Substation Automation Systems

Nicholas Honeth (nicholash@ics.kth.se)
Contents of the series

• Lecture 5
 - Introduction to SAS
 - Nice creative exercise
• Lecture 6
 - A bit about information modelling
 - Data types and structures
 - Information modelling in the power industry
• Lecture 7
 - Modern substation architectures
 - The IEC 61850 standard
Boxes and lines...
Contents of lecture 5

- Automation systems
- Programmable controllers
- Sensors/actuators
- Networking and Communication
- Substation automation
Some terms and acronyms...

- SCADA
- PLC
- RTU
- IED
- UTP
- Ethernet
- WAN
- LAN
- SAS
- PC
- OO
- ADC
- HMI
- TCP/IP
- PAC
- CT/VT
- I/O
- RAM
- ROM
- PC
- RS232
- Bus
- WAN
- SAS
- SCADA
Automation systems

- Production line
- Integration of process control
Automation systems

Production line
Automation Systems
Integration of process control
Automation systems

Process control
Programmable controllers

- Connect the blocks (PLC programming)
- Microcontroller programming
- Embedded systems
Programmable controllers
PLC programming
Programmable controllers
PLC programming

- Automation of electromechanical processes
- Built for tough environments
- Hard real-time system – outputs in bounded time
- Fairly simple and cheap devices.
Programmable controllers
PLC programming
Programmable controllers
Microcontroller programming

• Very cheap but surprisingly powerful
 - ROM holds lots of program code
• Very small Random Access Memory (RAM)

• Programmed in C/C++/Assembler
• Need a programmer (JTAG)
Programmable controllers
Microcontroller programming

- Packaged as development boards
 - Give access to some of the facilities (usually pins)
- Will later be built into the controlled device.
Programmable controllers
Embedded systems

- Larger, more powerful systems
- Usually run an operating system - RTOS
- Programmed in C/C++
- Need a programmer (JTAG)
- Often have full network stack
Sensors/actuators

- Analog to digital conversion
- Actuators
Sensors/actuators
Analogue-to-Digital Conversion

- Convert a continuous analog signal into digital samples
- Resolution
- Sampling rate

- 8-step (3-bit) ADC

- Encoding
 - Two’s compliment
 - BCD
 - Gray code
Sensors/actuators

Actuators

- Convert weak microelectronic signal to a breaker/isolator/tap change manuver
Networking and Communication

- Why do we need to communicate?
- What do we want to send/receive?
- How do we accomplish this?
- How long does it take?
- How is it done in the real world?
Substation automation

- What would we want to automate?
- Common components
- Substation architectures
Substation automation
Substation automation

What would we want to automate?

<table>
<thead>
<tr>
<th>Functional area</th>
<th>CB’s</th>
<th>Isolators</th>
<th>Contactors</th>
<th>Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interlocking</td>
<td>CB failure</td>
<td>Intertripping</td>
<td>Contactors</td>
<td>Simultaneous trips</td>
</tr>
<tr>
<td>Tripping sequences</td>
<td>Automatic transformer changeover</td>
<td>Automatic busbar changeover</td>
<td>Restoration of supply following fault</td>
<td>Network re-configuration</td>
</tr>
<tr>
<td>Load management</td>
<td>Load shedding</td>
<td>Load restoration</td>
<td>Generator despatch</td>
<td></td>
</tr>
<tr>
<td>Switching sequences</td>
<td>Switching sequences</td>
<td>Energy management</td>
<td>Power factor control</td>
<td></td>
</tr>
<tr>
<td>Transformer supervision</td>
<td>OLTC control</td>
<td>GIS monitoring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy monitoring</td>
<td>Import/export control</td>
<td>CB status</td>
<td>Isolator status</td>
<td></td>
</tr>
<tr>
<td>Switchgear monitoring</td>
<td>AIS monitoring</td>
<td>Transformers</td>
<td>Switching sequences</td>
<td>IED configuration</td>
</tr>
<tr>
<td>Equipment status</td>
<td>Relay status</td>
<td>CB status</td>
<td>Isolator status</td>
<td></td>
</tr>
<tr>
<td>Parameter setting</td>
<td>Relays</td>
<td>Transformers</td>
<td>Switching sequences</td>
<td></td>
</tr>
<tr>
<td>HMI functionality</td>
<td>Access control</td>
<td>One-line views</td>
<td>System views</td>
<td>Event logging</td>
</tr>
<tr>
<td></td>
<td>Trend curves</td>
<td>Harmonic analysis</td>
<td>Remote access</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interface to SCADA</td>
<td>Alarm processing</td>
<td>512</td>
<td>Disturbance analysis</td>
</tr>
</tbody>
</table>

