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Abstract—Current task-centric many-core schedulers share a
“naive” view of processor architecture; a view that does not care
about its thermal, architectural or power consuming properties.
Future processor will be more heterogeneous than what we see
today, and following Moore’s law of transistor doubling, we
forsee an increase in power consumption and thus temperature.
Thermal stress can induce errors in processors, and so a common
way to counter this is by slowing the processor down; something
task-centric schedulers should strive to avoid. The Thermal-
Task-Interleaving scheduling algorithm proposed in this paper
takes both the application temperature behavior and architecture
into account when making decisions. We show that for a mixed
workload, our scheduler outperforms some of the standard,
architecture-unaware scheduling solutions existing today.

Index Terms—OpenMP , Tasks , Power, Thermal, Tempera-
ture, Scheduling, Many-core, Tilera

INTRODUCTION

This papers focuses on the thermal properties of applica-
tions that uses the task-based programming model. Increased
temperature have long been a bottleneck for processor designs,
as they induce errors and limitations in the device [13], [11].
Among the errors that can occur are electronmigration, stress-
migration and gate-oxide breakdown. These are considered as
hard errors, and usually render the device useless as they occur.
Also soft errors exist, that cause the processor the execute
incorrectly due to e.g. electrical noise. To counter the thermal
related errors, processors usually come with a fan and a heat
sink designed to dissipate the generated heat. Larger fans
contribute to the indirect cost of using the processor, as more
power is required to drive them and keep the processor at the
designed thermal level.

Another way of constraining the temperature in processors
is by using a dynamic frequency or voltage scaling. Since
the power consumption of semiconductors is proportional to
the frequency and voltage of the processor, scaling these are
an effective way to reduce temperature. Processors such as
the Nehalem uses DFS to successfully control the power
consumption of cores. Decreasing the frequency to control
the power consumption also decreases the performance of the
processor.

In this study, we propose a way to schedule work in a
way that minimizes the performance throttling mechanisms of
the underlying architecture. We do this by taking application
specific behavior into account. More specifically, we propose
an algorithm for the task-centric programming model where

application specific power consumption is balanced to control
the temperature of the chip. The task-centric programming
model exposes available application parallelism in the form
of tasks. A task is a user-exposed workload that can be run in
parallel on any availible core. The exposed tasks are scheduled
onto the system resources by the scheduler. Task-scheduling
differ from OS-scheduling in several ways. Tasks can have
dependencies among each other, and are usually composed
of work that is much more fine-grained than OS-threads.
Tasks are currently used in user-space, where a programmer
exposes different application workloads to the task-scheduler,
whose job is to schedule these in a efficient way. Many
current scheduling algorithms are completely un-aware of the
architecture they run on. Although there are locality aware
schedulers (e.g. Cilk), they are designed in such abstract way
that locality comes as a bonus. To give a concrete example of
this, given a task-graph, the Cilk scheduler will try to distribute
task closest to the root of the task-graph to cores, and the
cores transverse down the leafs from the root task. All tasks
spawned as the scheduler transverse down the tree are put
into the cores private task-queue, and thus locality is achieved
in this sense, since cores will first perform work in their own
queues rather than go stealing from others. Although this does
increase locality, there is no detailed architecture awareness.

Our understanding is that future many-core processors will
be more heterogeneous and the task schedulers need to incor-
porate architectural details inside it to use it effectively. This
paper investigate how to incorporate thermal-awareness into
a task-centric scheduler, and how it would perform under a
thermally stressed environment. To this day, we are unaware
of any work that has been performed in the realm of task-
centric scheduling that address the issue of temperature.

RELATED WORK

Temperature prediction: is an attempt to calculate the
temperature of an area in advance, thus giving the scheduler
opportunities to proactively counter it. Coskun et al. [4]
have proposed to use an ARMA model to predict future
temperatures. Their scheduling technique reduces up to 60%
of the hotspot occurrences with the UltraSPARC T1.

Other approaches to predict a cores future temperature is
proposed by Yeo et al [15], [16]. In [15] they Yeo et al.
propose to group applications with similar thermal character-
istics together, and use these to predict the thermal behavior of



an unknown application. In [16] they propose to combine an
application-specific thermal model with a core-based thermal
model when predicting the temperature of a core. Their model
shows predictive errors as low as 1.6% compared to the
thermal sensor of their architecture.

OS-based Thermal scheduling: Scheduling tasks and
threads in an OS environment has been subject to much
research concerning thermal behavior. Choi et al [3] introduces
a kernel task which aims to reduce the temperature of a core.
These “cool-tasks” are used together with task migration to
reduce the temperature of the processor.

