

Process Integration

Lecture 11: Process Integration

IH2655 Spring 2012

Process Integration: Overview

Lithography Laser (Steppers), EUV, E-Beam, ... **Thin Film deposition** CVD – LPCVD, PECVD, ALD ... Pattern PVD – Sputtering (DC, RF, ...), Evaporation (Resistance, E-Beam), ... Epitaxy – CVD, MBE, SPE Spin-coating **Inkjet Printing** Etching ۲ Wet etching **Dry etching** Doping Ion implantation Diffusion **Surface engineering** Thermal oxidation Metal silicide (SALICIDE)

Process Integration - Overview

- Isolation Technology
 - LOCOS
 - STI
- Gate Stack Options
- Advanced CMOS Integration

MOS-Basic Isolation in Ics

MOS transistors are self-isolated. Compared to bipolar devices, MOSFETs may have higher density, but they will suffer from parasitic effects from the adjacent devices.

✓ High threshold voltage at the field region V_{TF} is preferred. V_{TF} must be 3-4 V higher (depending on CMOS generation) than the supply voltage to ensure that the current from parasitic MOSFET is less than 1 pA.

✓ V_{TF} decreases with decreasing device distance or increasing temperature *T*. When *T* increases from 25 °C to 125 °C, V_{TF} will decrease by 2 V.

$$V_T = V_{FB} + 2\phi_{MS} + \frac{\sqrt{2\varepsilon_s q N_A(2\phi_{MS})}}{C_{ox}}$$

Methods to Increase Field Threshold Voltage V_{TF}
Increase field oxide to be 7~10 times thicker than gate oxide
Increase the doping concentration under field oxide (Channel-stop implantation)

LOCOS Isolation Technology

KTH

Problems in LOCOS Technology

Bird's Beak Effect
limits integration improvement

2) Rough Surface— limits Lithography (DOF)

Improved LOCOS — PBL (Poly-Buffered LOCOS)

Deposit a layer of polysilicon before LPCVD Si_3N_4 . Polysilicon consumes the oxygen diffused laterally during field oxidation. The bird's beak can reduce to 0.1-0.2 μ m.

Pad oxidation, poly and nitride LPCVD

Nitride, poly, and oxide etch, B implantation

Christoph Henkel / Mikael Östling

Improved LOCOS — PBL (Poly-Buffered LOCOS)

Crab Eyes

Helpful to integration improvement

Shallow Trench Isolation (STI) 1/5

LOCOS, PBL applicable for technology node≥0.35-0.5 mm. For technology node <0.35 mm, STI must be used.

Shallow Trench Isolation (STI) 2/5

Shallow Trench Isolation (STI) 3/5

Shallow Trench Isolation (STI) 4/5

9) Etching-back Planarization

10) Si₃N₄ Etching

Shallow Trench Isolation (STI) 5/5

11) Re-Etching-back Planarization

12) Densification Annealing of CVD Oxide

Modern STI Technology (CMOS) 1/2

1) No Channel Stop Implantation

USG (Un-doped Silicate Glass): SiH₄+O₂+Ar \rightarrow USG + volatiles[↑]

IH2655 Spring 2012

Modern STI Technology (CMOS) 2/2

3) CMP Planarization

Process Integration - Overview

- Isolation Technology
- Gate Stack Options
 - Self Aligned Structures
 - Replacement Gate Technology
 - Fully Silicided Gates
- Advanced CMOS Integration

Gate Structure

Early gate structure is SiO₂ - Metal Gate (Al Gate). With increased integration, low V_T is required.

$$V_T = V_{FB} + 2\phi_F + \frac{\sqrt{2\varepsilon_s q N_A(2\phi_F)}}{C_{ox}}; \phi_F = V_T \ln\left(\frac{N_D}{n_i}\right)$$

Moreover, AI is incompatible to high-temperature process, such as ion implantation annealing. AI gate not feasible when reducing source-drain series resistance is required.

Using poly-gate, V_T can decrease by 1.2~1.4 V

Other Advantages of Poly-Gate: > ϕ_{MS} can be changed by doping. For example, n-poly may reduce V_T by 1.1 V, i.e., the dual-poly (n & p) technology commonly used in industry. > Poly-Gate self-alignment technology can further improve integration.

