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1 Mathematics
1.1 Determine the one-sided Laplace transform of the following signals.

a) u(t) =
{

0, t < 0
A, t ≥ 0

, where A is a constant.

b) u(t) =
{

0, t < 0
At, t ≥ 0

, where A is a constant.

c) u(t) = e−2t for t ≥ 0.
d) u(t) = cos 5t for t ≥ 0.

Express the following in U(s), the Laplace transform of u(t).

e) u̇(t)
f) u̇(t), when u(t) = 0 for t ≤ 0.
g) ü(t)
h) ü(t), when u(t) = u̇(t) = 0 for t ≤ 0.
i) u(t− T )

1.2 Consider the differential equation

ẏ(t) + 2y(t) = u(t)

a) If u(t) is constant then ẏ(t) ≈ 0 when time goes to infinity. What value
will y(t) approach as t→∞ if u(t) = 5?

b) Determine the transfer function relating U(s) and Y (s) for the differential
equation above.

1.3 Determine the general solution of the differential equation

d3y

dt3 + 4d2y

dt2 + 5dy
dt + 2y = 3 sin(2t)

1.4 Below, differential equations that describe dynamic systems are given together
with system inputs and initial conditions. Use the Laplace transform to de-
termine the system outputs.

a)
d2y

dt2 + 3dy
dt + 2y = σ(t)

σ(t) =
{

0, t < 0
1, t ≥ 0

dy
dt (0) = y(0) = 0

b)
ẏ(t) + y(t) = u(t)

u(t) = 1 + sin t
y(0) = 0

1.5 Write the following complex numbers in polar form, that is, determine their
absolute value and argument.

a) 1 + i
b) 1+i

5i(1+
√

3i)

Write the following complex numbers on rectangular form:

c) 2eiπ3

d) 5e−iπ

1.6 A system has amplification 100. What is the amplification expressed in decibel
(dB20)? What is the amplification corresponding to 20 dB20, −3 dB20, 0 dB20,
−10 dB20, and 10 dB20 respectively?

1.7 Verify that the following rule for inversion of 2× 2 matrices holds.

A =
(
a11 a12
a21 a22

)
⇒ A−1 = 1

a11a22 − a12a21

(
a22 −a12
−a21 a11

)
1.8 Determine eigenvalues and eigenvectors of the matrix

A =

 2 −1 −1
0 3 0
−6 2 1


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1.9 Determine a transformation matrix T , such that T−1AT is a diagonal matrix,
where

A = 1
3

 6 0 −3
−1 5 −1
−2 −2 7


1.10 Characterize the range space and null space of the matrix A by specifying

bases for them. Find the rank of the matrix.

A =


2 1 2 1
0 1 1 0
3 1 3 2
1 0 1 1


1.11 What are the time functions corresponding to the Laplace transforms below?

What values will the time functions approach as time goes to infinity?

a)
F (s) = 1

s2 + s

b)
F (s) = 1

s2 − 1
c)

F (s) = 1
(s+ 1)2

1.12 The water level, y, in a tank is modelled by the differential equation

ẏ(t) + y(t) = z(t)

where z denotes the inflow. The inflow is a function of a valve position, which
in turn is controlled by the electric control signal u. The relation between
control signal and flow is given by the differential equation

z̈(t) + ż(t) + z(t) = u(t)

What differential equation relates the water level y to the control signal u?
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2 Dynamic Systems
Ra La
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Figure 2.1a

2.1 A common component in a control system is a DC-motor. A schematic picture
of the motor is shown in Figure 2.1a. The motor is characterized by a number of
physical relationships as will now be explained. The rotating axis is described
by

Jθ̈ = −fθ̇ +M,

where θ is the angle of rotation, M is the torque, J is the moment of inertia
of the load and f is the frictional coefficient.
The interplay between rotor and stator is given by

M = kai and v = kvθ̇

where i is the anchor current, ka a proportional constant characteristic for
the motor, v is voltage induced by the rotating axis and kv is a proportional
constant. The input voltage u is the control signal and θ is the output.

a) Use the equations above and Kirchhoff’s voltage law to write a differential
equation that relates u and θ. The inductance La can be neglected.

b) Determine the transfer function of the system from u to θ.
c) Study the behavior of the system by calculating θ when u is a step.

Amp MotorKΣ+
e u

−

r y

Figure 2.2a
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Figure 2.2b

2.2 A servo system for positioning of a tool in a tooling machine is depicted in
Figure 2.2a. In Figure 2.2b, the poles of the closed loop system are plotted for
different values of the gain K. Find (without calculations), for each of the step
responses in Figure 2.2c, the corresponding value of K used when generating
the step response.
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Figure 2.2c. All comparable axes have equal scaling.
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2.3 Consider the simple model of the roller depicted in Figure 2.3a. To obtain a
simple model we describe the relationship between the position of the screw
and the thickness of the sheet d1 directly after the rollers as a first order
transfer function

G(s) = β

1 + sT

To determine the constants β and T we register the effect of a sudden change
in the position of the screw. The units used in the model are chosen such that
a unit step will make an appropriately sized input for identification purposes,

and that is the input used in the experiment for which the resulting thickness
profile d1(t) is shown in Figure 2.3b. In production the thickness cannot be
measured directly behind the rollers for practical reasons, and instead the
thickness d2(t) is measured L length units after the rollers. Find the transfer
function from the position of the screws to the thickness d2. The sheet moves
with speed V .
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Figure 2.3b

2.4 The step response of the following system

G(s) = 1
s2 + s+ 1

is shown as the dashed line in each part of Figure 2.4a.

a) The step response of the system

G(s) = 1
s2 + as+ 1

is shown as the solid line in the left of Figure 2.4a. Determine if a > 1 or
a < 1.

b) The step response of the system

G(s) = b2

s2 + bs+ b2

is shown as the solid line in the right of Figure 2.4a. Find b.
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Figure 2.4a. Dashed: original system. Solid left: part a). Solid right: part b).

2.5 Pair the step responses and pole-zero diagrams in Figure 2.5a.

2.6 Consider the systems

GA(s) = 1
s2 + 2s+ 1 GB(s) = 1

s2 + 0.4s+ 1

GC(s) = 1
s2 + 5s+ 1 GD(s) = 1

s2 + s+ 1

GE(s) = 4
s2 + 2s+ 4

a) Use Matlab to plot the step responses of the systems. Find Tr (rise
time), Ts (settling time) and M (overshoot) for the five step responses.

b) Compute the poles of the systems GA(s), GB(s), GC(s), GD(s), and
GE(s) respectively.

c) How is the location of the poles related to the properties of the step
responses?

2.7 Consider a system with the transfer function

G(s) = αs+ 1
s2 + 2s+ 1

Compute and plot the step response of the system for some different values of
α in the range −10 < α < 10. How are the properties of the step response
affected by the location of the zero of the system?

Pole-zero map Step response

A
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Im
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E
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Im

F
Re

Im

Real part Time

Figure 2.5a. All comparable diagrams have equal scaling. In the pole-zero maps, imagi-
nary and real parts have equal scaling, × marks poles, and ◦ marks zeros.5



2.8 Consider a system described by the model Y (s) = G(s)U(s) as shown in
Figure 2.8a. Given G(s), how is the step response computed? How can the
step response be determined using experiments?

G
u y

Figure 2.8a

2.9 Figure 2.9a shows the step response of a system Y (s) = G(s)U(s). The input
step has amplitude 1. Use the figure and determine

a) Steady state value.
b) Overshoot M in % of the final value.
c) Rise time Tr.
d) Settling time Ts.
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Figure 2.9a

2.10 Figure 2.10a shows the step responses of four different systems. Combine each
step response with a transfer function from the alternatives below.

Transfer function Poles Zeros |G(0)|
G1(s) = 100

s2+2s+100 −1± 10i 1
G2(s) = 1

s+2 −2 1/2
G3(s) = 10s2+200s+2000

(s+10)(s2+10s+100) −10,−5± 8.7i −10± 10i 2
G4(s) = 200

(s2+10s+100)(s+2) −2,−5± 8.7i 1
G5(s) = 600

(s2+10s+100)(s+3) −3,−5± 8.7i 2
G6(s) = 400

(s2−10s+100)(s+2) −2, 5± 8.7i 2

Step A Step B

Step C Step D

Figure 2.10a. All comparable axes have equal scaling.
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Acid process flow NaOH solution

Flow with desired pH

Figure 2.11a

2.11 In the continuously stirred tank, see Figure 2.11a, an acid process flow is
neutralized by adding a concentrated NaOH solution. The acid process flow
has a tendency to vary its pH with time, which gives undesired variation of
the pH in the outflow. In an effort to reduce these variations one has decided
to use control.

a) Classify the different signals as input, output, and disturbance signal.
b) Draw a block diagram of the system with a control strategy.

q1, cA,1 q2, cA,2

V , cA

q, cA

Figure 2.12a

2.12 Two flows with different concentrations of a chemical component A are mixed
in a continuously stirred tank, see Figure 2.12a. The volume can be assumed
constant, V = 1 m3.

a) During a stationary period the values of the concentrations and flows
are, c∗A,1 = 1.0 kmol/m3, q∗1 = 1.0 m3/min, c∗A,2 = 4.0 kmol/m3 and
q∗2 = 0.5 m3/min. What are cA(t) and q(t) during this period?

b) Write down the dynamical balance equation for component A. State all
your assumptions. Is the dynamical model linear?

c) Assume that cA,1 changes value from 1.0 kmol/m3 to 1.2 kmol/m3 at
t = 0. Show that the expression for cA(t) can be written as

cA(t) = k0 + k1

(
1− e−t/τ

)
Determine the constants k0, k1 and τ .
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Figure 2.13a

2.13 The distillation plate, see Figure 2.13a, has the following variables:

Li - Liquid flow from plate i (kmol/min)

Vi - Steam flow from plate i (kmol/min)

Mi - Amount of liquid on plate i (kmol)

xi - Mole fraction of the most volatile component in the liquid on plate i.

yi - Mole fraction of the most volatile component in the steam from plate i.

Assumptions:

- Perfect mixing of liquid on the plate.

- Binary separation

- yi is in equilibrium with xi.

- The equilibrium is described by

yi = αxi
1 + (α− 1)xi

a) Write the two differential equation that describes Mi(t) and xi(t).
b) Linearize the model under the assumption that the change of the mass

on the plate is zero.
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3 Feedback Systems
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Figure 3.1a

3.1 Consider a part of a process industry, consisting of a valve and a tank. The
system is described by Figure 3.1a and the following information:

• The valve is operated electrically, and the input voltage is denoted u.
The resulting liquid flow is denoted x.

• The level in the tank is denoted y, and the flow out from the tank, v,
is determined by a pump located further down the process. The cross
section area of the tank is 1 m2.