Coskun et al [5], [4] proposes two scheduling solutions
to the thermal reducing problem. In [5] they formulate the
problem as a ILP with objectives for reducing amongst other
hot spots and gradients. They shows that their proposed so-
lution reduces hotspot better than existing OS load-balancing
schedulers. Merkel et al [10] created an algorithm that is based
on the OS queue’s power and thermal capabilities and show
that by setting a throttling limit, a thermal-aware scheduler
outperforms some common Linux schedulers. Although their
method closely resemble ours, we have focused on the task-
centric model while Merkel et al. focuses on the OS domain.

Objective based Thermal scheduling: is when tasks de-
livered to the scheduler not only have thermal but also other
constraints. Cui et al. [6] performed a study that concerns
real-time temperature behavior on a CMP processor. They
propose a heuristic scheduling algorithm which consider the
lowest weight of a idle core when scheduling a real-time task.
The weight is primary based on the maximum temperature a
core would experience if the task was to be allocated to that
particular core. Juan et al [2] have investigated how to reduce
energy using DVFS on OpenMP static loop scheduling. They
implemented two different schedulers that reduces the power
consumption under a energy-constraint environment for up to
160 processors.

THERMAL-TASK INTERLEAVING

To counter thermal limitations in modern processors, we
propose an algorithm which controls the power consumption
of cores in order to avoid elevated temperatures. The algorithm
relies on a scheduler-embedded power and a thermal model
that will be considered when scheduling tasks onto cores,
something that is lacking in today’s task-centric schedulers.

To give an intuitive feeling of the logic behind our schedul-
ing algorithm we first consider how the Breadth-first (BF)
scheduler behaves thermally. The BF scheduler consists of a
single global queue. A queue in the task-centric model is a
placeholder into which tasks are spawned and made available
for execution. In the BF scheduler, an idle core will take work
from the head of the queue and spawn more work to the tail
of the queue. Figure 1 shows a thermal trace of BF executing
two applications with different thermal behavior using a single
core. Due to the way the BF works, we execute the first
application, and then execute the second benchmark. Under
a thermally constrained environment, the application is prone
to be throttled (330.5Kin the figure) for the entire duration of

the first benchmark; something that clearly can be avoided as
the other benchmark is much more cooler than the first.

Figure 1. BF thermal behavior under a no-throttle and throttled (330.5 K)
environment

Based on this knowledge, we propose a thermal-aware
scheduling algorithm we call TTI (Thermal-Task-Interleaving).
The objective the TTI-scheduler is to try to keep a user-
specified temperature (Tuser) throughout the program ex-
ecution. We make two assumptions about our application
behavior:

1) Power-consumption of previous tasks can be used to
predict the power-consumption of future tasks of the
same kind.

2) The application exposes enough parallelism so that both
power-hungry and non-power-hungry tasks are present.

Thermal interleaving is achieved by using a multiple global
queue approach. Each root-task spawned will allocate one
global queue that will hold all potential children. A root-task is
defined here as a task with no parent. We monitor the power-
consumption of each individual task executed, and update the
associated queue average power-consumption to reflect the
power behavior of future tasks spawned in the queue. The
scheduler monitors the temperature of the current core, and
pick tasks from the appropriate queues to control temperature.
Should the temperature rise above Tuser, the scheduler will
try to pick those tasks that consume the least power. If the
temperature is below Tuser, the scheduler will try to execute
power-hungry tasks. To quickly find the appropriate tasks, the
scheduler keeps a per-power sorted index list. The list is sorted
so that most-power consuming tasks are indexed at the end and
the least-power consuming tasks at the beginning. Locating a
power-hungry task is simply transversing the sorted list from
the end to the beginning and the other way around for a not
so power consuming task. The list is continuously updated
each second. Our scheduler also contains a probing mode
to keep each queue’s IPC up-to-date. The probing mode is
necessary to intercept and register application specific power
consumption changes. Pseudo-code for the scheduler from
a cores perspective is seen in algorithm 1. The scheduling



algorithm was implemented as a plugin to the Nanos++
framework operating under the OmpSs infrastructure.

