

Thermal Oxidation of Silicon

Recap: Lecture 3 Wafer Clean and Wet Processing

3 Level Approach

- 1. Clean room
- 2. Wafer cleaning
 - Contaminations: Particles, Organics, Metals, Native oxide
 - Cleaning Necessity:
 - Devices: Minority carrier lifetime \downarrow , V_T changes, Ion \downarrow Ioff[↑], Gate breakdown voltage \downarrow , Reliability \downarrow
 - Circuit: Yield↓, Electrical performance↓

3. Gettering (Lecture 2 & 3)

The bottom line is chip yield. "Bad" die manufactured alongside "good" die. Increasing yield leads to better profitability in manufacturing chips.

Lecture 5: Thermal Oxidation of Silicon

Thermal Oxidation of Silicon: Outline

- Applications
- Properties and fabrication
- Linear parabolic model (Deal-Grove Model)
- Extensions of model
- Defects in SiO₂
- Characterization (recap from Lecture 4)

Applications of Thermally Grown Oxides

Field oxide for isolation (e.g. LOCOS)Pad, screen and masking oxides during implant, diffusion, etc.Tunnelling oxides in EEPROM (flash memories)Was used as gate oxide in MOS: until 45 nm CMOSWas used for passive devices: capacitor dielectric in DRAMs

(Plummer Fig 6-1 p. 288)

Equivalent oxide thickness t_{ox} : Thickness of arbitrarily oxide re-calculated to corresponding SiO₂ thickness

Thermal Oxidation of Silicon: Outline

Applications

Properties and fabrication

- Linear parabolic model (Deal-Grove Model)
- Extensions of model
- Defects in SiO₂
- Characterization (recap from Lecture 4)

Basic Properties of SiO₂

- Usually thermally-grown SiO₂ is amorphous
- Melting point: 1700 °C
- ➢ Mass density: 2.27 g/cm³
- > Molecular density: 2.2×10^{22} /cm³
- Refractive index n=1.46
- > Dielectric constant $\varepsilon = 3.9$

High K

H'()'

Basic Properties of SiO₂

Easily selectively etched

- Mask for most common impurities (B, P, As, Sb) (Low diffusivity for all dopants of Si)
 Excellent Insulator (ρ > 10¹⁶ Ωcm, E_g>9 eV)
- > High breakdown field (> 10⁷ V/cm)

Stable bulk electric properties (> 900°C, > 10⁻⁹ Torr)

Stable and reproducible interface with Si

IH2655 SPRING 2012

SiO₂ Structure

 a_{0-0} Quartz α -SiO₂

- Classification
 - Crystalline: Quartz, etc.
 - Amorphous $(\alpha$ -SiO₂)
- ≻Made up of Si−O tetrahedron
 - Silicon atom lies in the tetrahedral center and oxygen atoms at the four vertices
 - Tetrahedrons are connected by Si-O-Si
 - Oxygen atoms connecting two silicon atoms are called bridging oxygen or oxygen bridge
 - $a_{Si-O} = 0.162 \text{ nm}$
 - $a_{O-O} = 0.262 \text{ nm}$

- Network former leads to e.g. borosilicate glass, lead glass
- Network modifier converts bridging oxygen atoms into non-bridging oxygen atoms

Overall Oxidation Reaction

• Dry Oxidation

 $Si(s) + O_2(g) \rightarrow SiO_2(s)$

• Wet/Steam Oxidation

 $Si(s) + 2H_2O(g) \rightarrow SiO_2(s) + 2H_2(g)$

✓ Both reactions happen at 700 ~1200 °C

Steam Oxidation is about 10 times faster than Dry Oxidation **IH2655 SPRING 2012**

Oxidation: Basic reactions

Dry oxidation: $Si(s) + O_2(g) \rightarrow SiO_2(s)$ Wet oxidation: $Si(s) + 2H_2O \rightarrow SiO_2(s) + 2H_2(g)$

Oxidation by inward diffusion of oxidant through the growing oxide to the interface

Very good adhesion to Si leads to volume expansion upwards \rightarrow compressive stress in SiO₂

Oxidation: Example LOCOS

(Photo courtesy of J. Bravman.)

