Answers 2011-06-10

13. A rock contains 257 mg Pb-206 for every gram U-238.

Number of U atoms today = 1 g = $1/238*N_A = 2.53025 \times 10^{21}$.

Number of Pb atoms today = $0.257/257*N_A = 6.022 \times 10^{20}$.

All Pb originates from U-238,

 \Rightarrow At t(0) the number of U atoms is 2.53025 \times 10²¹ + 6.022 \times 10²⁰ = 3.13245 \times 10²¹.

$$N = N_0 e^{-\lambda t} = > t = -1/\lambda * ln(N/N_0) = -4.5 \times 10^9 / ln(2) * ln(2.53025 \times 10^{21}/3.13245 \times 10^{21}) = 1.39 \times 10^9$$
 years

14. Isotope dilution.

Unknown weight can be obtained from $w_u = (S_0/S_m-1)*w_0$ [see Lecture 5 notes]

$$w_0 = 4.30 \text{ gram}, S_0 = 8700 \text{ Bq/g}$$

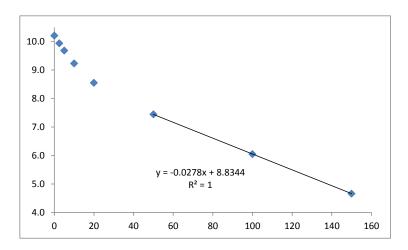
Activity is measured to be 191.1 cps, $\eta = 75.2\% => A = 254.1$ Bq

Specific activity Sm = 254.1/2.1 = 121.0 Bq/g

$$w_u = (8700/121-1)*4.3 = 304.85 \text{ gram}$$

Amount of naphthalene in tar = 304.84/630 = 48.4%

15. After irradiation we have three radioactive nuclides, X-101, X-103 and Y-103.

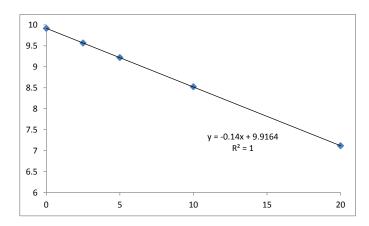

Amount and half-life is known for X-101. Then activity of X-101 can be calculated for the different times.

$$\mathsf{A}_{\text{0, X-101}} = \mathsf{N} \times \lambda = 1.9612 \times 10^{\text{-13}} / 101 \times 6.022 \times 10^{23} \times ln2 / (200 \times 3600) = 540.76 \ Bq$$

$$A_{0,\;X\text{-}101}\text{=}\;A_{0,\;X\text{-}101}\text{\times}e^{\text{-}\lambda t}$$

Time [h]	Activity [Bq]	A_{X-101}	Remaining A	ln (remain A)
0	28 168.23	1 125.7	27 042.5	10.21
2.5	21 765.35	1 116.0	20 649.4	9.94
5	17 132.78	1 106.4	16 026.4	9.68
10	11 281.43	1 087.4	10 194.1	9.23
20	6 200.90	1 050.3	5 150.6	8.55
50	2 656.57	946.6	1 710.0	7.44
100	1 218.56	796.0	422.6	6.05
150	774.99	669.4	105.6	4.66

Take natural logarithm of remaining activity and plot vs time. The last three points five a straight line with slope = $-\lambda$


 \Rightarrow λ =0.0278 => $\frac{t_{1/2}}{t_{1/2}}$ = 24.9 h. This must be the half-life of Y-103 (daughter more long-lived than mother)

Since the three last points only contain Y-103 you can calculate the activity of Y-103 for the different times ($A=A_0e^{-\lambda t}$)

Time [h]	Activity [Bq]	A_{X-101}	A_{Y-103}	Remaining A	Ln Rem. A
0	28 168.23	1 125.7	6 836.5	20 206.0	9.913737
2.5	21 765.35	1 116.0	6 377.5	14 271.9	9.566046
5	17 132.78	1 106.4	5 949.3	10 077.1	9.218023
10	11 281.43	1 087.4	5 177.2	5 016.8	8.520553
20	6 200.90	1 050.3	3 920.7	1 229.9	7.114663
50	2 656.57	946.6	1 702.8	0	
100	1 218.56	796.0	424.1	0	
150	774.99	669.4	105.6	0	

Again calculate the remaining A (=which must equal the activity of X-103)

Take natural logarithm, plot vs time, get line with slope = $-\lambda_{X-103}$.

$$\lambda_{\text{X-103}} = 0.14 \Rightarrow \frac{t_{\text{\frac{1}{2}}, \text{X103}}}{t_{\text{\frac{1}{2}}, \text{X103}}} = 4.95 \text{ h}.$$