Algorithm 1 TTI scheduler implementation

Schedule_Loop :
i f ( ProbeMode==ON)

{
Clear_HW_Counters ( ) ;
Get_Task_To_Probe ( ) ;
Execu te_Task ( ) ;
C a l c u l a t e _ T a s k _ P o w e r ( ) ;
Update_Queue_Power ( ) ;
ProbeMode = OFF ;

}
i f ( CurrentTemp >TargetTemp ) && ( ProbeMode==OFF)

{
Get_Low_Power_Task ( ) ;
Execu te_Task ( ) ;

}
e l s e
{

Get_High_Power_Task ( ) ;
Execu te_Task ( ) ;

}
goto Schedule_Loop ;

METHODOLOGY

Power modeling

To calculate power-consumption of an electronic device you
would ideally need a very detailed description of the device in
question. Everything from the parameters of the semiconductor
that was used (e.g. doping-levels, transistor widths), electrical
details (e.g. parasitic capacitance’s, resistances, leakage etc)
to micro-architectural details. This information is not always
available to us and even if it were it would not be feasible to
calculate this in a run-time-system due to the overhead this
would induce.

A more common approach is to derive the power-
consumption of a core using the Instruction-Per-Cycle metric.
Instruction-Per-Cycle (IPC) gives the amount of CPU activity
compared to memory accesses (or other stalling mechanism).
IPC has previously been shown [9], [1], [14] to have a
strong correlation to the power consumed by the processor. To
verify this correlation, we sequentially executed four different
benchmarks on our target architecture and recorded their IPC.
We then statically analyzed the type of instructions executed
using a simulator trace, and calculated the power consumption
using McPAT [8]. McPAT is system power, timing and area
analyzing tool, that divides the processor into blocks of
functional units and calculates the dynamic and static power
consumption of the system using a user-supplied execution
trace. McPAT was setup to model the power consumption of
a processor with capabilities that resemble the TilePro64. The
workloads consisted of four benchmarks: Fibonacci, n-Queens,
SparseLU and matrix multiplication. The workloads were
compiled with different optimization flags to receive different
IPC ratings. Since the architecture we modeled resembled the

TilePro64 architecture, compiling with an optimization level
of −O0 will generate code that does not take full advantage
of the VLIW nature of the TilePro64, and thus reduce the IPC
compared to more aggressive forms of optimization.
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Figure 2. IPC vs Power-consumption scatter plot.

Figure 2 shows the scatter plot of IPC versus the (by
McPAT) estimated power-consumption of the workloads run-
ning on one core. The graph verifies a strong correleation
between IPC and power consumption. The power model that
we used to estimate can be summarized as the equation:
Pcore = k ∗ IPC + pstatic where pstatic is the static power
consumption of the core and IPC is the instruction-per-cycle
value for the current frame.

Thermal modeling

Some of the power consumed by the processors is converted
to thermal energy. Since our experimental architecture does
not contain any thermal sensors or diodes, the power to tem-
perature calculation is performed within our run-time system.
We also require that the calculation is fast enough to reduce
the overheads and performance footprints1 on the system. We
used a method that models the temperature as a lumped RC
model, consisting of thermal capacitances and resistors. This
method has been used in previous studies [12], [6] to model the
temperature. Heat can be described as power (current source)
that is flowing through a resistance, and the temperature will
thus be the “voltage” across the thermal resistor. HotSpot [12]
is another thermal modelling tool that uses an advance model
for this, to model heat dissipation to nearby areas and different
layers of the chip. Our model is a simple RC circuit due to
the increased computational complexity needed to solve a large
RC-network.

We validated our model by running comparing our thermal-
model against HotSpot’s, assuming the same chip dimensions.
Figure 3 shows how HotSpot and our simplified model reacts
to a constant power pressure of 1.6 Watt. Although our
model estimates a higher temperature than HotSpot due to the
simplification we have made, we consider it detailed enough
for this study.

1By performance footprints we mean corruption of other cores caches or
accessing shared resources that can induce penalties for other cores.
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Figure 3. Thermal model validation

Benchmarks

We used a combination of benchmarks from the Barcelona
OpenMP Task Suite for our baseline evaluation [7]. The
benchmarks provide variability in terms of power consumption
and functionality. The benchmarks are also customizable so
that the degree of exposed parallelism can be controlled. We
chose to run the benchmark combination for up to 20 cores.
Each benchmark combination was executed three times and
the median was chosen to represent the runs. The benchmark
combination was implemented as a single application; not as
two seperate OS processes. Speedup was calculated normal-
ized to the execution time of the BF scheduler under thermal
stress. The user-specified temperature threshold, Tuser, is set
to 329K in all runs concerning the TTI scheduler.

A brief description of the benchmarks we used is given:
n-Queens: is a search-and-prune parallel benchmark that

tries to solve the N-Queens problem. Given a nxn sized
chessboard and n queens, in how many ways can all queens
be put on the chessboard so that no queen threatens another
queen.