In LOCOS, SiO₂ volume is 2.2 times larger than that of oxidized Si

Oxidation Equipment

Different types of furnace oxidation

Here: Furnace oxidation using dry (O_2) or wet (H_2O) ambient

Typically 800- 1200°C at atmospheric pressure (1 atm)

```
Chlorine may be added by
HCI
TCE
TCA or trans-LC
→ gettering of impurities
```


Properties of SiO₂ from different fabrication methods

Oxidation Method	Desity	Refractive Index	IR Absorption Peak	Resistivity	Dielectric Constant	Dielectric Strength
	$/(g/cm^3)$	(<i>λ</i> =546nm)	/µm	/(Ω• cm)		/(10 ⁶ V/cm)
Dry Oxidation	2.24~2.27	1.460~1.466	9.35~s 12.4~m	$3 \times 10^{15} \sim 2 \times 10^{16}$	3.4 (10kHz)	9
Steam Oxidation	2.00~2.20	1.452~1.462	9.35~s	1015~1017	3.2 (10kHz)	6.8~9
Wet Oxidation	2.18~2.21	1.435~1.458			3.82 (1MHz)	
Thermal Decomposition	2.09~2.15	1.43~1.45	9.35~s 12.3~m	107~108		

Physical Properties of Silicon Oxide

Thermal Oxidation of Silicon: Outline

Applications

- Properties and fabrication
- Linear parabolic model (Deal-Grove Model)
- Extensions of model
- Defects in SiO₂
- Characterization (recap from Lecture 4)

Deal—Grove Model (linear-parabolic model)

- B.E. Deal and A.S. Grove, "General Relationship for the Thermal Oxidation of Silicon", Journal of Applied Physics 36 (12): 3770–3778, 1965
- □ Use solid state theory to explain 1D planar growth of SiO2

Apply to:

- □ Oxidation temperature range: 700~1200 °C
- □ Local pressure 0.1~25 atm.
- Wet and Dry Oxidation with oxide thickness within 20~2000 nm

 F_1 : Flux of oxidant diffusing from gas phase region to oxide surface

 $F_1 = h_g (C_G - C_S)$

 h_g : Mass transfer coefficient, cm/s C: Gas concentration, molecules/cm³ F : Flux, molecules/(cm²-s)

 $C_{\rm s} = N/V = P_{\rm s}/kT$

1. Ideal Gas Law: $P_S V = NkT$, so P_s : Surface gas pressure V: Volume N: Number of molecules k: Boltzmann constant T: Temperature

 F_1 : Flux of oxidant diffusing from gas phase region to oxide surface

h_g: Mass transfer coefficient, cm/s *C*: Gas concentration, molecules/cm³ *F* : Flux, molecules/(cm²-s)

2. Henry's Law: The equilibrium concentration of a gas species dissolved in a solid is proportional to the partial pressure of that species at the solid surface (H = const.).

$$C_o = HP_s$$

$$F_1 = h_g(C_G - \frac{P_S}{kT}) = h_g(C_G - \frac{C_O}{HkT})$$

Setting $h = h_g / HkT$, $C_G = C^* / HkT$ $F_1 = h(C^* - C_O)$

F₂: Flux of oxidant diffusing through oxide to the Si/SiO2 interface

F₃: Flux of oxidant reacting at the Si/SiO₂ interface

Under Steady-state conditions,
$$F_1 = F_2 = F_3$$

- At $k_s x/D \cong 1$, oxidation transits from reaction limited to diffusion limited
- Transition at oxide thickness from 50-200 nm
- k_s and D change with temperature

KTH

SiO₂ Si $k_s x/D <<1$, Reaction rate controlled

Christoph Henkel / Mikael Östling

SiO₂ Si $k_s x/D >> 1$, Diffusion controlled

Combining formula for F_3 and C_I , we define

Growth Rate
$$R = \frac{F}{N_1} = \frac{dx}{dt} = \frac{k_s C^*}{N_1 \left[1 + \frac{k_s}{h} + \frac{k_s x}{D}\right]}$$
$$\boxed{N_1 \text{ is the number of oxidant in 1 cm}^3 \text{ SiO}_2}_{\text{For O}_2 \text{ oxidation}, N_1 = 2.2 \times 10^{22} \text{ cm}^{-3}}_{\text{For H}_2 \text{ O oxidation}, N_1 = 4.4 \times 10^{22} \text{ cm}^{-3}}$$

Integrate to describe growth kinetics:

$$N_{1} \int_{x_{i}}^{x_{0}} \left[1 + \frac{k_{S}}{h} + \frac{k_{S}x}{D} \right] dx = \int_{0}^{t} k_{S}C^{*} dt$$