• The pipes are always filled with incompressible liquid, so there are no
transport delays in the system.

a) Use mass balance, that is, the fact that the change in tank volume per
time unit is proportional to the difference between inflow and outflow, to
determine a transfer function Gt(s) for the tank.

b) The transfer function of the valve is assumed to be

Gv(s) = kv

1 + Ts

To find kv and T a unit step change in u has been applied. The step
response, that is, the resulting liquid flow, is shown in Figure 3.1b. De-
termine the constants kv and T .

c) Draw a block diagram of the system, in which the valve and the tank are
represented by one block each.
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0 5 10 15 20 25 30

x
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Figure 3.1b

3.2 Consider the system studied in Problem 3.1. The aim is now to control the tank
level automatically, and therefore PID feedback control is introduced according
to Figure 3.2a. This means that the valve input is determined according to
the expression

u(t) = KPe(t) +KI

∫ t

0
e(τ) dτ +KD

de(t)
dt (3.1)

where e(t) denotes the control error, that is,

e(t) = r(t)− y(t)

and r(t) denotes the reference level, that is, desired tank level.
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Figure 3.2a

a) Verify, using Laplace transform, that the relationship in (3.1) can be
expressed

U(s) = F (s)(R(s)− Y (s))

where
F (s) = KP +KI

1
s

+KDs

b) Let the PID controller be represented by a block and draw a block dia-
gram of the entire feedback control system.

c) Use the block diagram from above together with the transfer functions
Gv(s), Gt(s), and F (s), and derive the transfer functions of the closed
loop system, that is, the transfer functions from the reference level and
the outflow to the tank level.

3.3 Consider the level control system studied in Problems 3.1 and 3.2.

a) Assume that the tank level is controlled using proportional control, that
is, F (s) = KP. Compute the poles of the closed loop system for KP =

0.02 and KP = 1 respectively. How does the choice of KP affect the
properties of the closed loop system?

b) Assume that the reference level is constant, r(t) = 5, and that the outflow
is constant, v(t) = 2. Determine the steady state tank level when the
proportional feedback F (s) = KP is used. Is it possible for the output
signal to reach the desired level? What happens with the steady state
level and other properties of the closed loop system if KP is chosen very
large?

c) Assume that a PI controller is used, that is,

u(t) = KPe(t) +KI

∫
e(τ) dτ

What can be said about the steady state tank level in this case? What is
the possible benefit of introducing the integrating part in the feedback?

d) Finally, assume that a PD controller is used, that is,

u(t) = KPe(t) +KD
de(t)

dt
Assume also that KP = 1 and calculate a value of KD so the damping
ratio of the closed loop poles will be greater than 1/

√
2. This corresponds

to placing the poles in the grey area in Figure 3.3a. What is the benefit
of including the derivative part in the feedback?

1

1
Re

Im

Figure 3.3a

3.4 Figure 3.4a shows the block diagram for a hydraulic servo system in an auto-
matic lathe (Swedish: svarv). The output signal y(t) represents the position of
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Figure 3.4a

the lathe tool (Swedish: svarvstål), yref(t) is the desired position of the lathe
tool, m is the mass of the tool slide (Swedish: verktygsslid) and the hydraulic
piston (Swedish: kolv), d is the viscous damping of the tool slide, F (s) is the
transfer function for the controller, fc is the cutting power.

a) How large, in steady state, is the error e(t) between the actual value of the
lathe tool and its desired reference value, when there is a step disturbance
in the cutting power fc(t)? The controller is assumed to be an amplifier
with a constant gain F (s) = K.

b) How is this error changed if the amplifier is replaced by a PI controller
with transfer function F (s) = K1 +K2/s?

3.5 Consider the system

Y (s) = G(s)U(s) = 0.2
(s2 + s+ 1)(s+ 0.2)U(s).

a) Suppose G(s) is controlled by a proportional controller with gain KP,
that is,

U(s) = KP(R(s)− Y (s)).

Use Matlab to compute the closed loop system, and to plot the step
response of the closed loop system. Choose some values for KP in the
range 0.1 to 10. How are the properties of the step response affected by
KP? What happens with the steady state error when KP increases? Is
it possible to obtain a well damped closed loop system and small steady
state error using proportional control?

b) Let us now introduce integration in the regulator and use

U(s) = (KP +KI
1
s

)(R(s)− Y (s)).

Put KP = 1 and try some values of KI in the range 0 < KI < 2. How are
the step response and the steady state error affected by the introduction
of the integrating part and the value of KI?

c) Finally we will introduce the differentiating part in the regulator and use

U(s) = (KP +KI
1
s

+ KDs

sT + 1)(R(s)− Y (s)).

Since true differentiation is difficult to implement, the derivative part is
approximated by KDs

1+sT . (This will low-pass filter the error signal before
differentiation.) Put KP = 1,KI = 1 and T = 0.1 and try some values
of KD in the range 0 < KD < 3. How does the D-part affect the step
response of the closed loop system?

Σ Go(s)+
−

Figure 3.6a

3.6 Draw a root locus with respect to K for the system in Figure 3.6a, with Go(s)
given below. For which values of K are the systems stable? What conclusions
on the principal shape of the step response can be drawn from the root locus?

a) A Ferris wheel (Swedish: Pariserhjul):

Go(s) = K(s+ 2)
s(s+ 1)(s+ 3)

b) A Mars rover:

Go(s) = K

s(s2 + 2s+ 2)

c) A magnetic floater:

Go(s) = K(s+ 1)
s(s− 1)(s+ 6)
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Figure 3.7a

3.7 Consider the servo system in Figure 3.7a with a DC-motor. Suppose that the
angular velocity can be measured with a tachometer and let the control law
be as in the block diagram. Let τ = 0.5 and k = 2.

a) Draw the root locus with respect to K for the system without the
tachometer feedback (that is, α = 0).

b) Draw the root locus with respect to K for α = 1.

c) Draw the root locus with respect to K for α = 1/3.

d) Let K = 1 and draw the root locus with respect to α.

Discuss, using the results from a), b), c), and d), what is gained by using the
tachometer.

δ

θ

Figure 3.8a

3.8 Consider an aircraft where the pitch angle θ is controlled by the elevator
deflection (Swedish: höjdroderutslag) δ, see Figure 3.8a. Let ω be the angular
velocity,

ω = θ̇.

If we consider small deviations from a reference value θ0, we get the transfer
function from δ to ω for a specific aircraft as

G2(s) = s+ 1
(s+ 4)(s− 3)

This model is valid when the aircraft is flown with a large θ0. The elevator
(Swedish: höjdroder) is driven by a hydraulic servo amplifier with the transfer
function

G1(s) = 10
s+ 10

from elevator command δref to δ.

a) What happens with ω if one gives a constant elevator command δref?
Motivate!

b) The angular velocity ω is measured and a control law is used so that the
input δref to the servo amplifier is

K(ωref − ω).

Draw root locus with respect to K. For which values of K is the system
stable?

c) Is there any value of K such that the closed loop system is stable and all
poles are real?

1
(s+ 1)(s+ 10)

ΣΣ 1
s

K1

K2

+ +
θ̇

−−

θref θ

Figure 3.9a

3.9 The block diagram in Figure 3.9a shows a cascade controlled DC-motor where
K1 > 0 and K2 > 0.

a) Draw root locus with respect to K2 for the characteristic equation of
the closed loop system. For which K2 > 0 are the closed loop system
asymptotically stable?
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b) How is the stability requirement on K2 affected by the size of the velocity
feedback K1?

3.10 We want to control the temperature of an unstable chemical reactor. The
transfer function is

1
(s+ 1)(s− 1)(s+ 5)

a) Use a proportional controller and draw a root locus with respect to the
amplification K. Calculate which K in the compensator that stabilizes
the system.

b) Use a PD controller. The control law is given by

u = K(e+ TD
de
dt )

where e is the error. Let TD = 0.5 and draw a root locus with respect to
K. For which values of K does the controller stabilize the system?

k

s(s + 2)

a

s + a

Σ

Σ

+
u

+
ymyf

−

+

r y

Measurement
noise

Figure 3.11a

3.11 Consider the system in Figure 3.11a. In a realistic situation what you really
measure is not y(t) but a signal ym(t) which is the sum of y(t) and measurement
noise. To avoid that the control is based on noisy measurements one uses yf(t)
instead of ym(t). The signal yf(t) is ym(t) filtered through the low pass filter

a

s+ a

a) First we assume that the measurement noise is negligible. Choose k = 6.
Draw a root locus for the closed loop system with respect to the time
constant of the low pass filter 1/a. Find for which a > 0 the system is
stable.

b) Use k = 6 and assume that the noise is a high frequency sinusoid. The
amplitude of yf when

ym(t) = sin(10t)

is used as a measurement of how effective the noise reduction is. What is
the smallest value you can obtain (after transients) by choosing a suitable
a. We also want y to tend to the steady state value 1 when r(t) is a unit
step.

3.12 Figure 3.12a shows the root locus for the characteristic equation of a P-
controlled process G with respect to the gain K. In Figure 3.12b four step
responses for the closed loop system with different values of K are shown.
Match the plots in Figure 3.12b with the K-values below. Justify your an-
swer.

K = 4 K = 10 K = 18 K = 50

-4 -2 2

-2

2

Re

Im

Figure 3.12a. Starting points are marked × and end points ◦.
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Figure 3.12b. All comparable axes have equal scaling.

3.13 Consider a system with the transfer function

G(s) = sn−1 + b1s
n−2 + · · · bn

sn + a1sn−1 + · · ·+ an

that has all zeros strictly in the left half plane. Show that such a system always
can be stabilized by

u(t) = −Ky(t)

if K is selected large enough.

Lake

Dam Dam

qdam

qin qout

Figure 3.14a

3.14 We want to control the level in a lake by controlling the flow using flood gates,
see Figure 3.14a. The relationship between changes in the level of the lake,

h∆, and changes in the flows, qin,∆ and qout,∆, is given by

d
dt (Ah∆) = qin,∆ − qout,∆

where A is the area of the lake. In order to try to keep the level of the lake
constant the flows through the lake are controlled at the inflow such that

qdam,∆ = K(href,∆ − h∆)

where href,∆ is the reference value. The reservoir that controls the outflow
is controlled so that qout is constant, that is, qout,∆ = 0. Since it takes time
before a change in qdam gives a result in qin we have

qin,∆ = qdam,∆(t− T )

where T = 0.5 hours. How large can the quotient K/A be at the most before
the system becomes unstable?

Σ K G(s)+
−

Figure 3.15a

3.15 A system G(s) is controlled using feedback with a proportional controller ac-
cording to Figure 3.15a.

a) For K = 1, the open loop system KG(s) has the Nyquist diagram ac-
cording to (i), (ii), (iii), or (iv) in Figure 3.15b. Is the closed loop system
stable in each case? G(s) has no poles in the right half plane.

b) If K > 0, for which values of K are the different closed loop systems
stable?

3.16 a) Draw the Nyquist curve for an integrator G(s) = 1/s.
b) Draw the Nyquist curve for the double integrator G(s) = 1/s2.
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Figure 3.15b

3.17 The system G(s) is asymptotically stable and has the Nyquist curve in Fig-
ure 3.17a. It is controlled using feedback according to Figure 3.17b.

a) For what values of K (K > 0) is the closed loop system asymptotically
stable?

b) Determine the steady state error, e, as a function of K if yref is a unit
step.

c) Assume that G is controlled using an I controller according to Fig-
ure 3.17c. For what values of K is the closed loop system stable?

