Nuclear Fuel Cycle KD2430

2011-06-10, 8⁰⁰-13⁰⁰

Please write readable. Write your name on every paper. Only one task per paper! You can answer either in Swedish or English

You are allowed to use a calculator

Good Luck!

_			_	_		
1	Comple	te the	nuclear	reactions	helo	(X /
T.	Compic	ic inc	mucicai	reactions	UCIU	vv

a.
$$\rightarrow$$
 ⁹⁹Tc + γ

d.
$$n \to {}^{1}H + _{---}$$

b.
237
Np \rightarrow + α

e.
$${}^{57}\text{Co} \rightarrow {}^{57}\text{Fe} + ____$$

$$\mathbf{c.} \longrightarrow {}^{150}\mathrm{Sm} + \mathrm{n}$$

$$\mathbf{f.} \underline{\hspace{1cm}} \rightarrow {}^{178}\mathrm{Lu} + \beta^{\overline{}}$$

- 2. **a.** The ratio of neutrons to protons in "light" stable nuclides is: (1p)
 - **a)** 0.0:1.0 **b)** 0.5:1.0 **c)** 1.0:1.0 **d)** 1.5:1.0 **e)** 2.0:1.0 **f)** 2.5:1.0

- **g**) 3.0 : 1.0

- **b.** Upon entering an electric field, an α -particle is (1p)
- a) deflected toward positive
- **b**) not deflected
- c) deflected toward negative

- **3.** What is Čerenkov radiation? (2p)
- 4. Define and explain the concept LET. (2p)
- 5. Dose is sometimes expressed in the unit Gray and sometimes in Sievert. What is the difference? (2p)
- A portable detector is used to measure the activity of a sample. The surface are of the detector is **6.** 7 cm² and the efficiency is 1.2%. At a distance of 2.5 m. from the sample the signal is 15 cps. What is the activity of the sample? (3p)
- 7. What is a breeder reactor? (2p)
- 8. Which are the main barriers that are supposed to prevent radionuclides to escape to the biosphere in the KBS-3 concept? (2p)
- 9. Describe the concepts of fissile and fertile actinides. Also give two examples of fissile actinides and one example of a fertile actinide (4p)
- **10.** The research team for investigations of the environmental impact of accidents from the nuclear industry is heading for Mayak to study the area around the reprocessing site. Your task is to study the lakes on the sites and in particular to analyze Pu.

What types of samples will you take? Motivate in what samples you expect the highest Pu concentrations. How would you know which form of Pu to look for to find a suitable analysis technique? (6p)

- 11. Compare the geological and chemical principles in the concepts for depositing spent nuclear fuel in the Swedish KBS-3 model and in Yucca Mountain (which today is disclosed). (5p)
- **12.** Describe shortly all the steps in the Nuclear Fuel Cycle with and without reprocessing from mining to handling of the waste. Which of the steps require most energy? (4p)

- 13. A rock contains 257 mg of 206 Pb for every gram of 238 U. The half-life decay for uranium to turn into lead is 4.5×10^9 yr. How old is the rock? (all 206 Pb originates from 238 U) (4p)
- **14.** Coal tar is a complex combination of polycyclic hydrocarbons, phenols and heterocyclic oxygen, sulphur and nitrogen compounds. One of the most important coal tar components is naphthalene.

The concentration of naphthalene is to be determined in a coal tar. In a radiologic laboratory naphthalene is labeled with 14 C to contain 8.70 kBq/g. 4.30 gram of the labeled naphthalene is added to 630 g coal tar. The tar is carefully mixed for a day. 48.0 gram coal tar is taken from the mix. Through extraction, distillation and sublimation, 2.10 gram pure naphthalene (99.9%) is obtained. The pure naphthalene is measured in a liquid scintillator (with an efficiency of 75.2%). The β -activity is measured to be 191.1 cps.

What is the naphthalene content (wt%) in the coal tar? (8p)

15. A sample containing element X is irradiated in a neutron flux of 5×10^{10} n s⁻¹ cm⁻² for 30 minutes and nuclides X-101 and X-103 are formed. Directly after the irradiation the sample is measured for β -activity. After irradiation the sample is measured at time intervals, see table below for the results.