 X_i : initial oxide thickness X_0 : final oxide thickness

$$N_{1}\int_{x_{i}}^{x_{0}} \left[1 + \frac{k_{S}}{h} + \frac{k_{S}x}{D}\right] dx = \int_{0}^{t} k_{S}C^{*}dt$$

 X_i : initial oxide thickness X_0 : final oxide thickness

1/h is ignored since h is very large (mass transport to oxygen surface not limiting factor)

 $A=2D(1/k_{\rm s}+1/h)$ and hence

Setting:

B/A $\cong C^*k_s/N_1$, leads to

 $B=2DC^*/N_1$

Deal – **Grove Model: Silicon Thermal Oxidation Model** For convenience, $\frac{x_0^2}{R} + \frac{x_0}{R/A} = t + \tau$ where

 $B = 2DC^*/N_1$ —parabolic rate constant, contribution from F_2 (Oxidant diffusion) $B/A \cong C^*k_s/N_1$ —linear rate constant, contribution from F_3 (Interface reaction)

Extraction of B and B/A from experimental data

au is provided by experiments

IH2655 SPRING 2012

When oxidations are performed on flat unpatterned surfaces, on lightly doped substrates, in simple O_2 or H_2O ambients and when the oxide is thicker than about 20 nm, the growth kinetics are usually well described by the linear parabolic model. *B* and *B*/*A* are well described by Arrhenius expressions:

Rate constants describing (111)State constants describing (111)Interface reaction:
$$B = C_1 \exp(-E_1 / kT)$$
Rate constants describing (111)silicon oxidation kinetics at 1atm. total pressure. For
corresponding values for (100)Silicon oxidation kinetics at 1atm. total pressure. For
corresponding values for (100)silicon oxidation kinetics at 1atm. total pressure. For
corresponding values for (100)silicon oxidation kinetics at 1atm. total pressure. For
corresponding values for (100)silicon oxidation kinetics at 1atm. total pressure. For
corresponding values for (100)silicon oxidation kinetics at 1atm. total pressure. For
corresponding values for (100)silicon, all C_2 values should be
divided by 1.68.On the system of the pressure is th

Diffusion constant of non doping elements in SiO₂

IH2655 SPRING 2012

Deal-Grove Model: Temperature Dependence of B and B/A

Deal-Grove Model: Example Dry O₂

Deal-Grove Model: Example H₂O

Summary: Deal – Grove Model

$$\frac{x_0^2}{B} + \frac{x_0}{B/A} = t + \tau$$

$$\tau = \frac{x_i^2 + Ax_i}{B}$$

Oxidation rate
$$\frac{dx_0}{dt} = B/(2x_0 + A)$$

This equation describes well the growth kinetics under specific conditions: ✓ Flat unpatterned surfaces ✓ Lightly doped substrates ✓ Simple O₂ or H₂O ambients ✓ Final oxide thickness > 20 nm
Thermal Oxidation of Silicon: Outline

Applications

- Properties and fabrication
- Linear parabolic model (Deal-Grove Model)
- Extensions of model
- Defects in SiO₂
- Characterization (recap from Lecture 4)

Limitations of D-G Model: Thin Oxidation

- D-G model cannot accurately describe the growth kinetics for thin oxides
- Experimental data show that D-G model underestimates the oxide thickness when it is less than 20 nm.

Thin Oxidation Modeling

The mechanism is unknown and no model is generally accepted!

D-G:
$$\frac{dx_0}{dt} = B/(2x_0 + A)$$

... but keep in mind it is a fit for experimental data, not a Physics based simulation

Other Influences on Oxidation Rates

- > Pressure
- Crystal Orientation
- > Impurity
- Chlorine Doping

Effects of Pressure on Oxidation Rate

No first principles model \rightarrow Deal – Grove will have to do

Experiments have shown that in H_2O oxidation, the oxide growth rate is proportional to P_G . However, no simple linearity can be shown for dry O_2 oxidation.