−1.5 2

−3

Re

Im

ω = 0

ω = 2

ω = 10 ω =∞

Figure 3.17a

Σ K G(s)+
e

−

yref y

Figure 3.17b

Σ K

s
G(s)+

e

−

yref y

Figure 3.17c

3.18 Consider the DC-motor
τ ÿ(t) + ẏ(t) = u(t)

It is controlled by
u(t) = K(r(t− T )− y(t− T ))

Here τ and T are positive constants. K is slowly increased until the system
oscillates with the angular frequency ω = 1. K is then set to 33% of this
value. After a while the system starts to oscillate again, now with the angular
frequency ω = 0.5. This is due to the fact that the time delay T has changed
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to T1. Can the parameters τ , T , and T1 be decided from these data? If so
determine τ , T and T1.

Σ F (s) G(s)+
e

−

yref y

Figure 3.19a

3.19 A system G(s) is to be controlled using the regulator

F (s) = K

s+ 1

according to the Figure 3.19a. The controller has positive gain K that, how-
ever, is not completely known. For what values of K is the closed loop system
asymptotically stable? The Nyquist curve for G(s) is given in Figure 3.19b.

1

1

Re

Im

ω = 1/
√

3

ω = 1

ω =
√

3 ω = 0
ω =∞

Figure 3.19b

3.20 The Nyquist curve for the system G(s) = B(s)
A(s) can be seen in Figure 3.20a.

Determine which one of the root loci in Figure 3.20b that matches

A(s) +KB(s) = 0

for this system.

0.25

−0.25
Re

Im

Figure 3.20a

3.21 The system 1
s(s+1) with input u and output y has the controller

U(s) = F (s)(R(s)− Y (s)) F (s) = b0s
2 + b1s+ b2

s

How should the coefficients of F be chosen to achieve pure P, pure I and pure
D control respectively?

3.22 The equations for the P, PI, and PID controllers to be used in this problem
are given in Problem 3.5.

a) Let the system

Y (s) = G(s)U(s) = 0.2
(s2 + s+ 1)(s+ 0.2)U(s)

be controlled by a proportional controller with gain KP. Use Matlab
to plot the root locus with respect to KP of the characteristic equation
of the closed loop system. For which values of KP > 0 is the closed loop
system asymptotically stable?

16



Re

Im

Re

Im

Root locus A Root locus B

Re

Im

Re

Im

Root locus C Root locus D

Figure 3.20b. Starting points (K = 0) are marked ×, and end points (K → ∞) are
marked ◦. All diagrams have equal scaling.

In Problem 3.5, we found that the step response was slow but well damped
for small values of KP, while it became faster but more oscillatory when
KP was increased. For large values of KP the system became unstable.
We also found that the steady state error was reduced when KP was
increased. Can these results be interpreted using the plot of the root
locus?

b) Now assume that the system is controlled by a PI controller where KP =
1. Plot the root locus of the characteristic equation, with respect to
KI, and determine for which values of KI > 0 the closed loop system is
asymptotically stable.
Problem 3.5 showed that an integrator eliminates the steady state error.

A small value of KI gives a large settling time, while a too large value
gives an oscillatory, and perhaps unstable closed loop system. Give an
interpretation of these results using the root locus.

c) Finally, let the system be controlled by a PID controller where KP = 1,
KI = 1 and T = 0.1. Plot a root locus of the closed loop characteristic
equation, with respect to KD > 0, and relate the behavior of the root
locus to the simulation result in Problem 3.5, that is, that the derivative
part increases the damping of the closed loop system, but a too large KD
will give an oscillation with a higher frequency, and finally an unstable
closed loop system.

3.23 Consider the system

Y (s) = G(s)U(s) = 0.2
(s2 + s+ 1)(s+ 0.2)U(s).

a) Use Matlab to plot the Nyquist curve of the open loop system when
G(s) is controlled by a proportional regulator. Try some different values
of KP and find for which KP the closed loop system is asymptotically
stable. Compare your results with those from Problem 3.22a.

b) Assume now that the system is controlled by a PI controller where KP =
1. Investigate how KI affects the Nyquist curve and determine for which
values of KI the closed loop system is asymptotically stable. Do you get
the same results as in Problem 3.22b?

c) Finally test a PID controller with KP = 1, KI = 1 and T = 0.1 (cf
Problem 3.5). How is the Nyquist curve affected by the value of KD?

3.24 a) Assume that the system

Y (s) = G(s)U(s) = 0.4
(s2 + s+ 1)(s+ 0.2)U(s)

is controlled by a proportional controller where KP = 1. Use Matlab
to make a Bode plot of the open loop system and determine ωc (gain
crossover frequency), ωp (phase crossover frequency), ϕm (phase margin)
and Am (gain margin) respectively. Compute the closed loop system and
plot the step response.

b) Now let KP = 2.5. How does the change of KP affect ωc, ωp, ϕm, and
Am ? Simulate the step response of the closed loop system and plot the
result. How have the properties of the step response changed?
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c) How much can KP be increased before the closed loop system becomes
unstable? How does this value relate to the value of Am that was obtained
for KP = 1? Compute and plot the step response of the closed loop
system for this value of KP. How does the closed loop system behave in
this case?

3.25 A system is controlled by a PID controller,

U(s) = (KP +KI
1
s

+KDs)E(s)

In Figure 3.25a four step responses from a unit step for the parameter triples

i) KP = 1 KI = 0 KD = 0
ii) KP = 1 KI = 1 KD = 0

iii) KP = 1 KI = 0 KD = 1
iv) KP = 1 KI = 1 KD = 1

are shown. Match each one of the parameter triples to one of the step re-
sponses. Justify your answer!

3.26 Assume that a DC-motor of the type described in Problem 2.1 is controlled
by a proportional controller, that is, u(t) = KP(θref − θ).

a) Write down a block diagram for the control system. Compute the closed
loop transfer function and determine how the poles of the closed loop
system depend on the control gain KP. Discuss what this means for the
behavior of the system for different values of KP.

b) Determine the transfer function from the reference signal to the error.
Let the reference signal be a step and a ramp respectively and determine
what the control error will be in steady state in these two cases.

c) Let the controller be a PI controller. What will the steady state error be
in this case if the reference signal is a ramp?

3.27 Determine the transfer function for the loop gain and the closed loop system
for the control system given by the block diagram in Figure 3.27a.

3.28 Figure 3.28a shows a block diagram of a control system. Determine the transfer
function

1 1

1 1

A B

C D

Figure 3.25a. Four step responses. All comparable axes have equal scaling.

Figure 3.25b

Go(s)Σ

−1

+
u

+

r y

Figure 3.27a

a) of the loop gain,
b) of the closed loop system from R(s) to Y (s),
c) from the disturbance N(s) to the output Y (s),
d) from the reference signal R(s) to the error signal E(s).

3.29 Consider again the control system in Figure 3.28a, with n = 0 and

G(s) = 1
(s+ 1)(s+ 3)

a) Assume F (s) = K. Determine the steady state control error when r(t) is
a step.
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Figure 3.28a

b) Determine a regulator F (s) such that the steady state error is zero when
r(t) is a step.

c) Assume F (s) = 1. Determine the poles and zeros of the closed loop
system.

3.30 The system
Y (s) = 1

(s/0.6 + 1)(s+ 1)U(s)

is controlled using PID feedback

U(s) = (KP +KI
1
s

+KDs)(R(s)− Y (s))

Figure 3.30a shows the step responses for the following four combinations of
coefficient values. Combine the step responses and coefficients.

(1) KP = 4 KI = 0 KD = 0
(2) KP = 4 KI = 3 KD = 0
(3) KP = 4 KI = 1 KD = 0
(4) KP = 4 KI = 0 KD = 4

3.31 Continuously stirred tanks have an extensive use in chemical processes. They
are often supplied with some sort of heat exchange system. If the tank is used
for a chemical or biochemical reaction it is often important to keep a certain
temperature to obtain desired productivity. A continuously stirred tank with
a common type of heat exchange system is shown in Figure 3.31a. The tank
is surrounded with a heating/cooling layer in which a liquid flows through in
order to heat or chill the liquid in the tank.

1 1

1 1

A B

C D

Figure 3.30a. Four step responses. All comparable axes have equal scaling.

a) Determine the important signals of the system. Suggest a control strategy
based on feedback and draw the block diagram.

b) To be able to construct and evaluate different controllers it is necessary
to have a process model. Determine a dynamical model for this system.
Assume that the volumes in the tank and in the heat exchange system
are constant.

c) Linearize the model. (Stationary values: T ∗t = 50.0 ◦C, T ∗c = 75.0 ◦C.)
d) The parameters of the model are as follows

ρt = ρc = 1000.0 kg/m3 cpt,in = cpc = 4.2 kJ/kg◦C U = 672 kJ/◦Cmin
Ft = 0.1 m3/min Fc = 0.2 m3/min Vt = 1.0 m3 Vc = 1.0 m3

Tt,in = 10.0 ◦C Tc,in = 95.0 ◦C

Determine the transfer function from flow in the heat exchange system
to the temperature in the tank.

e) Let the system be controlled by a P controller. Draw the root locus for
the system.
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Vt, Tt

Tank

Cooler
Fc, Tc

Fc,in, Tc,in

Ft,in, Tt,in

Ft, Tt

Figure 3.31a. Process consisting of a tank and a cooler. Input flows have a “in” subscript,
while outputs have no such subscript since they are also the same as the quantities found
inside the tank or cooler.

3.32 Consider a continuously stirred tank with a cooling system. In the tank a
component A reacts to form component B in an exothermic reaction. This
reaction is unstable, but possible to stabilize with feedback. A model for the
purpose of control has been established

Y (s) = −1
s2 + 2s− 3U(s)

where y(t) is the temperature in the tank and u(t) is the cooling flow.

a) Show that the system is unstable.
b) Prove that the system can be stabilized by a P controller.

3.33 Bacterial growth is described by the equation ẏ = µy where y is the amount
of bacteria and µ is a positive constant. Assume that we have a control signal
u available that affects the speed of growth so that

ẏ = µy + u

One can then use a P controller u = K(r − y) where r is a reference signal.
For which K-values will the system approach an equilibrium?

3.34 While working in space an astronaut has to be able to move. Necessary force
is obtained by letting out gas from thrusters. For such a positioning control
system the control law

u = K1(r − y)−K1K2
dy
dt

is used, where u = thruster force, r = set point for the astronaut’s position
and y = the actual value of the astronaut’s position. Draw a block diagram of
the system, and use physics (Newton’s law) to make a model of the astronaut.
Also determine K1 and K2 such that

• If the set point r(t) = t there has to be a time T0 so that |r(t)− y(t)| < 1
for t ≥ T0.

• The damping ratio of the closed loop system will be 0.7. The mass of the
astronaut is assumed to be 100 kg, equipment included.
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4 Frequency Description
4.1 A mercury thermometer can be described with high accuracy as a first order

linear time invariant dynamic system. The input is the real temperature and
the output is the thermometer reading. In order to decide the transfer function
in a thermometer it is placed in liquid where the temperature is varied as a
sinusoid. The obtained result is shown in Figure 4.1a. Find the transfer
function of the thermometer.