A piece of a nuclide chart around element X can be seen in the figure below. It is known that the half-life of X-101 is 200 hours. Since the half-life of X-101 is known it was possible to determine that the amount of X-101 directly after the irradiation was 9.4209×10^{-14} g. What are the half-lives of nuclides X-103 and Y-103? (8p)

Time [h]	Activity [Bq]
0	28 168.23
2.5	21 765.35
5	17 132.78
10	11 281.43
20	6 200.90
50	2 656.57
100	1 218.56
150	774.99

Z-102	Z-103	Z-104	Z-105		
68.3	24.2	0.97	19 d		
σ 0.04	σ 5.1	σ 0.14			
Y-101	Y-102	Y-103	Y-104		
27.1	3.2	?	2.1 s		
σ 1.6	σ 0.58				
X-100	X-101	X-103	X-103		
31.5	200 h	18.6	?		
σ 1.2		σ 0.49			

Periodic Table of the Elements

H 1																	He 2
1 0050																	4.002.5
1.0079		i															4.0026
Li 3	Be 4											B 5	C 6	N 7	O 8	F 9	Ne 10
6.941	9.01218											10.81	12.011	14.0067	15 0004	18.9984	20.179
Na 11	Mg 12											Al 13	Si 14	P 15	S 16	Cl 17	Ar 18
22.9898	24.305											26.9815	28.0855	30.9736	32.06	35.453	39.948
		Sc 21	т: 22	V/ 22	Cr 24	Mn 25	Eo 26	Co. 27	NI: 20	Cu 20	7n 20						
K 19	Ca 20	SC 21	11 22	V 23	Cr 24	IVIII 25	re 20	C0 27	NI 20	Cu 29	ZII 30	Ga 51	Ge 32	AS 33	Se 34	DI 33	Kr 30
39.0983	40.08	44.9559	47.88	50.9415	51.996	54.9380	55.847	58.9332	58.70	63.546	65.38	69.72	72.59	74.9216	78.96	79.904	83.80
Rb 37	Sr 38	Y 39	Zr 40	Nh 41	Mo 42	Tc 43	R1144	Rh 45	Pd 46	Ασ 47	Cd 48	In 49	Sn 50	Sb 51	Te 52	I 53	Xe 54
100	D1 00	1 0	21 .0	110 11	1110 12	10 .0	114	1111 10	14 10	1-5 .,	- IO	.,		00 01	1002	1 00	1100.
85.4678	87.62	88.9059	91.22	92.9064	95.94	98.906	101.07	102.96			112.41				127.60	126.9	131.30
Cs 55	Ba 56	La 57	Hf 72	Ta 73	W 74	Re 75	Os 76	Ir 77	Pt 78	Au 79	Hg 80	Tl 81	Pb 82	Bi 83	Po 84	At 85	Rn 86
122.0	107.00	100.01	150 10	100 0 10	102.05	10500	100.2	100.00	105.00	105055	200.50	204.25	207.2	200.000	(200)	(210)	(222)
132.9	137.33	138.91		180.948		186.207	190.2	192.22	195.09	196.966	200.59	204.37	207.2	208.980	(209)	(210)	(222)
Fr 87	Ra 88	Ac 89	Unq 104	Unp 105	Unh 106												
(223)	226 025	227.028	(261)	(262)	(263)												
(223)	220.023	221.028	(201)	(202)	(203)												

Ce 58	Pr 59	Nd 60	Pm 61	Sm 62	Eu 63	Gd 64	Tb 65	Dy 66	Но 67	Er 68	Tm 69	Yb 70	Lu 71
140.12	140.9077	144.24	145	150.4	151.96	157.25	158.9254	162.50	164.9304	167.26	168.9342	173.04	174.967
Th 90	Pa 91	U 92	Np 93	Pu 94	Am 95	Cm 96	Bk 97	Cf 98	Es 99	Fm 100	Md 101	No 102	Lr 103
232.0381	231.0359	238.029	237.0482	(244)	(243)	(247)	(247)	(251)	(254)	(257)	(258)	259	260