For H₂O oxidation:

 $B \approx \frac{2DHP_G}{N_1}$

 $\frac{B}{A} \approx \frac{HP_G(k_s h)}{N_1(k_s + h)}$

$$\frac{\overline{B}}{A} = \left(\frac{\overline{B}}{A}\right)^{i} P$$
For dry oxi
$$B = \left(\overline{B}\right)^{i} P$$

dation:
$$\frac{B}{A} = \left(\frac{B}{A}\right)^{i} P^{n}$$
$$B = \left(B\right)^{i} P$$

n \cong **0.7~0.8.** The *i* superscripts refer to values at 1 atm.

- 1) For given growth rate, increasing pressure may decrease the oxidation temperature.
- 2) For given oxide thickness at fixed temperature, increasing pressure may reduce the oxidation time.

Effects of Pressure on Oxidation Rate: Steam Oxidation

Christoph Henkel / Mikael Östling

42

Effects of Crystal Orientation on Oxidation Rate

✓ Chemical reaction rate constant k_s depends on crystal orientation. Thus, the linear rate constant *B*/*A* is also orientation dependent:

$$B/A_{(111)} = 1.68 B/A_{(100)}$$

$$B/A_{(110)} = 1.45 B/A_{(100)}$$

 \checkmark Parabolic rate constant *B* is orientation independent.

 ✓ High-temperature and long-time oxidation is dominated by *B*. The orientation effects are weak.

IH2655 SPRING 2012

Crystal Orientation	Unit Cell Surface Area/(×a²)	Surface Atom Number	Areal Atomic Density (/a ²)	Number of O-reactive Bonds per Area	Available Bond Density/ (/a²)
(100)	1	2	2	2	2
(110)	$\sqrt{2}$	4	2√2	4	$2\sqrt{2}$
(111)	√3/2	2	4√3/3	3	2√3

Effects of Crystal Orientation on Oxidation Rate

$$k_s = k_{s0} \exp(-E_a / kT)$$

E > **E** > **E**

 $\mathbf{E}_{a(100)} \sim \mathbf{E}_{a(111)} \simeq \mathbf{E}_{a(110)}$

B is orientation independent (B/A)₁₁₁= 1.68 (B/A)₁₀₀ K_{s0} is constant, proportional to the number of oxidantreactive silicon covalent bonds.

 $k_{s}(111) > k_{s}(100)$

Crystal Orientation	Unit Cell Surface Area/(×a²)	Surface Atom Number	Areal Atomic Density (<i>1a</i> ²)	Number of O-reactive Bonds per Area	Available Bond Density/ (/a²)
(100)	1	2	2	2	2
(110)	$\sqrt{2}$	4	2√2	4	$2\sqrt{2}$
(111)	√3/2	2	4√3/3	3	2√3

Christoph Henkel / Mikael Östling

KTH

IH2655 SPRING 2012

Effects of Crystal Orientation on Oxidation Rate

Example: Simulation of trench oxidation using ATHENA

(100) Si, in H_2O at 900 °C for 30 min

Effects of Impurities on Oxidation Rate

Higher oxidation rates in highly doped substrates (more pronounced for n^+)

Possibly due to vacancies V

Reaction rate controlled (B/A is dominant, oxidation rate depends on the doping concentration on the silicon surface)

N-type dopants tend to segregate into Si \rightarrow SiO₂ not affected by dopants \rightarrow B / diffusion not affected

P-type dopants tend to segregate into SiO2 \rightarrow parabolic rate B / Diffusion potentially affected

Effects of Impurities: Advanced Point Defect Based Model

Vacancy V : V is much more for heavy extrinsic doping than for light doping V is much less in p⁺ doping

$$\frac{B}{A} = (\frac{B}{A})^{i} (1 + 2.62 \times 10^{3} \exp(-\frac{1.1eV}{kT})(\frac{C_{V}^{T}}{C_{V_{i}^{T}}} - 1)$$

 C_{V}^{T} : Total Vacancy Concentration C_{Vi}^T: Total Vacancy Conc. in intrinsic material

$(1+2\gamma)$ Si+2O_I+2 β V \leftrightarrow SiO₂+2 γ I+Stress

 γ , δ : fraction of interstitials, vacancies contributing to the oxidation process

Effects of Chlorine Doping on Oxidation Rate

Cl₂ can increase B/A and B. The bond energy of Si-O is 4.25 eV, and that of Si-Cl is 0.5 eV. Cl₂ reacts with Si to generate SiCl₄, which reacts with oxygen to get SiO₂. So Cl₂ is catalyst.

Cl⁻ can also neutralize accumulated interface charges

Dry O₂ + 1-3% Cl; Cl is a metal getter \Rightarrow cleaner oxide.