0

28

30

32

30.9

29.1

0.056 min

Period = 0.314 min

Transient Stationary state

Bath temperature

Thermometer
reading

Figure 4.1a

4.2 We want to keep a ship on a given course, Ψ, with an automatic control system
using the rudder angle δ. See Figure 4.2a. If ω denotes the angular velocity of
the ship,

ω = Ψ̇ (4.1)

the following differential equation is valid for small values of ω and δ,

T1ω̇ = −ω +K1δ (4.2)

where T1 = 100 and K1 = 0.1. The desired course, Ψref , and the measured
course, Ψ, are fed in to the auto pilot, which gives the signal u to the rudder

δ

Ψ

Figure 4.2a

Σ F (s) Gr(s) Gs(s)+
e u δ

−

Ψref Ψ

Figure 4.2b

engine. Figure 4.2b shows a block diagram of the auto pilot. The auto pilot
has the transfer function

F (s) = K
1 + s

a

1 + s
b

, a = 0.02, b = 0.05

while Gr is given by
Gr(s) = 1

1 + sT2
, T2 = 10

and Gs(s) is defined by (4.1) and (4.2).

a) Make a Bode plot for the transfer function FGrGs, for K = 0.5.
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b) At the testing of the auto pilot we do the following experiment. The gain
of the auto pilot K is increased until the control system oscillates with
constant amplitude. At what value of K does this occur? What is the
period time of the oscillation?

c) Ψref is allowed to vary as a sinusoid

Ψref(t) = A sinαt

where A = 5◦ and α = 0.02. When the movements of the ship have
stabilized we have

Ψ(t) = B sin(βt+ ϕ)

What values do B, β, and ϕ have if K = 0.5?

1

1

Re

Im

Figure 4.3a

4.3 a) In Figure 4.3a the Nyquist curve for a system is shown. Draw the Bode
plot for the same system. The scale on the ω-axis is not important, as
long as the amplitude and phase curve are in agreement.

b) Draw a diagram for the poles and zeros for the system. The relative
placement is important, not the scale.

4.4 Figure 4.4a shows the step responses (when the input is a unit step) and Bode
gain plots of four different systems, in no particular order. Identify the pair
of plots that belongs to each system. That is, for each step response, find the
corresponding Bode gain plot (amplitude curve). Motivate your answer by
pointing out a set of unique features for each system.

Step response Bode plot

A 1

0

1

B 1

0

1

C 1

0

1

D 1

0

1

Time Frequency

Figure 4.4a. All comparable diagrams have equal scaling.

22



4.5 a) Consider the transfer functions GA(s), GB(s), GC(s), GD(s), and GE(s)
in Problem 2.6.

GA(s) = 1
s2 + 2s+ 1 , GB(s) = 1

s2 + 0.4s+ 1

GC(s) = 1
s2 + 5s+ 1 , GD(s) = 1

s2 + s+ 1

GE(s) = 4
s2 + 2s+ 4

Study the amplitude curves of the Bode plots for the systems and find
the static gain and bandwidth of the systems. In cases when it is relevant
find also the resonance frequency and resonance peak.

b) Describe qualitatively (without formulas) the relationships between Tr
(rise time) and ωB (bandwidth) and between M (overshoot) and Mp
(resonance peak) respectively?

4.6 A system has the transfer function

G(s) = e−2s

s(s+ 1)

What is the output (after transients) when the input is

u(t) = 2 sin(2t− 1/2)

4.7 For the systems below the input is chosen as u(t) = sin(2t). Determine the
output signal y(t) after transients have faded away, provided that it exists.

a) Y (s) = 1
s+1U(s)

b) Y (s) = 1
s−1U(s)

c) Y (s) = 1
(s+1)(2s+1)U(s)

d) Y (s) = e−0.5s

s+1 U(s)

4.8 A system is described by Y (s) = G(s)U(s). Figure 4.8a shows u(t) = sin(ωt)
and the corresponding output y(t) (after all transients have faded away) for
the frequencies ω = 1, 5, 10, and 20 rad/s (from top to bottom).

a) Determine the gain (|G(iω)|) and phase (argG(iω)) for the system for
each value of ω.

b) Determine the gain values in dB20 (20 log10(|G(iω)|)).
c) Sketch the Bode plot using the values determined above.

4.9 Combine the transfer functions below with the Bode plots in Figure 4.9a.

G1(s) = 1
s+ 1 , G2(s) = 6(s+ 1)

(s+ 2)(s+ 3)

G3(s) = 1
s
, G4(s) = 1

s(s+ 1)

G5(s) = 5
s2 + 2s+ 5 (poles: − 1± i2)
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Figure 4.8a. u(t) = sin(ωt) (solid) and y(t) (dashed).

1 1

Bode gain A Bode gain B

1 1

Bode gain C Bode gain D

1

Bode gain E

Figure 4.9a. All diagrams have equal scaling.

4.10 Figure 4.10a shows the Bode gain plots and step responses of four different
systems, in no particular order. Identify the pair of plots that belongs to
each system. That is, for each Bode gain plot (amplitude curve), find the
corresponding step response. Motivate your answer by pointing out a set of
unique features for each system.
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Figure 4.10a. All comparable diagrams have equal scaling.

Σ F (s) G(s)+
e u

−

yref y

Figure 4.11a

4.11 The pH in a biochemical reactor is controlled by addition of a base. The
transfer function G(s) from added base to pH for the open system has been
determined by experiments to be

G(s) = 1.7
(s+ 1)(0.7s+ 1)(0.5s+ 1)

In a attempt to control the pH the control structure shown in Figure 4.11a is
employed

a) Make a Bode plot for the transfer function G(s).
b) Assume that a P controller is used (F (s) = K). At what value of K does

the pH start to oscillate with constant amplitude?

25
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Figure 4.12a

4.12 Consider the biochemical reactor in Figure 4.12a. It is desirable to control
the concentration of biochemical material cX (output y) by manipulating the
dilute flow qF (input u). A model of this system can be described as

Y (s) = 2e−5s

30s+ 1U(s)

where the time delay reflects the time it takes to measure the biochemical
concentration. The bode digram of the system is shown in Figure 4.12b.

a) For which values of K is a P controller going to stabilize the system?
b) Construct a controller which has the crossover frequency ωc,d = 0.1 and

no steady-state error.
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Figure 4.12b
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5 Compensation

Σ F (s) 0.1
(s + 0.1)(s + 0.5)

4
s2 + 0.4s + 4

Controller Motor Mechanical resonance

+
−

ωref ω

Figure 5.1a

5.1 The block diagram for speed control of a DC-motor is shown in Figure 5.1a.
Find a compensator F (s) such that the following specifications are fulfilled.

• The system should be twice as fast as for F (s) = 1, but with the same
damping as for F (s) = 1.

• If ωref is constant, |ωref − ω| /ωref should be less than 5%.
• The controller should not be unnecessarily sensitive for high frequency
disturbances and the open loop system’s low frequency amplification
should not be larger than necessary.

u

A

B

Figure 5.2a

5.2 The outflow temperature θ in the liquid A can be controlled in a heat exchanger
by controlling the flow of the liquid B by a valve with the setting denoted u.

See Figure 5.2a. Measurements have been made using a sinusoidal input u
and the gain and phase shift have been measured at different frequencies. The
results are given in the following table.

Frequency [rad/s] Gain Phase shift
0.05 1.37 −67◦
0.1 0.80 −106◦
0.2 0.34 −153◦
0.3 0.18 −185◦
0.4 0.11 −210◦

a) Make a Bode plot for the system.
b) What is the largest crossover frequency possible to achieve when using

proportional control and wanting a phase margin of at least 50◦?
c) Suggest a compensator that doubles the speed compared to b) and still

keeps the phase margin.

5.3 A hydraulic system with a valve and a piston is described by the following
linearized transfer function

G(s) = ku/A

s( s2
ω2

0
+ 2ζ s

ω0
+ 1)

where A is the area of the piston and ku the hydraulic gain.

a) Make a Bode plot for the system when ω0 = 150 rad/s, ζ = 0.1, and
ku/A = 20.

b) What is the smallest value of the ramp error that can be achieved using
proportional control if we want an amplitude margin of 2? What is the
crossover frequency in this case?

c) Suggest a compensator such that the ramp error decreases 15 times at
the same time as the crossover frequency, phase margin and amplitude
margin will be the same as in b). Due to physical constraints in the
implementation, this regulator has to have finite amplification at all fre-
quencies.
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Σ F (s) km

s(1 + sTm)(1 + sTe)+
e u

−

θref θ

Figure 5.4a

5.4 Figure 5.4a shows a position servo including a DC-motor. The extra time
constant Te is due to the inductance in the winding of the motor, which is
usually not taken into account. The parameter values are km = 10, Tm = 0.1
and Te = 0.01. We want the servo to fulfill the following specifications:

• Rise time ≤ 0.1 s.
• Overshoot ≤ 10%.
• The steady state error at step in θref should be zero.
• The steady state error when θref is a ramp with slope 10◦/s should be
less than 0.1◦.

Suggest a compensator such that the specifications are fulfilled. (Clue: Sup-
pose that the relationship between rise time, overshoot, and other specifi-
cations are the same as for a second order system, that is, according to
Figures 5.4b and 5.4c in Solution 5.4 (the figures can also be found in
Glad&Ljung).)

5.5 In Figure 5.5a we have arranged step responses and open loop and closed loop
(feedback with −1) Bode plots for five different systems. Identify the three
plots that belong to each of the five systems, one open loop and one closed
loop Bode plot and one step response. Motivate your answer by pointing out
one unique feature for each system.

Bode plot
Open loop system

Bode plot
Closed loop system

Step response
Closed loop system

A
1

0◦

-180◦

1 1

0

B
1
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1 1

0
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1 1

0

D
1

0◦

-180◦

1 1

0

E
1

0◦

-180◦

1 1

0

Frequency Frequency Time

Figure 5.5a. All comparable diagrams have equal scaling.
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Σ F (s) 1
1 + sT

km

s(1 + sT1)(1 + sT2)+
e u

−

θref θ

Figure 5.6a

5.6 A DC-servo is described by the block diagram in Figure 5.6a, where T1 = 50 ms
is a mechanical time constant, km = 10 is a proportional constant, T2 = 25 ms
is an electrical time constant, and T = 10 ms is an amplifier time constant.
The system is tested with F (s) = 1 and we find that the dynamic properties
are satisfactory but that the system is somewhat too slow. Find an F (s) so
that the closed loop system is twice as fast as for F (s) = 1, without increasing
the overshoot. F (s) should also give a closed loop system which fulfills the
following accuracy demands:

• |θ − θref | ≤ 0.001 rad in steady state when θref is constant.
• When θref is a ramp with slope 10 rad/s we should have |θ − θref | ≤

0.01 rad in steady state.

Σ K G(s)+
−

Figure 5.7a

5.7 The amplitude curves and the phase curves in Figure 5.7b have been measured
for a system without poles in the right half plane. The system is controlled
using feedback according to Figure 5.7a. Use the Nyquist criterion to decide
for which values of K the closed loop system is stable (K > 0).

5.8 A block diagram for a control system with time delay is shown in Figure 5.8a.
The system G1 has no poles in the right half plane.

a) G1 has a Bode plot according to the plot in Figure 5.8b. Determine for
what values of the time delay T the closed loop system is stable.

b) The same as in a), but for the plot in Figure 5.8c.
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Σ F (s) Amplifier Motor+
e u

−

r y

Figure 5.9a

5.9 A servo system based on a DC-motor has to be designed. A block diagram for
the system is given in Figure 5.9a. By measuring the phase shift and the gain
at different frequencies the Bode plot for the motor, see Figure 5.9b, has been
determined. The amplification is a system of the first order, that is, it has the
transfer function

GA(s) = kA

s+ a
.

