u . \tag{8}
\end{equation*}
$$

Show that u^{n+1} can be written as a function of u^{n} and $z=\Delta t \lambda$ as follows

$$
\begin{equation*}
u^{n+1}=u^{n}\left(1+z+\frac{z^{2}}{2}+\frac{z^{3}}{6}+\frac{z^{4}}{24}\right) . \tag{9}
\end{equation*}
$$

The absolute stability criterion is

$$
\begin{equation*}
|G(z)|=\left|\frac{u^{n+1}}{u^{n}}\right| \leq 1 \tag{10}
\end{equation*}
$$

Draw the region that corresponds to equation (10) on the complex z-plane (Hint: The curve $|G(z)|=1$ cuts the imaginary axis at ± 2.83).

Task 3: The modified wavenumber

On an equidistant grid, the finite-difference derivative of a Fourier mode $e^{i k x}$ can be found by multiplying the function value on each node with the so called modified wavenumber $\tilde{k}(k)$.

To better understand that concept, consider a periodic function

$$
\begin{equation*}
f(x): \mathbb{R} \rightarrow \mathbb{C}, f(x+2 \pi)=f(x) \quad \forall x \tag{11}
\end{equation*}
$$

Let f be the discrete representation of function $f(x)$ on an equidistant grid where $x_{j}=j \Delta x, \Delta x=$ $2 \pi / \bar{N}, j=0,1, \ldots, N-1$ with $N=20$,

$$
\begin{equation*}
\underline{f}=\left[f_{0}, f_{1}, \ldots, f_{N-1}\right] \quad \text { where } f_{j}=f\left(x_{j}\right) . \tag{12}
\end{equation*}
$$

a) Write a Matlab script that computes the matrix $\underline{\underline{D}}$ corresponding to left-sided finite differences of first order. The matrix $\underline{\underline{D}}$ is defined as

$$
\begin{equation*}
\underline{f}_{\text {num }}^{\prime}=\underline{\underline{D}} \underline{f} \tag{13}
\end{equation*}
$$

with the vector $\underline{f}_{\text {num }}^{\prime}$

$$
\begin{equation*}
\underline{f}_{n u m}^{\prime}=\left[\delta f_{1}, \delta f_{2}, \ldots, \delta f_{N}\right]^{T} \tag{14}
\end{equation*}
$$

and the operator δf_{j}

$$
\begin{equation*}
\delta f_{j}=\frac{f_{j}-f_{j-1}}{\Delta x} \tag{15}
\end{equation*}
$$

Remember that $f(x)$ is periodic when computing the derivative at the point $x=x_{0}$, i.e. $f_{-1}=f_{N-1}$.
b) Assume $f(x)=e^{i k x}$ and derive the expression for the modified wavenumber \tilde{k} for these leftsided finite-difference scheme. Non-dimensionalise the wavenumber with the grid spacing, i.e. derive $\Delta x \tilde{k}(k \Delta x)$.
c) From now on assume that $k=5$ (i.e. a specific wave). Compute the derivative in a discrete $\left(\delta f_{j}\right)$ and analytical $\left(f_{x=x_{j}}^{\prime}\right)$ manner in every grid point. Use the previously defined $\underline{\underline{D}}$ for the discrete derivative. Plot the real part for both the numerical and analytical derivative as a function of x.
d) Plot the real and imaginary part of the complex quantity

$$
\begin{equation*}
\mu_{j}=\frac{\delta f_{j}}{f_{j}} \tag{16}
\end{equation*}
$$

as a function of x. What can you say about the significance of μ_{j} (see part f) below)?
e) The result of part c) indicates that the vector corresponding to the discrete Fourier harmonic $\underline{F}_{k}=\left[\begin{array}{llll}e^{i k x_{1}} & e^{i k x_{2}} & \ldots & e^{i k x_{N}}\end{array}\right]^{T}$ is in special relation with the matrix $\underline{\underline{D}}$. Can you say what that relation between \underline{F}_{k} and $\underline{\underline{D}}$ is in terms of linear algebra?
f) Compare the values of μ_{j} with the complex number $i \tilde{k}, k=5$ where \tilde{k} is the modified wavenumber for the left-sided finite differences as derived in b).