Lecture 5: Concept Test 5.1

- 5.1: Which of the following statements are true?
 - A: Mass-transport, diffusion and interface reactions play important roles in oxidation kinetics.
 - B: The gas pressure in the oxidation furnace affects the parabolic rate constant, but not the linear rate const.
 - C: The Deal-Grove model could be applied to Silicon Epitaxy
 - D: H₂O tends to oxidize faster because of a higher surface reaction constant compared to O₂
 - E: None of the above

Lecture 5: Concept Test 5.1

- 5.1: Which of the following statements are true?
 - A: Mass transport, diffusion and interface reactions play important roles in oxidation kinetics.

No, mass transport is negligible

B: The gas pressure in the oxidation furnace affects the parabolic rate constant, but not the linear rate const.

No, it affects both, because $P_q \sim C_q$, sub-linear for O_2

C: The Deal-Grove model could be applied to Silicon Epitaxy

No, mass transport eliminated from D-G

D: H_2O tends to oxidize faster because of a higher surface reaction constant compared to O_2

No, ~1000 x higher solubility enhances oxidation rate (C*) E: None of the above

Summary: Relations of B/A and B to Process Parameters

	Linear Rate Constant <i>B/A</i>	Parabolic Rate Constant B
Pressure (H ₂ O Oxidation)	linear	linear
Pressure (Dry Oxidation)	Sub-linear	linear
H ₂ O vs. Dry (Oxidation)	higher rate in H ₂ O	higher rate in H ₂ O
Si Crystal Orientation	<i>B</i> / <i>A</i> ₍₁₁₁₎ : <i>B</i> / <i>A</i> ₍₁₀₀₎ =1.68:1	independent
Si Doping Concentration (C)	Increasing with C	weak dependence
Chlorine Doping	Increased	Increased

Summary of Key Notes

- 1. Which factors influence the oxidation rate?
- 2. What is relationship between oxidation rate and pressure?
- 3. Which silicon crystal orientation has the fastest oxidation rate? Which one has the slowest rate? Why?
- 4. For very thin oxide, how does the calculated thickness based on the Deal-Grove model differ from the actual one? How to correct?
- 5. What are the effects of ______ chlorine doping on the oxide films?

Pressure, Crystal Orientation, Doping Concentration, Chlorine The more pressure, the faster oxidation rate. H₂O oxidation is linear with pressure while dry oxidation is exponential.

(111) has the fastest oxidation rate while (100) has the slowest one. k_s is related to the activation energy and silicon covalent bond density. *B* is independent of orientation. For thick oxide, the effect of orientation is very weak.

For dry oxidation when the oxide is less than 20 nm thick, the thickness calculated based on D-G model is much less than the actual one. Correction: add an item which decays exponentially with the increasing thickness.

Chlorine doping can increase the reaction rate, reduce fixed charges at interface and interface states (charge neutralization), and getter alkali ions.

Thermal Oxidation of Silicon: Outline

Applications

- Properties and fabrication
- Linear parabolic model (Deal-Grove Model)
- Extensions of model
- Defects in SiO₂
- Characterization (recap from Lecture 4)

Si/SiO₂ Interface Properties

From Deal

Si/SiO₂ Interface Properties: Fixed Oxide Charge, Q_f

- Position: Within $2 \sim 3$ nm of the interface
- Positive Charge. Charge density: 10⁹-10¹¹ cm⁻². Charge state does not change during normal device operation.
- Suggested origin: Incompletely oxidized Si atoms having a net positive charge.
- Q_f decreases with increasing temperature
- The faster speed of cooling down, the lower value of Q_{f} . But wafers with diameter>100 mm cannot be cooled too fast.
- $Q_f < 111 > :Q_f < 110 > :Q_f < 100 > = 3:2:1$
- Reproducible

IH2655 SPRING 2012

Si/SiO₂ Interface Properties: Fixed Oxide Charge, Q_f

Deal Q_f Triangle

Hypotenuse represents the relationship between temperature and Q_f The higher temperature, the lower Q_f

The vertical edge means that with constant oxidation temperature, Q_f can be reduced quite much by changing the ambient (N₂ or Ar)

The horizontal edge represents the cooling process in inert gases Si/SiO₂ Interface Properties: Interface Trapped Charge, Q_{it}