Table 24.6: Typical substation automation functionality
Substation automation
Common components

• **Remote Terminal Unit**
 - Telemetry and remote control device

• **Intelligent Electronic Device(s)**
 - Device that implements functions in a substation, such as a protection relay

• **Bay controller**
 - A device that controls all devices related to a single bay (transformer, feeder,..) and communicates with relays for functionality

• **Human Machine Interface**
 - Typically an industrial PC with operator console for local control and system configuration

• **Communication bus(es)**
 - Connection between devices

• **Upwards communication interface.**
 - Implemented in the HMI, the Bay controller or in an IED.
Substation automation
Common components

- Remote Terminal Unit (RTU)
 - For telemetry
 - Serial communication using
 • RS232
 • RS485
 • RS422
 - Standard protocols
 • Modbus
 • IEC 60870-5-101/104
 • DNP3
 • ICCP

- Better suited to wide area telemetry than PLCs
Substation automation
Common components

- Intelligent Electronic Device (IED)
 - Digital protective relay with added functionality
 - Can usually interface with RTU
 - Report events and measurement data
 - Receive commands from RTU/SCADA

- Advanced functions need IEDs to communicate with each other
 - Horizontal communication

- Control functions can include
 - Load tap changer controller
 - CB controller
 - Capacitor bank switches
 - Recloser controllers
 - Voltage regulators
Substation automation
Common components

- Human-Machine-Interface
Substation automation
Exercise

• Given a double breaker station
 - Choose an interesting function to implement eg. interlocking
 - What kind of automation equipment would we use?
 - What would need to be communicated?

RTUs, IEDs, VTs, CTs, breaker/isolator control/status signals, SCADA comms
Substation automation
Exercise
Substation automation
Architectures

• Some history...
Substation automation
Architectures

- Some history with SCADA and RTU...
Substation automation
Architectures

• Some history with SCADA and RTU and IED...
Substation automation
Architectures

• Some history with SCADA and RTU with integrated IED...
Substation automation
Architectures

• Addressing maintenance needs
Substation automation Architectures

• Bay Controller
Substation automation
Architectures

HMI based
- The Man machine interface (rugged PC) implements all control and communication functionality
- IEDs implement protection & switching functionality
- Simplest solution
- Reliability of HMI computer a risk

Figure 24.2: HMI-based hardware topology
Substation automation
Architectures

RTU based
- HMI separated from control & communication
- RTU implements the SCADA interface and substation control
- IEDs implement control & switching functionality

Figure 24.3: RTU-based topology

Strauss Type 3 & 4, with telecontrol equipment separate or not
Substation automation
Architectures

Distributed
- Bay controllers implement interlocking and interface IEDs
- IEDs implement protection and switching
- HMI allows local control and system configuration
- Station controller manages station level control and communicates with SCADA.

Figure 24.4: Decentralised topology
Modern substation architecture:
1. Sampled values for current and voltage
2. I/O for protection and control
3. Control signals
4. Engineering and configuration
5. Monitoring and supervision
6. Control Center communication
7. Time synchronization
Substation automation
Configuration

- Substation Automation Systems can have several 10s to 100 different programmable devices.
- Managing functionality & data spread over several platforms becomes a challenging task.
- Consider also that systems from separate vendors often are used.
- Cost of a SAS is not driven by hardware but rather by configuration work!!
Substation automation
Configuration
Conclusions
Many questions to try and answer...

• How do we organize/label/handle/process the data and commands?
• How are automation and protection applications implemented in these devices?
• What semantics and protocols do devices like IEDs and RTUs use to communicate?
• What standards are used in industry and how do they work?
Conclusions

• SAS is one of many types of automation systems
• They can be implemented using:
 - Microcontrollers
 - Embedded systems
 - Industrial PCs
• We’ve looked at some SAS architectures
 - They can vary considerably
• The volume of process data and commands quickly becomes large, this makes management and configuration a complex task
Some terms and acronyms...

LAN, SAS, SCADA, RS232, WAN, Bus, IED, ADC, PC, Ethernet, CT/VT, RTU, RTOS, ROM, RAM, I/O, PLC, TCP/IP, PAC, HMI, UTP, GPS, RAM, I/O