In order to find the constants kA and a, a unit step experiment has been
carried out on the amplifier, giving the output shown in Figure 5.9c.

a) Find the constants kA and a from Figure 5.9c. Also draw the Bode plot
for the open loop system, that is, the system from u to y.

b) Find a compensator F (s), such that the closed loop system fulfills the
following demands:
� The system has to be 5 times as fast as when using F (s) = 1.
� The overshoot should not be larger than for F (s) = 1.
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Figure 5.10a

5.10 A system G(s) can be split into two sub-systems

G(s) = G1(s)1
s

according to Figure 5.10a. The Bode plot for G1(s) is given in Figure 5.10b.
Find a compensator for the system G(s) such that the following is fulfilled:

• The phase margin for the compensated system is 40◦.
• The closed loop system is twice as fast as what is possible to achieve using
proportional control with a 40◦ phase margin.

• The steady state error when the reference signal is a ramp is 1% of the
corresponding error with proportional control and 40◦ phase margin.
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5.11 The Bode plot for a system is given in Figure 5.11a.

a) Draw the Nyquist curve of the system.
b) Assume that the system is controlled using the proportional feedback

U(s) = K(R(s)− Y (s))

For which K > 0 is the closed loop system asymptotically stable?
c) Assume that we choose K = 2 in the proportional controller in problem

b). What will the steady state error be when r(t) = 10t?
d) Assume that y(t) is delayed T seconds. How large is T allowed to be in

order for the system to still be asymptotically stable with K = 2?
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5.12 a) A plot of the amplitude curve of a stable transfer function Go(s) is given
in Figure 5.12a. Choose one of the following alternatives regarding the
stability of the closed loop system Go

1 +Go
:

1. It is stable.
2. It is not stable.
3. Impossible to determine given these facts only.

b) Repeat for the transfer function whose amplitude curve is given in Fig-
ure 5.12b. Justify your answers carefully.
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5.13 Consider the relation
Y (s) = G(s)U(s)

where
G(s) = 725

(s+ 1)(s+ 2.5)(s+ 25)

a) Assume that the system is controlled by

U(s) = F (s)(R(s)− Y (s))

where F (s) = 1. Find ωc, ωp, ϕm, and Am for the loop gain.
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b) Compute a regulator such that the open loop system fulfills the following
requirements:
(i) ωc = 5
(ii) ϕm ≥ 60◦

and the closed loop system fulfills:
(iii) e0 = 0
Draw the Bode plot of the compensated open loop system and check
that the requirements are satisfied. Simulate the closed loop system for
a step in the reference signal and plot the step response. Check that the
requirement on the steady state error is satisfied.

c) Draw the amplitude curve of the Bode plot of the closed loop system with
and without the compensator. Describe how the properties of the closed
loop system have been changed by the compensation.

d) Simulate the control error when the reference signal is a ramp and the
regulator designed in b) is used. Is the stationary error zero?

5.14 When using microorganisms in production it is important to keep the oxygen
concentration at a certain level to get maximum productivity. There are many
ways to control the amount of dissolved oxygen, in this example we will use
the speed of stirring as the controlled signal. The transfer function from the
stirrer speed N∆ to the oxygen measurement Op∆ becomes (linearized model)

G(s) = b

s+ T1

e−sτ

1 + sT2

The parameters τ = 2 s, T2 = 20 s and b = 0.02 remain constant with change
in stirrer speed while T1 can vary from 0.02 s−1 to 0.224 s−1 as the stirrer
speed increases from 400 r/min to 1200 r/min. A Bode plot for G(s) is given
in Figure 5.14a. Construct a controller, for the 1200 r/min case, which has a
crossover frequency ωc = 0.2 rad/s, a phase margin ϕm = 60◦ and no steady-
state error.

5.15 Earlier in the history of the basic automatic control courses at LiTH, the lead
and lag compensators were parameterized in a different way. This parameteri-
zation is used in this problem, which is not only meant to be a crash course in
understanding exams with solutions dating back to those days, but should be
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Figure 5.14a. Solid line: 400 r/min. Dash-dotted line: 1200 r/min.

seen as a chance of practicing the ideas of loop shaping rather than exercising
recipe knowledge.
The old parameterization of a lead compensator looked as follows:

Flead(s) = N
s+ b

s+ bN

The schematic Bode plot of such a lead compensator is shown in Figure 5.15a,
and it can be shown that the maximum phase lead is obtained at the frequency
b
√
N , where the gain is

√
N , and the phase lead is given by

ϕmax = arctan
√
N − 1/

√
N

2
(shown in Figure 5.15b).
The old parameterization of a lag compensator looked as follows:

Flag(s) = s+ a

s+ a/M

The schematic Bode plot of such a lag compensator is shown in Figure 5.15c.
Just like the parameter τI of the new parameterization, the parameter a used
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here shall be determined as a trade-off between the undesirable phase lag and
the bandwidth of the desirable low frequency gain. As a rule of thumb, one
may use a = 0.1ωc,d as an initial guess, and iteratively improve from there.
The worst phase lag for this choice of a is about 5.7◦.

b

1

b
√

N

√
N

bN

N

0◦

ϕmax

ω

|Flead|

arg Flead

Figure 5.15a. Schematic Bode plot for the old parameterization of a lead compensator.

A read/write head of a hard disk is mounted on a mechanical arm which is
moved by a motor. The system from motor input voltage to the angle of the
arm is modelled by

Y (s) = 5
τ1s+ 1 ·

0.05
s(τ2s+ 1)U(s)

where Y and U are the Laplace transforms of the output and input respectively.
The numerical values of the constants are τ1 = 10−3 och τ2 = 0.05. The Bode
plot of the system is given in Figure 5.15d.

a) To begin with, assume that the arm is controlled using proportional feed-
back,

U(s) = K(R(s)− Y (s))

What are the step and ramp error coefficients (often referred to as e0 and
e1)? For what values of K are they defined?

0◦

20◦

40◦

60◦

0 2 4 6 8 10 12 14 16 18 20

N

ϕmax

Figure 5.15b. Maximum phase advance as a function of N in a lead compensator param-
eterized the old way.

b) Compute a controller,

U(s) = F (s)(R(s)− Y (s))

for the same system, such that the resulting system fulfills the following
requrements:
� e0 = 0
� e1 ≤ 0.001
� ωc = 100 rad/s
� ϕm ≥ 50◦
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Figure 5.15c. Schematic Bode plot for the old parameterization of a lag compensator.
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6 Sensitivity and Robustness

Σ K
1

s(s + 1)
Σ+

e u

+

+

−

r = 0 y

v

Figure 6.1a

6.1 Consider the control system in Figure 6.1a where v(t) is a sinusoidal distur-
bance, v(t) = sin(t). Compute the absolute value of the sensitivity function
at ω = 1 rad/s as a function of K. How must K be selected if the amplitude
of y(t) shall be less than the amplitude of v(t) at this frequency?

Σ F (s) G(s)+
e u

−

r y

Figure 6.2a

6.2 Assume that we have constructed a controller F (s) for the model G(s), see
Figure 6.2a, such that there is no steady state error when the reference signal
is a step. Let the real system be given by

G0(s) = (s+ 1)G(s)

and assume that G0(s) → 0, s → ∞. Also assume that the amplitude curve
of the closed loop system has no resonance peaks and decreases, at least
and asymptotically, with 20 dB20/decade for frequencies over the bandwidth.
What is the highest possible bandwidth we can use for the closed loop system
in Figure 6.2a, while at the same time guaranteeing stability?

6.3 Figure 6.3a shows a Nyquist diagram for the loop gain Go. Show in a figure
for what frequencies (that is, for what part of the Nyquist curve above) ad-
ditive disturbances on the output are amplified in the sense that the output
amplitude of the control system in Figure 6.3b is larger than the disturbance
amplitude.

−1

Re

Im

Go

Figure 6.3a

Σ Go Σ+ +

+

−

y

v

Figure 6.3b

Σ F (s) G0(s)+
e u

−

r y

Figure 6.4a

6.4 Consider the control system in Figure 6.4a. The true system, denoted G0(s),
is modeled as

G(s) = 1
s+ 10

The controller
F (s) = s+ 10

s

gives an asymptotically stable closed loop system with the model G(s). Now
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assume that the system is given by

G0(s) = G(s)(1 +G∆(s))

where it is known that G∆(s) has no poles in the right half plane, and that

|G∆(iω)| < 0.9√
1 + ω2

Can we be sure that the closed loop system is asymptotically stable?

6.5 A process is described by the model G(s), while the process in reality has the
transfer function

G0(s) = e−sTG(s)

a) Draw the absolute value of the inverse of the relative model error, that
is,

1
|G∆(iω)|

b) Assume that we design a controller F (s) starting with the model G(s).
How large may ∣∣∣∣ F (iω)G(iω)

1 + F (iω)G(iω)

∣∣∣∣
be at most, in order to guarantee asymptotic stability of the closed loop
system for all values of T , when the controller F (s) is used on the system
G0(s)?

Σ K
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s(s + 5)
Σ+

e u

+

+

−

r = 0 y

v

Figure 6.6a

6.6 Consider the control system in Figure 6.6a.

a) Assume that the real system is given by

G0(s) = G(s) + G̃(s),

where
G(s) = 1

s(s+ 5)

and let K = 25/2. Use the robustness criterion to obtain a condition on∣∣G̃(iω)
∣∣ that guarantees stability in the closed loop system. Does G̃(s) = 1

fulfill the conditions?

b) Now let G̃(s) = α where α is a scalar. Calculate the characteristic equa-
tion for the closed loop system and decide for which α the system is
stable. Does this contradict the condition from the robustness criterion?
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6.7 A DC-motor is assumed to have the transfer function

G(s) = 1
s(s+ 1)

and it is controlled using proportional feedback,

U(s) = F (s)(R(s)− Y (s))

where F (s) = 4. The amplitude curve of the feedback system

|Gc(iω)| =
∣∣∣∣ F (iω)G(iω)
1 + F (iω)G(iω)

∣∣∣∣
is given in Figure 6.7a. Assume that the real system is given by

G0(s) = G(s) α

s+ α
, α > 0

and the controller F (s) is used on the system G0(s).

a) Draw a root locus with respect to α for the characteristic equation of the
closed loop system and determine for which α the closed loop system is
asymptotically stable.

b) Use the robustness criterion to decide for which α the closed loop system
is asymptotically stable.

c) Comment on the possible differences in the demands on α in a) and b).

6.8 A system G0(s) is controlled using a regulator F (s). In Figure 6.8a the am-
plitude part the Bode plot of the nominal closed loop system,

Gc(s) = F (s)G(s)
1 + F (s)G(s)

is shown. It is known that Gc is stable, and it is assumed that G and G0

have the same number of poles in the right half plane. The model uncertainty
G∆(s), defined by

G∆ = G0 −G
G

is assumed bounded by |G∆(iω)| ≤ γω. In what interval must γ lie to guarantee
stability of the closed loop system?
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Figure 6.8a
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6.9 Consider the system in Figure 6.9a. For r(t) = 0, n(t) = 0 and v(t) = sin t the
steady-state output is given by

y(t) = 1√
2

sin(t− π

4 )

Determine the steady-state output y(t) when r(t) = 0, v(t) = 0 and n(t) =
sin t.