Position: at Si/SiO₂ interface

Suggested origin:

- 1) Dangling bonds located in the oxide
- 2) **≡**Si•
- 3) Ionized impurities (traps), can bind interface carriers

Charge: Energy exists throughout the forbidden band. Q_{it} can exchange charge with silicon. Depending on bias, Q_{it} may be positive, neutral or negative. Density:10⁹-10¹¹ cm⁻²eV⁻¹

 Q_{it} has the same origin as Q_f : high-value Q_f results in high-value Q_{it}

Si/SiO₂ Interface Properties: Interface Trapped Charge, Q_{it}

Si/SiO₂ Interface Properties: Interface Trapped Charge, Q_{it}

- Q_{it} relates to: Oxidation temperature, oxidation ambient (wet O2, dry O2), and crystal orientation, etc.
- \square Relation between Q_{it} and dry oxidation temperature
- 1) Q_{it} decrease with increasing temperature 2) At the middle of the band, $Q_{it(100)}$ is 5 times lower than $Q_{it(111)}$
- \square Method to reduce Q_{it}

Low Temperature Post-Metallization Anneal (PMA) Anneal at H_2 (or H_2 - N_2) (Forming Gas Annealing, FGA) or Ar at 350-500 °C for 30 min

- Before annealing, $Q_{it} \sim 10^{11} \text{ cm}^{-2} \text{eV}^{-1}$
- After annealing, $Q_{it} \sim 10^{10} \text{ cm}^{-2} \text{eV}^{-1}$, useful!

IH2655 SPRING 2012

Si/SiO₂ Interface Properties: Interface Trapped Charge, Q_{it}

Examples for effective reduction of Q_{it} by FGA

IH2655 SPRING 2012

Si/SiO₂ Interface Properties: Mobile Ionic Charge, Q_m

- □ Position: Anywhere in the oxide. Q_m originally locates at gate (metal/poly-Si)/SiO₂ interfaces. But under positive bias or elevated temperature, it moves towards Si/SiO₂ interfaces.
- □ Origin: Metallization and other contaminations
- □ Caused by alkali inos (Na⁺, K⁺) contamination (existing in the form of network modifier)
- \Box Change the threshold voltage V_T of MOS devices and reduce their stability.

Si/SiO₂ Interface Properties: Mobile Ionic Charge, Q_m

Methods to reduce Q_m

1) Clean quartz tube by O₂-HCl gas at 1150 °C/2 h

2) Use Chlorine doping oxidation. Chlorine sources can be $HCl-O_2$, TCE, TCA and so on.

3) Use Phosphosilicate glass (PSG)

4) Use Si_3N_4 as the final passivation layer

Not an issue anymore!

Si/SiO₂ Interface Properties: Oxide Trapped Charge, Q_{ot}

- Position: Anywhere in oxide. For example, when X ray enters SiO₂, electron-hole pairs are generated and trapped by defects in oxide.
- ✤ Origin: broken bonds, such as Si-O、Si-Si、Si-H、Si-OH
 - ionization irradiation

- VLSI processes, such as e-beam evaporation, sputtering, plasma etching, e-beam or x-ray lithography, and ion implanation.

✤ As a result, these traps will capture electrons or holes and they will be injected into the oxide during device operation.

• 1000 °C dry oxidation can improve SiO_2 structure and make them not easy to break ——Anti-radiation oxidation

• Anneal in H_2 or inert ambient at 300 °C

•Add radiation-insensitive passivation layers, such as Al_2O_3 and Si_3N_4

Thermal Oxidation of Silicon: Outline

Applications

- Properties and fabrication
- Linear parabolic model (Deal-Grove Model)
- Extensions of model
- Defects in SiO₂
- Characterization (recap from Lecture 4)

Quality Inspection of Silicon Oxide

1. Detect Defects in Oxide Film

- 1) Detect Pores in Oxide Film EPW (Ethylenediamine – Pyrocatechin – Water Etching) Anodic Oxidation Chlorine Etching MOS Diode Method
- 2) Detect Oxidation induced stacking faults (OISF) After oxidation, remove SiO₂ by HF and etch it using Sirtl solution

Sirtl solution: 100 ml H₂O + 50 g Cr₂O₃ +75 ml HF

 3) Measure Na⁺ concentration in oxide films (see Chapter 6.4.3 Electrical Measurements: Bias Temperature Stressing, BTS)