Poly-Gate

(Interconnect)

Poly-Gate Self-Alignment Technology

"Hot" electron effects are considerable in small devices !! Lighly Doped Drain (LDD) + Spacer

IH2655 Spring 2012

LDD + Spacer Polysilicon Self-Alignment

2) Sidewall Formation

LDD + Spacer Polysilicon Self-Alignment

Self-Aligned Silicide

$TiSi_2$, $CoSi_2$, NiSi

Sidewall

Spacer

 n^+

SALICIDE

High k/Metal Gate: Replacement of Poly-Gate

Problem: High-k / Metal Gate stacks are not compatible with CMOS FEOL temperature requirements.

High k/Metal Gate: Replacement of Poly-Gate

3) Si₃N₄ Etching

4) Poly-Si Etching

5) Oxide Etching

High k/Metal Gate: Replacement of Poly-Gate

6) High-k Deposition Today: Hafniumbased; ALD process

7) Metal Gate

8) CMP

Fully-Silicided (FUSI) Gate

Metal silicide directly on gate oxide without poly-Si in-between

Example: nickel silicide (1 nm Ni + 1.84 nm Si \rightarrow 2.2 nm NiSi)

Nickel Silicide FUSI Gates

Fig. 3: Scanning tunneling electron micrograph with a Z-contrast shows that nickel is present only in the gate.

Gottlob et al., "0.86-nm CET Gate Stacks With Epitaxial Gd_2O_3 High-*k* Dielectrics and FUSI NiSi Metal Electrodes", IEEE El. Dev. Lett., 27(10), 2006.

Gottlob et al., "Gentle FUSI NiSi metal gate process for high-k dielectric screening", Microelectronic Engineering 85 (2008) 2019–2021

Christoph Henkel / Mikael Östling

Process Integration - Overview

- Isolation Technology
- Gate Stack Options
- Advanced CMOS Integration
 - Full SOI CMOS Process
 - Flip Chip Packaging
 - Current Technology

Modern SOI CMOS Integration Technology

Example: SOI + Five-level Cu Interconnect

Next Slides 21 mask process

CMOS Integration

SIMOX = Separation by Ion Implantation of Oxygen

Mask 1: Shallow Trench Isolation

Mask 2: N-well

Mask 3: P-well

Group Activity 1

How to get from A to B?

Mask 4, Gate and Local Interconnection

Mask 5, NMOS LDD Implantation

Mask 6: PMOS LDD Implantation

Group Activity 2

How to get from B to C?

Mask 7, NMOS S/D Implantation

Mask 8, PMOS S/D Implantation

Mask 9, Contact and Local Interconnection

IH2655 Spring 2012

Christoph Henkel / Mikael Östling

Process Integration - Overview

- Isolation Technology
- Gate Stack Options
- Advanced CMOS Integration
 - Full SOI CMOS Process
 - Flip Chip Packaging
 - Current Technology

Process Integration - Overview

- Isolation Technology
- Gate Stack Options
- Advanced CMOS Integration
 - Full SOI CMOS Process
 - Flip Chip Packaging
 - Current Technology

On-Time 2 Year Cycles

110622 SMT Symp. M.Niwa

ST

P-Well

ST

Ge30% & Tensile

MG→∆µ: +50%

45nm High-k + Metal Gate Strain-Enhanced FETs (Intel)

Tensile Trench Contact MG $\rightarrow \Delta$ Id: +16%

Since PMOS 1st , NMOS process is free from P-

C. Auth et al., VLSI Tech. Symp. 2008

Taken from: Masaaki Niwa, "Development of 32nm CMOS and Recent Trend for Beyond 32nm" SMT Symp. 2011

Christoph Henkel / Mikael Östling

KTH

ST

N-Well

Taken from: Masaaki Niwa, "Development of 32nm CMOS and Recent Trend for Beyond 32nm" SMT Symp. 2011

KTH

Changes in Scaling

THEN

- Scaling drove down cost
- Scaling drove performance
- Performance constrained
- Active power dominates
- Independent design-process

NOW

- Scaling drives down cost
- <u>Materials</u> drive performance
- <u>Power</u> constrained
- <u>Standby power</u> dominates
- <u>Collaborative</u> design-process

Taken from: Kelin Kuhn, "Moore's Law past 32nm: Future Challenges in Device Scaling" SSDM. 2009

KTH

110622 SMT Symp. M.Niwa

Technology Evolution

Christoph Henkel / Mikael Östling

KTH

IBM Cu Technology

To interconnect the extremely small transistors, a complex multilevel multi-layer metallization scheme is needed. Shown below is what IBM has done with their state-of-the-art Cu technology.

Six Cu metallization levels above the 1st metal level with tungsten studs to the transistors

http://www-3.ibm.com/chips/gallery/p-n2.html