6.10 Recall the model that was used in the design of a lead-lag controller using
Matlab in Problem 5.13. Assume that the true system contains a time con-
stant that was neglected, and that the transfer function of the system is given
by

G0(s) = G(s) 1
s+ 1

a) Determine the relative model error G∆(s).

b) Draw 1
|G∆(iω)| and

∣∣∣ F (iω)G(iω)
1+F (iω)G(iω)

∣∣∣ in a Bode plot, when G(s) is given by

G(s) = 725
(s+ 1)(s+ 2.5)(s+ 25)

for the two cases F (s) = 1 and F (s) being the controller designed in
Problem 5.13. What can be said about the robustness of the closed loop
system in these two cases when F (s) is used for control of the “true”
system G0(s)?
One possible solution to the design problem in Problem 5.13 was the
controller

F (s) = 0.46 · 0.43s+ 1
0.090s+ 1 ·

2.0s+ 1
2.0s

Σ F (s) G(s)+
e u

−

r y

Figure 6.11a

6.11 Consider the control system in Figure 6.11a. The controller F (s) = 2 gives
the Bode plot of the loop gain F (iω)G(iω) shown in Figure 6.11b. The Bode
plot of the sensitivity function is shown in Figure 6.11c. The reference signal
is r(t) = 2 sin 0.1t. Determine the amplitude of the error in steady state.
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6.12 In Problem 5.14 we saw how the amount of dissolved oxygen depends on the
stirring speed. A lead-lag controller was designed for the model linearized
around 1200 r/min. Check if this controller also stabilizes the system when
the stirring speed is 400 r/min.
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6.13 Consider the connected tank system in Figure 6.13a where u is the inflow to the
upper tank and y is the level in the lower tank. The system can approximately
be described by the following transfer function

G(s) = 1
(s+ 1)2

The level in the lower tank is controlled by a P controller;

U(s) = K(R(s)− Y (s))

The goal of the control is to minimize the influence of the disturbance v. This
has been formalized as the following demand on the system:

|S(iω)| ≤ 0.1

at ω = 1, where S(s) denotes the sensitivity function. How must K be selected
if the demand should be satisfied?

y

v

u

Figure 6.13a
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7 Special Controller Structures

Cooling water

GR1 GR2
θ

θm

w

θref

u

Figure 7.1a

7.1 To control the temperature θ in a chemical reactor, the control system in
Figure 7.1a is used, where θref is the desired (reference) temperature. The
temperatures θ and θm in the reactor and the cooler, respectively, are mea-
surable and can be used to control the valve u. The structure of the control
system is given by Figure 7.1b. It is here assumed that both GR1 and GR2 are
P controllers.

a) Let K2 = 9 and draw the Bode plot of the transfer function from w to
θ. Then choose K1 so that the gain margin Am = 2. What are the gain
crossover frequency ωc and the steady-state error, if we assume that θref
is changed stepwise?

b) Suppose that we make a simple feedback loop instead, see Figure 7.1c.
How is the Bode plot affected? Again, choose K1 so that the gain margin
Am = 2, and determine the gain crossover frequency ωc and the steady-
state error. Compare with a) with respect to steady-state errors and
response times. Conclusions?

K2ΣK1Σ 1
10s+ 1

1
(30s+ 1)(3s+ 1)

GR1GR1 GR2GR2

Valve and
cooling jacket

Valve and
cooling jacket Wall and liquidWall and liquid

+
w
+

u θm

−−

θref θ

Figure 7.1b

K1Σ 1
10s+ 1

1
(30s+ 1)(3s+ 1)

Valve and
cooling jacket

Valve and
cooling jacket Wall and liquidWall and liquid

+
u θm

−

θref θ

Figure 7.1c
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7.2 A level control system for a water tank is shown in Figure 7.2a, where all
variables denote offsets from an operation point. The inflow, x(t), to the
tank is determined by the valve, and the outflow, v(t), is determined by the
pump. Stu Dent has got the assignment to keep the water level in the tank
constant, in spite of variations in the outflow v(t). First, Stu determines the
transfer function Gv(s) from the valve to x(t). By step response experiments,
he obtains the following result:

Gv(s) = 1
0.5s+ 1

a) Because the disturbance v(t) is measurable, Stu first considers a feedfor-
ward compensator to completely eliminate it. Stu, who also knows that
it is dangerous to differentiate the disturbance, cancels all the derivative
terms in the compensator. Compute the feedforward compensator, and
determine the response h(t) Stu will get, if the outflow v(t) is changed
stepwise with an amplitude of 0.1.

b) To improve the control system, Stu also introduces a proportional feed-
back of the water level h. What is the steady-state error in the level h
now, if the outflow is changed in the same way as in a)?

7.3 Consider the following system

Y (s) = 2
s+ 3U(s) + 3

s+ 4V (s)

where u is the control signal, y is the output and v is a disturbance. It is
desired that y should be as small as possible despite the disturbance v.

a) Design a feedforward controller from v to u that eliminates the influence
of v on y.

b) Assume that v is a pure sinusoid with amplitude 2. How large will the
control signal be?

c) The real system is described by

Y (s) = b

s+ 3U(s) + 3
s+ 4V (s)

where b value is not exactly known but has its value close to 2. To solve
this problem a P controller is added to the feedforward controller that
was designed in a). The full controller looks like

U(s) = −KY (s) + Ff(s)V (s)

where Ff(s) is the feedforward controller. What is the stationary error if
v = 1?
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7.4 The transfer function for a temperature control system is given by

Y (s) = 3
s+ 1U(s) + 4

(s+ 2)(s+ 5)V (s)

where y is the controlled temperature, u is the supplied power and v is the
temperature of the surroundings. Assume that the desired temperature is zero.

a) Design a feedforward controller U(s) = Ff(s)V (s) which eliminates the
influence of the disturbance v on y.

b) To simplify implementation Ff(s) is replaced with a constant, F̃f = Ff(0).
Assume that v is given by v(t) = −1 − 0.1t and that U(s) = F̃fV (s) is
used. What will y(t) be in steady state?

c) The previous controller is now extended with a P controller:

U(s) = F̃fV (s)−KY (s)

What will now y(t) be in steady state?
d) Assume that one only uses the P controller

U(s) = −KY (s)

What will now y(t) be in steady state?

44



8 State Space Description
8.1 Define suitable state space variables for the DC motor discussed in Prob-

lem 2.1, and write the system in state space form.

z

m

θ

l

Figure 8.2a

8.2 Consider the system illustrated in Figure 8.2a. It consists of a hinge that can
move in the direction marked “z”, and a thereto attached pendulum. The
system is described by the equation

`θ̈ + g sin θ + z̈ cos θ = 0

Define state space variables, input, and output as

x1 = θ x2 = θ̇ u = z̈/` y = θ

and
ω2

0 = g/`

Linearize the system around the equilibrium point given by

x1 = π x2 = 0 u = 0

K1 Σ 1
s

Σ 1
s

K2 Σ 1
s

Mi
+

z
+

θ
+

Ma
−

− +
i y

Ml

Figure 8.3a

8.3 The block diagram in Figure 8.3a describes an electric motor that drives a
load via an elastic axis. Here i is the driving current to the motor, which gives
the torque Mi. z is the turning rate of the motor and y is the turning rate of
the load. θ is the angle of the transmission axis. Ma = K2θ is the torque this
angle causes. Ml is the torque from the load. Give a state space description
for the system with Ml and i as inputs and y as output. (There are at least
two different ways to solve this problem.)

8.4 Write the following systems in state space form.

a)
d3y

dt3 + 6d2y

dt2 + 11dy
dt + 6y = 6u

b)
d3y

dt3 + d2y

dt2 + 5dy
dt + 3y = 4d2u

dt2 + du
dt + 2u

c)

G(s) = 2s+ 3
s2 + 5s+ 6

Use for example controllable or observable canonical form or diagonal form.

8.5 A system has the impulse response (weight function)

g(t) = 2e−t + 3e−4t

Write the system in state space form.
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8.6 Consider the system

ẋ =
(
−2 1
0 −3

)
x+

(
1
1

)
u

y =
(
−1 2

)
x

Compute the transfer function of the system.

8.7 Consider the system

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

The input is being held constant, u = u0, for the time t0 ≤ t ≤ t0 + T .
Give a relation between x(t0), x(t0 + T ), y(t0), y(t0 + T ) and u0.

q1

Inflow

u1

q2

Inflow

u2

hTank

q

Figure 8.8a

8.8 Consider the tank in Figure 8.8a. The tank can be filled from two different
pipes, where the flows q1 and q2 are determined by the valve settings u1 and
u2. If q1, q2, u1, u2, and h denote the deviation from a nominal value, we get
the linearized equation

ḣ+ 1
τ
h = u1 + u2

where τ = 1. It is desired that the level should follow a reference value href
and that q1 and q2 should be of approximately the same size. Therefore two
PI controllers are used so that

u1 = (href − h) +
∫ t

0
(href − h) dτ (8.1)

u2 = (href − h) +
∫ t

0
(href − h) dτ (8.2)

a) Introduce the state variable x1 = h, and let x2 and x3 represent the
integrals in (8.1) and (8.2) respectively. Derive a state space description
of the closed loop system with href as input and h as output.

b) Verify that the closed loop system is unobservable and that the unob-
servable subspace is spanned by the vector 0

1
−1


Give a practical interpretation of this phenomenon.

c) The level is measured by two different sensors, and due to the poor accu-
racy in the first sensor it delivers the level signal together with an error.
The equation of the first regulator can hence be written

u1 = −(h+ n) +
∫ t

0
−(h+ n) dτ (8.3)

where it for simplicity has been assumed that href = 0. The second
regulator is then given by

u2 = −h+
∫ t

0
−hdτ (8.4)

Modify the state space model by letting the measurement disturbance be
the input to the state space model of the closed loop system.
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8.9 Consider the system

ẋ =
(
−1 1
2 −3

)
x+

(
1
1

)
u

Is it possible to control the system from the origin to x =
(
1 3

)T within 4
seconds?

8.10 Give the dimensions of the controllable and unobservable subspaces to the
systems below. Give also the controllable and unobservable subspaces.

a)

ẋ =

−2 0 0
0 −1 1
0 0 −3

x+

 1
−1
2

u

y =
(
1 3 1.5

)
x

b)

ẋ =

−1 0 0
1 −2 0
0 0 −4

x+

 0
4
−2

u

y =
(
0 3 0

)
x

8.11 A state space representation of

G(s) = 1
s+ 1

is given by

ẋ =
(
−1 0
0 2

)
x+

(
1
1

)
u

y =
(
1 0

)
x

a) Compute x1(t) x2(t) and y(t) if x(0) = 0 and

u(t) =
{

0, t < 0
1, t ≥ 0

b) Is the system asymptotically stable? Input-output-stable?
c) Examine the controllability and observability for the system.
d) Explain why the realization is not suitable for simulating a system whose

transfer function is G(s).