Example: OISF – Oxidation Induced Stacking Fault

Oxidation generates a lot of interstitial atoms. These point defects gather to form large 2D defects—Stacking Fault. Stacking faults, locating at the interface, are trap sites for gettering and may cause increased leakage current. High-pressure (low temperature) oxidation and chlorine doping oxidation can effectively suppress OISF_o

Metrology: Thickness Measurements

Stylus

Mechanics: Step Profiler

- Mechanics
- Colorimetry
- Ellipsometry
- Interferometry
- C-V Measurement
- Determine Weight

Christoph Henkel / Mikael Östling

KTH

Metrology: Thickness Measurements

Colorimetry

Orida Eilm Calar	Oxide Film Thickness/nm					
Oxide Film Color	1st Period	2nd Period	3rd Period	4th Period		
Grey	10			650		
Tan	30			685		
Brown	50	ļ		720		
Blue	80			750		
Violet	100	275	465			
Navy blue	150	300	490			
Green	185	330	520			
Yellow	210	370	560			
Orange	225	400	600			
Red	250	430	625			

Metrology: Thickness Measurements

Monochromatic light becomes polarized after passing through polarizer, turns into elliptical polarized light by quarter wave plate and then arrives at the samples. After film reflection and analyzer, it turns into monochromatic light and enters the phototube acceptor.

The amplitude and phase changes of the components of two perpendicular polarized light are dependent of film thickness and refractive index. Today: Spectroscopic Ellipsometry (Installed in Electrum in Feb. 2011) Christoph Henkel / Mikael Östling

Metrology: Thickness Measurements Ellipsometry: accurate, flexible, non-destructive Thickness measurement:

- Measurements provide periodic thickness
- Require to know some properties of the film
- Multi-wavelength measurement

Thickness and refractive index:

- Can determine the thickness of different materials and their refractive indexes

Multi-layer film:

- Can use multi-wavelength and multi-angle to determine the thickness of multi-layer films
Metrology: Thickness Measurements Interferometry

• According to optical coherence, the light reflecting from the thin film surface interferes with that from the film/substrate interface. When the optical path difference is integration in the intensity will in thickne $x_0 = m \frac{\lambda}{\gamma_m}$ the intensity will in

n: Refractive index of SiO₂

 λ : Wave length of incident light, e.g., $\lambda = 589.6$ nm

m: Interference fringe number

Thickness Measurements

Electrical Measurement

- (a) Positive voltage is applied at the metal electrodes (accumulation)
- (b) Negative voltageinduces depletion in the substrate
- (c) Further more negative voltage results in inversion

C-V Curves: Effects of Interface Charge on MOS Capacitor

Measure Mobile Ions (Na+) Concentration in Oxide (B-T)

1. First-time C-V measurement ①.

2. Apply about 1 MV/cm positive bias on the gate and heat the device to 200-300 °C. Keep the gate voltage for 10-30 min at elevated temperature to make all the mobile ions move to the Si/SiO₂ interface. Keep the bias and cool the device down to room temperature. Secondtime C-V measurement (2).

3. Repeat Step 2 with negative gate bias. Third-time C-V measurement ③.

$$N_{m\,move} = \frac{C_{ox}\Delta V_{FB}}{q}$$

Summary of Thermal Oxidation

✓ Thermal oxidation is a key process of CMOS technology, especially gate oxidation, whose thickness should be controlled at atomic level. Thermal oxidation mainly applies to gate/tunneling dielectrics, mask and field oxidation.

✓ The mechanism of thermal oxidation is that oxidant diffuses in oxide and reacts at interface. Silicon oxide grows at the interface and consumes bulk silicon. There are dry O₂ oxidation, wet O₂ oxidation and H₂O oxidation.
✓ D-G (Linear – Parabolic) model and its correction — the meanings of *B*

and *B*/*A* and the model applications

✓ Dependence on oxidation rate: Pressure, Impurity concentration, Crystal orientation, Chlorine doping. Impurity redistribution.

✓ Si/SiO₂ interface has much better property than any other semiconductor/ insulator interface. (100) has the best interface property. Interface charge (Q_f , Q_{it}, Q_m, Q_{ot}) may be measured by MOS C-V measurement.

✓ Non-planar oxidation is affected by crystal orientation, 2D diffusion in shaped oxide and stress. Stress reduces k_s and D and hence decrease oxidation rate at corners and shaped regions.