Floorplan: is a search-and-prune benchmark that strives
to optimize the placement of blocks on a die to reduce area
required to fit all blocks. Given n blocks, in what way can
they be arranged so that the area is minimal. Unlike other
benchmarks, the generated task-graph for this application is
not always the same. This is because each task will check
if its current area is larger than what has been reported by
other tasks (that successfully placed the blocks), and prune
the search if the condition is true.

Multisort: is a parallel sorting algorithm that is composed
of two stages: sort and merge. The sort stage recursively
divides the unsorted array into sub-arrays. The sub-arrays are
sorted using combination of insertion- and quicksort. Once the
sub-arrays have been sorted, the algorithm merges the resulting
sub-arrays into a complete sorted array.

Strassen: is a parallel matrix multiplication based on
Strassen’s algorithm. The algorithm subdivides the array into
smaller arrays, and multiplies the sub-matrix separately. There
are two parameters to control the benchmark execution: sub-
matrix size and task cutoff. Task-cutoff limits the depth of the

generated task-graph and sub-matrix size determine the matrix
block sizes to be used by the algorithm.

We choose a combination of application so that each power-
hungry benchmark was coupled with one with lower power
consumption. The combinations can be seen in table I.

Table I
WORKLOADS USED FOR EVALUATING THE SCHEDULER

Workload Parameters
Sort + Strassen 80 MB Sort // 1024x1024 Strassen

Floorplan + Strassen 15 Floorplanned blocks // 1024x1024 Strassen
Floorplan + n-Queens 15 Floorplanned blocks // N-Queen 14x14
n-Queens + Strassen N-Queen 14x14 // 1024x1024 Strassen

Schedulers: We compared our results with the default
and breadth first scheduler found inside the Nanos++ / OmpSs
OpenMP framework.

Architecture

Our evaluation platform is the TilePro64 processor by
Tilera. The TilePro64 processor is a many-core processor
composed of 64 RISC-like cores. Each core runs at a clock
frequency of 700 MHz and of VLIW type. Each core has a pri-
vate 16 kB L1 data+instruction cache, and the L2 is distributed
across the chip. The description of the L2 coherence protocol
is out of the scope for this study, but is highly customizable.
The cores are connected to each other using a Network-on-
Chip (NoC). The NoC is enhanced mesh-like interconnect that
support several types of data traffic.

RESULTS

To examine the impact of our scheduler compared to other
thermally unaware schedulers, we examined how well the TTI
scheduler scales compared to BF and default. In the execution
runs, we set the thermal throttling level to 330.5K respectively
330K to illustate benefits of using our scheduler compared to
other schedulers under different throttling threshold.

Figure 4 shows all the speedup for all the combations. For
Sort+Strassen our TTI scheduler performs 4.3% better than
the default scheduler, and 26.6% better compared to BF. For
Floorplan+Strassen the increase in speedup is 9.5% compared
to default and 27% compared to BF. Note that in these com-
binations, Strassen is the power-intensive benchmark while
Floorplan/Sort is used to balance the power consumption. For
the combination n-Queens+Floorplan, the speedup increase
using our TTI scheduler is 14.7% compared to default and
over 80% increase compared to BF. n-Queens is considered to
be a power-intensive benchmark in these runs.

The combination Strassen+n-Queens is also shown to il-
lustrate the weakness of our scheduler. Strassen and n-
Queens are both power-intensive benchmarks and thus our
TTI scheduler is unable to find any workload to balance
the power-consumption with. There is therefore no speedup
increase compared to default (0.5% decrease even) since both
schedulers suffer from performance throttling. This scenario
can also occur in the other combinational benchmarks. Figure



5 shows the limitations of our TTI scheduler using the work-
loads Strassen+n-Queens and Floorplan+Sort . In the case n-
Queens+Strassen, after 23 seconds the TTI has exhausted all
low-power tasks and is forced to only execute the remaining
power-intensive tasks with an thermal throttling penalty. In the
case Floorplan+Sort, the power generated by the benchmarks
is simply not enough to even hit the user-set thermal threshold
of 329K; in this case, TTI scheduling is obsolete and leads
only to additional run-time overheads.
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Figure 4. Speedup graphs the benchmark combinations.
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Figure 5. TTI example limitations illustrated using a temperature trace.

CONCLUSION

Preliminary results show that our thermal-aware scheduler,
the Thermal-Task-Interleaving scheduler, balances availible
task workloads in a way that tries to satisify the user-set
temperature limit. Additionally, we show that if the system
is thermally constrained so that the processors are throttled
when the temperature reaches the threshold, our scheduler
outperforms two standard task-centric schedulers. The speedup
can be as high as 80% compared to the Breadth-First scheduler
and 14.7% compared to the default scheduler.
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