8.12 Compute the poles and zeros of the system

ẋ =
(

1 −1
2 1

)
x+

(
1
0

)
u

y =
(
1 1

)
x

z

m

l

m

αl

ϕ

Figure 8.13a

8.13 Two mathematical pendulums are mounted on a trolley. They are mounted so
that they can move without friction in a plane coinciding with the direction
of movement for the trolley. The lengths of the pendulums are ` and α` and
their masses are m. For one pendulum we have

z̈ cosϕ+ ϕ̈` = g sinϕ

a) Linearize the system to the left in Figure 8.13a around ϕ = 0 and put
the constants `, m, and g to 1 and write the equations in the form ẋ =
Ax+Bu.

b) Give the values on α for which the system is controllable. Give a practical
motivation.
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Figure 8.14a

8.14 A system is given by the block diagram in Figure 8.14a. Derive a state space
model of the system, with the state space variables given in the figure.

8.15 The substances A and B react according to, 3A→ B, in a tank. The reaction
speed is given by rA = −k1c

3
A. The inflow, q to the tank has concentration

cA,in. The tank volume V and the in- and outflow can be considered constant.

a) Determine the dynamical mass balance for the components A and B in
the form of differential equations.

b) Linearize the differential equations around a stationary point, c∗A, c∗B,
c∗A,in, and use the state space representation

dx
dt = Ax+Bu

y = Cx+Du

where the state x consists of the deviations cA,∆ and cB,∆ of the concen-
trations. The input signal u is the deviation cA,in,∆ in the inflow concen-
tration and the output signal y is the deviation BcB,∆ in concentration
of component.

8.16 Figure 8.16a shows a protein that changes between the conformations x1
and x2. The kinetic parameters kij determine the rate of the conformational
changes. The input signal, u, toghether with the constant, K, represent
introduction of x2 to the system. We assume that we can measure x2, i.e.
y = x2. All reaction rates are assumed to be given by expressions proportional
to the concentration of the states they emanate from. That is, for a state
i the differential equation will be ẋi =

∑
p kipxp −

∑
q kqixi, where p is the

number of incoming and q the number of outgoing flows from the state i. This
corresponds to mass action kinetics for a regular biochemical reaction network.

x1

uk21

x2
k12

K

Figure 8.16a. Protein in two possible conformations.

a) Write down the state space equations that describe the system.
b) Compute the poles of the system. Is the system stable?
c) What are the conditions on the kinetic parameters kij for the system to

be observable? Give an interpretation of this result.
d) Assume that the conformation change from x2 to x1 is catalyzed by an

enzyme. To describe this, include Michaelis-Menten saturation in the
flow from x2 to x1, i.e. replace the expression k12x2 with Vmaxx2

KM+x2
, where

Vmax is the maximal rate and KM the saturation constant. Write down
the differential equations for the states x1 and x2.

e) Sketch the relation between x2 and the saturated reaction rate in d), i.e.
dotx2 as a function of x2.

f) Linearize the system around the stationary point x1 = Vmax
2k21

, x2 = KM,
u = 0.

x1

u
k21

x2
k12

K

x3
k23

k32

Figure 8.16b. Protein in three possible conformations.

Now, assume that the protein can exist in a third conformation x3, according
to Figure 8.16b. We measure y = x2 as before.
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g) Write down the state space equations that describe the system.
h) What are the conditions on the kinetic parameters kij for the system to

be observable? Give an interpretation of this result.

x1

k21

x2
k12

k2k1u

Figure 8.17a

8.17 The model in Figure 8.17a describes the interaction between two proteins
with concentrations x1 and x2, where the kinetic parameters k1, k21, k12 and
k2 determine the reaction rate.
The law of mass actions for biochemical reaction networks leads to the follow-
ing state space model for the system.

ẋ =
(
−k21 k12
k21 −k12 − k2

)
x+

(
k1
0

)
u

y =
(
0 1

)
x.

The input u is a unit step.

a) What are the steady state values of x1 and x2, when the input u is a unit
step?

b) Compute the transfer funtion of the system, from u to y.
c) Use the final value theorem to find the steady state gain of y. Compare

with the result in a). What conclusions can be drawn?
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9 State Feedback
9.1 Consider the system

ẋ =
(
−2 −1
1 0

)
x+

(
1
0

)
u

y =
(
1 0

)
x

a) Calculate a state feedback that places the poles in I) {−3, −5 }, II)
{−10, −15 }. What limits the possibility to achieve arbitrary dynam-
ics of the closed loop system?

b) Suppose only the output is measured. Calculate an observer that makes
the transfer function from the reference signal to the output the same as
in a). Discuss the influence of the poles of the observer.

Figure 9.2a

9.2 Figure 9.2a shows the Lunar Excursion Module from the Apollo project. Con-
sider the module hovering a short distance above the surface of the moon using
its main engine. If the pitch angle of the module (angle between the vertical
line and the direction of movement) differs from zero, a horizontal component
of the force is obtained and the module is accelerating along the surface.
We will study a block diagram which shows the connection between the input u
(the control signal to the attitude thrusters), the pitch angle θ and the position
coordinate z. See Figures 9.2b and 9.2c.

The module is both in the θ-direction and in the z-direction obeying Newton’s
law of motion without any kind of damping. The transfer function from the
control signal of the astronaut (yref) to velocity ż is

K1K2

s3

which is very difficult to control by hand.

a) Write the system in state space form.

z

θ

Direction
of motion

Attitude
thrusters

Figure 9.2b

Σ K1
1
s

1
s

K2
1
s

1
s+

−

u θ̈ θ̇ θ z̈ żyref z

m1 m2 m3

Feedback

Figure 9.2c
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b) In order to make the control duty of the astronaut easier we change
the dynamics of the module by making internal feedback. The following
signals are measurable:
m1, the attitude angular velocity measured using rate gyro.
m2, the acceleration in z-direction measured using accelerometers posi-

tioned on gyro-stabilized platforms.
m3, the velocity in z-direction measured using doppler-radar.
Calculate a state-feedback using these signals such that the closed loop
system obtains its poles in s = − 1

2 and the control signal of the astronaut
becomes the reference signal of the velocity in z-direction.

c) Suppose we by safety reasons are interested in the possibility of controlling
the module even if the sensors measuring m1 and m2 are not working.
Design a controller that can handle this and has approximately the same
behavior as in a).

9.3 A DC motor with an external load, T , is described by

ω = θ̇

ω̇ = −1
τ
ω + c1u+ c2T

where θ is the angle, ω the angular velocity, u the control signal, T the torque
of the load, and c1, c2, and τ are constants.

a) Introduce a controller

u = l0θref − l1θ − l2ω

such that the poles of the closed loop system becomes 1
τ (−1 ± i) and

θ = θref in steady-state if T = 0 and θref is constant.
b) Introduce a modified controller

u = l0θref − l1θ − l2ω + u′

such that θ = θref in steady-state even for constant non-zero T and con-
stant θref .

9.4 A system can be described in state space form as

ẋ =
(

0 0
0 −1

)
x+

(
1
1

)
u

y =
(
1 −1

)
x

We want to place the poles in {−2, −3 }. Suggest an observer, and use a linear
state feedback controller. Which are the poles of the closed loop system?

9.5 Is it possible to design an observer with poles in {−5, −6, −7, −8 } for the
system below? Motivate your answer.

ẋ =


0 1 1 1
0 0 1 1
0 0 0 1
0 0 0 1

x+


1
10
−3
2

u

y =
(
1 0 0 0

)
x
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u1 x1 x2 x3 u2

Figure 9.6a

9.6 We want to control the temperature in a long copper rod by heating or cooling
its endpoints. Principally, this problem is described by a partial differential
equation. To simplify the problem we assume that the temperature profile
in the rod can be approximated by the temperatures x1, x2, and x3 at three
points. The temperatures in the end points are the inputs, u1 and u2. All
temperatures are relative to the temperature of the surroundings.
We get the following ordinary differential equations:

ẋ1 = α(u1 − x1) + α(x2 − x1)
ẋ2 = α(x1 − x2) + α(x3 − x2)
ẋ3 = α(x2 − x3) + α(u2 − x3)

where α is a constant that depends on the coefficient of thermal conductivity
and the specific heat of the rod. For simplicity, let α = 1. Consider the problem
of controlling the temperature in x1, x2, and x3 with u1 only, assuming u2 = 0.

a) Assume that we want to have an arbitrary temperature profile, that is,
arbitrary values of x1, x2, and x3. Is this possible? Why/why not?

b) Assume that all the temperatures x1, x2 and x3 are measurable. Find a
state feedback that brings any initial state to zero as e−3t.

c) Assume that only one of the temperatures x1, x2, or x3 is measurable, and
that we still want a controller which damps a disturbance as e−3t by using
an observer. The sensor can be placed so that any of the three values x1,
x2, or x3 is measured. Which choices of measure point make it possible
to control the system as desired? Give a motivation. Choose one of the
points making the wanted design possible and design a controller, that
is, an observer and a state feedback, giving the desired error damping.

9.7 Consider the lunar excursion module in Problem 9.2. Suppose that there are
no rate-gyro measurements available but that the sensors measuring m2 and
m3 are still working.

Show how m1 can be reconstructed from u and measurements of m2 such that
the reconstruction error decreases arbitrarily fast without differentiation of
any of the measured signals.

Propose a filter and describe the resulting controller when the feedback consists
of both measured and reconstructed states as in Problem 9.2.
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Figure 9.8a

9.8 In Figure 9.8a a level control system for a tank is shown. The objective is to
keep the level at a desired value. Let u, h, q, and v denote small variations
around the desired working point. The inflow, q, to the tank is determined by
the valve, u, calculated by the controller. The outflow v is determined by the
pump and deviations from zero is considered as process noise. The valve has
some dynamics, which is modeled with the transfer function

Q(s) = k1

1 + Ts
U(s)

where k1 = 1 and T = 0.5. The level is given by

Aḣ = q − v

where the tank cross-section area is A = 1m2.

a) Let q and h be state variables and give a corresponding state space model
of the process. Compute a state feedback u = −l1q − l2h + r, such that
the closed loop system poles both are at −2.

b) How large is the steady-state level error for a constant disturbance v = 0.1
if r = 0?

c) Consider the closed loop system in a) and compute a feedforward control
law from v to r such that the influence from v is completely eliminated.
Exclude all terms in the control law in which v is differentiated to make
it implementable. How does this modified feedforward control law work?
Steady-state level error?

d) Suppose that k1 differs slightly from 1, but that the same control law
as in c) is used (the control law derived under the assumption k1 = 1).
What happens with the steady-state level error?

e) Propose a modified control law such that the stationary level error is zero
for constant disturbances regardless of small deviations from the nominal
value of k1.
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9.9 We want to control the system

ẋ =
(

0 1
0 0

)
x+

(
0
1

)
u

y =
(
1 0

)
x

with a state feedback. (This can be interpreted as a moving vehicle in one
dimension, where x1 is the position, x2 is the velocity, and the acceleration is
the control signal.) We introduce the control law

u(t) = −Lx̂(t) + r(t)

where x̂ is constructed by an observer

˙̂x = Ax̂+Bu+K(y − Cx̂)

We choose the vectors K and L as L =
(
1 2

)
and KT =

(
4 4

)
. These

choices put the eigenvalues of A−BL in −1 and the eigenvalues of A−KC in
−2. A block diagram of the closed loop system is shown in Figure 9.9a. Due
to a time delay, the real input is given by the equation

u(t) = −Lx̂(t− T ) + r

What is the largest possible time delay T without the closed loop system
getting unstable?