Christoph Henkel / Mikael Östling

IH2655 SPRING 2012

Periodic Table of the Elements

Chemistry Reference Sheet

California Standards Test

	1 1A																	18 8A
1	1 H Hydrogen 1.01	2 2A					ĸ	(ey					13 3A	14 4A	15 5A	16 6A	17 7A	2 He Helium 4.00
2	3 Li Lithium 6.94	4 Be Beryllium 9.01	11 — Atomic number Na — Element symbol Sodium — Element name											6 C Carbon 12.01	7 N Nitrogen 14.01	8 O Oxygen 16.00	9 F Fluorine 19.00	10 Neon 20.18
3	11 Na Sodium	12 Mg Magnesium	3	Average atomic mass* 3 4 5 6 7 8 9 10 11 12											15 P Phosphorus	16 Sulfur	17 Cl Chlorine	18 Ar Argon
4	22.99 19 K Potassium 20.10	24.31 20 Ca Calcium	3B 21 Scandium 44.06	4B 22 Ti Titanium	5B 23 V Vanadium	6B 24 Cr Chromium 52.00	7B 25 Mn Manganese 54.04	26 Fe	8B 27 Co Cobalt 58.02	28 Ni Nickel	1B 29 Cu Copper 63.55	2B 30 Zn Zinc 65 20	26.98 31 Gallium 60.72	28.09 32 Germanium 72.61	30.97 33 As Arsenic 74.92	32.07 34 Se Selenium 78.06	35.45 35 Br Bromine 70.00	39.95 36 Kr Krypton 83.90
5	37 Rb Rubidium 85.47	38 Strontium 87.62	39 Y Yttrium 88.91	40 Zr Zirconium 91.22	41 Nb Niobium 92.91	42 Mo Molybdenum 95,94	43 Tc Technetium (98)	44 Ru Ruthenium 101.07	45 Rh Rhodium 102.91	46 Pd Palladium 106.42	47 Ag Silver 107.87	48 Cd Cadmium 112.41	49 In Indium 114.82	50 50 50 Tin 118.71	51 Sb Antimony 121.76	52 Te Tellurium 127.60	53 lodine 126.90	54 Xenon 131.29
6	55 Cs Cesium 132.91	56 Ba Barium 137.33	57 La Lanthanum 138.91	72 Hf Hafnium 178.49	73 Ta Tantalum 180.95	74 W Tungsten 183.84	75 Re Rhenium 186.21	76 Os Osmium 190.23	77 I r Iridium 192.22	78 Pt Platinum 195.08	79 Au Gold 196.97	80 Hg Mercury 200.59	81 TI Thallium 204.38	82 Pb Lead 207.2	83 Bi Bismuth 208.98	84 Po Polonium (209)	85 At Astatine (210)	86 Rn Radon (222)
7	87 Fr Francium (223)	88 Ra Radium (226)	89 Ac Actinium (227)	104 Rf Rutherfordium (261)	105 Db Dubnium (262)	106 Sg Seaborgium (266)	107 Bh Bohrium (264)	108 Hs Hassium (269)	109 Mt Meitnerium (268)									
* If this number is in parentheses, then it refers to the atomic mass of the most stable isotope.					58 Ce Cerium 140.12	59 Pr Praseodymium 140.91	60 Nd Neodymium 144.24	61 Pm Promethium (145)	62 Sm Samarium 150.36	63 Eu Europium 151.96	64 Gd Gadolinium 157.25	65 Tb Terbium 158.93	66 Dy Dysprosium 162.50	67 HO Holmium 164.93	68 Erbium 167.26	69 Tm Thulium 168.93	70 Yb Ytterbium 173.04	71 Lu Lutetium 174.97
					90 Th Thorium 232.04	91 Pa Protactinium 231.04	92 U Uranium 238.03	93 Np Neptunium (237)	94 Pu Plutonium (244)	95 Am Americium (243)	96 Cm Curium (247)	97 Bk Berkelium (247)	98 Cf Californium (251)	99 Es Einsteinium (252)	100 Fm Fermium (257)	101 Md Mendelevium (258)	102 No Nobelium (259)	103 Lr Lawrencium (262)

Copyright © 2008 California Department of Education

Taken from: http://www.sciencegeek.net/tables/CA_CST.pdf

Christoph Henkel / Mikael Östling