9.10 One wants to construct an observer for the system

ẋ(t) =
(
−1 1
a −2

)
x(t) +

(
1
1

)
u(t)

y(t) =
(
2 1

)
x(t)

a) Suppose a = 1. Construct an observer with the poles in {−5, −10 }. For
which values of a is this possible?

b) Suppose that the measured signal y is given by

y(t) =
(
2 1

)
x(t) + v(t)

Here v(t) is the measurement noise. Compute the transfer function from
v to x̃1(t), that is, the first element in the state vector for the observer
error x̃(t) = x(t)− x̂(t).
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Figure 9.11a

9.11 Consider the system

G(s) = 1− s/α
(1 + s/β)2 , α > 0, β > 0

Systems of this kind, that is, with a zero in the RHP have the property that
the step response goes in the “wrong direction” initially, see Figure 9.11a.

a) Show that the derivative of the step response at t = 0, that is, ẏ(0),
decreases as the zero of the system approaches the origin.

b) Is it possible to use state feedback to eliminate the problem that the step
response goes in the wrong direction initially? Justify your answer.

9.12 Theoretically one can place the poles of a controllable system arbitrar-
ily. Which practical difficulties limit the performance that one can actually
achieve?
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9.13 Consider the system

ẋ =
(
−3 1
1 −2

)
x+

(
−1
2

)
u

y =
(
1 1

)
x

a) Determine L of a state feedback u = r − Lx, that places the poles at
−2± i.

b) The state feedback of a) is used. It is observed that the output y(t) = 0
for all t is obtained for a reference signal of the form r(t) = eαt. For what
value(s) of α does this occur?

9.14 Consider the model of a DC-motor

Y (s) = G(s)U(s)

where
G(s) = 1

s(s+ 1)

a) Generate a state space representation using Matlab. Which physical
signals are represented by the states?

b) Suppose that the system is going to be controlled using state feedback

u(t) = −Lx(t) + l0r(t)

Compute the gain vector L and simulate the closed loop system for the
following two choices of closed loop poles:
� Real poles at {−2.2, −2.1 }
� Poles at −1± i

Also compute l0 such that the closed loop system gets static gain one. In
particular look at the properties of the step response and the magnitude
of the control signal in the two cases. Which pole locations give the best
trade off between response speed and control signal magnitude?

c) Now let L be computed using linear quadratic optimization (LQ) in order
to minimize the cost function∫ ∞

0
x(t)TQx(t) + u(t)2 dt

for the three choices of weight matrices given below. Compute the closed
loop poles and the step responses of the closed loop system for the three
cases. Describe how the properties of the step responses in the different
cases.

(i) Q =
(

0 0
0 1

)
(ii) Q =

(
0 0
0 10

)
(iii) Q =

(
0 0
0 0.1

)
d) Start from case (ii) and increase the weight on the control signal gradually

until the cost function becomes∫ ∞
0

x(t)TQx(t) + 10u(t)2 dt

Compare the result with the result obtained for case (i).

e) Start from case (i) and introduce a weight on the velocity ẏ(t). Increase
the weight gradually and study how the poles and the step response of
the closed loop system change.
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9.15 The ingestion and metabolism of a drug in a human body can be described by
the following equations:

dq(t)
dt = −k1q(t) + u(t)

dy(t)
dt = k1q(t)− k2y(t)

where the input signal u(t) is the ingestion rate of the drug, the output y(t)
is the mass of the drug in the blood, and q(t) is the mass of the drug in the
gastrointestinal tract. The constants k1 and k2 are metabolism rates, satisfying
k1 > k2 > 0. k2 characterizes the excretory process of the individual. In this
example, k1 = 0.05 and k2 = 0.02.

a) Is the system controllable?
b) Design a state feedback that places the closed loop poles in −0.1.

q(t) (the mass of the drug in the gastrointestinal tract) cannot be measured,
so to be able to use the state feedback in b) we need an observer.

c) How should the poles of the observer be selected?
d) Design an observer with poles in −0.2.

9.16 A system is described by the state space equations

ẋ(t) = Ax(t) +Bu(t− τ)
y(t) = κCx(t) + e(t)

(9.1)

where it is known that

τ < 0.3
0.9 ≤ κ ≤ 1.1

It is also known that e is a sinusoidal disturbance with angular frequency
10 rad/s. The control design is based on the simplified model

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

(9.2)

The specifications for the control system are given by:
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Figure 9.16a. Bode plot of the loop gain.

1. The bandwidth of the closed loop system must fulfill ωB ≥ 5 rad/s.
2. The closed loop system shall be stable despite the disturbance and the

uncertainties in the parameters τ and κ.
3. The static gain of the closed loop system shall be 1 despite the disturbance

and the uncertainties in the parameters τ and κ.
4. The closed loop system shall handle the measurement disturbance suffi-

ciently well.

The regulator design is carried out using state space methods. The poles of the
closed loop system, that is, eigenvalues of A−BL, are placed in {−4, −2±2i }
and the poles of the observer, that is, the eigenvalues of A −KC, are placed
in {−17, −0.2± 10i }.
The figures below show different aspects of the control system. It is important
to note that the diagrams are obtained using the model (9.2) and the designed
regulator. Determine if the requirements 1–4 are fulfilled when controlling the
system given by (9.1).
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Figure 9.16b. Nyquist curve of the loop gain.
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Figure 9.16c. Gain curve of the sensitivity function.
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Figure 9.16d. Gain curve of the complementary sensitivity function.
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Figure 9.16e. Gain curve of the transfer function of the closed loop system.

9.17 In purification processes sometimes bacteria are used to consume the unwanted
substance (possibly converting it to something more useful). Let ξ denote the
amount of bacteria, η the amount of substance to be removed, and q the input
flow (that contains the substance to be removed). The system is then described
by a set of nonlinear differential equations

ξ̇ = f1(ξ, η, q)
η̇ = f2(ξ, η, q)

When considering small deviations from an equilibrium the equations can be
approximated by a linear system. In this example, the numeric values of the
linearization are given by

ẋ =
(

0 1
−1 −3

)
x+

(
−1
1

)
u

where x1, x2, and u denote the deviations from the equilibrium values of ξ, η,
and q respectively.

a) Assume that both x1 and x2 can be measured. Determine a state feedback
placing the closed loop poles in {−2, −4 }.

b) Assume that only x2 is measured. Is it possible to calculate the amount
of bacteria x1 from this measurement if u is known? If the answer is yes:
Why is it important that u is known?

c) Assume that the value of u is unknown, but let it be known that it
is constant. Is it then possible to calculate the amount of bacteria, x1
from a measurement of x2? In case it is, show some way of doing the
computation.
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9.18 A certain species of bacteria grows by consuming glucose, whose inflow is
controlled. The following model is used

ṁ = (f − 1)m ḟ = −m+ q

where m is the amount of bacteria, f the amount of glucose and q the inflow of
glucose. One wants the system to operate in the neighborhood of the operating
pointm = 1, f = 1, q = 1. Using the notation x1 = m−1, x2 = f−1, u = q−1,
an approximate model (x1x2 neglected) is

ẋ1 = x2

ẋ2 = −x1 + u

Sometimes there are disturbances that are modeled as a constant, unknown
external signal w:

ẋ1 = x2 + w

ẋ2 = −x1 + u

One wants to drive x1 to a reference value r using u as control variable.

a) x1 is measured. What performance (stationary error, speed of response)
can be obtained using a P controller?

b) x2 is measured. What performance (stationary error, speed of response)
can be obtained by using a control law where u depends linearly on r and
x2 if w = 0? What happens when w 6= 0?

c) x2 is measured. Determine a controller that does not differentiate x2,
gives an asymptotically stable closed loop system and makes x1 converge
to r asymptotically for an arbitrary constant but unknown w.
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11 Implementation
11.1 If you “translate” the compensator

U(s) = KN( s+ b

s+ bN
)E(s)

with Tustin’s formula you get a controller of the form

u(t) = β1u(t− T ) + α1e(t) + α2e(t− T )

What are the values of α1, α2, and β2, if T = 0.1, N = 10, b = 0.1, and
K = 2?

11.2 Consider the system
ẏ(t) = u(t)

Suppose it is controlled with a computer, so that the control signal is constant
over the sampling interval, that is,

u(t) = uk, kT ≤ t < (k + 1)T

a) Introduce the notation yk = y(kT ) and derive a relation between yk+1,
yk, and uk.

b) Suppose we use the proportional feedback

uk = −Kyk

and that y(0) = y0. What are the values of K, for which the closed loop
system is stable?

1
1 + sT1

Sampling
u y

Figure 11.3a

11.3 Consider the system in Figure 11.3a, which illustrates sampling with prefilter-
ing. Suppose we are sampling with the sampling period T and that u = u0+u1,
where u0 is an “interesting” low frequency signal in the frequency interval
0 < ω < π/T and that u1 is a sinusoidal control signal

u1(t) = sinω2t,
π

T
< ω2 <

2π
T

Since the sampling causes aliasing, the output will be

y(t) = y0 + y1

where y0 is interesting and y1 is a disturbance signal

y1(kT ) = A sin(ω1kT + ϕ), ω1 < π/T

a) What are A, ω1 and ϕ?
b) It is clear from a) that the choice of T affects the amplitude of the dis-

turbance signal y1. What is the smallest amplitude you can get if you do
not want to damp any frequencies in u0 more than

√
2 times?
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1 Inledning
Denna skrift är en kort inledning till hur MATLAB och Control System Toolbox
(CST) används i kurserna i Reglerteknik.

2 System
I Control System Toolbox finns datastrukturer för att hantera s k LTI-objects, dvs
linjära tidsinvarianta system, på ett bekvämt sätt. Vi kommer inledningsvis främst
att arbeta med system på överföringsfunktionsform, men senare även med system
på tillståndsform. Ett objekt som representerar ett system på överföringsfunktions-
form skapas med funktionen tf. Detta kan göras på två olika sätt, och det första
alternativet visas i exemplet nedan.

Betrakta överföringsfunktionen

G(s) = 4
s(s2 + 2s+ 4)

Mata in systemet och ge objek-
tet namnet G. Argumenten till
funktionen tf utgörs av radvek-
torer innehållande täljarens re-
spektive nämnarens koefficien-
ter.

>> G = tf( 4, [ 1 2 4 0 ] )

Transfer function:
4

-----------------
s^3 + 2 s^2 + 4 s

Med det andra alternativet kan man mata in överföringsfunktionen på symbolisk
form genom att först skapa ett objekt bestående av symbolen s. Därefter kan
man t ex addera och multiplicera med denna symbol på samma sätt som görs med
Laplace-variabeln s vid handräkning.

Skapa ett objekt bestående av
symbolen s. Bilda överförings-
funktionen genom att använda
vanliga räkneoperationer.

>> s = tf( ’s’ );
>> G = 4 / ( s * ( s^2 + 2*s + 4 ) )

Transfer function:
4

-----------------
s^3 + 2 s^2 + 4 s

En finess med överföringsfunktioner representerade som LTI-objekt är att man kan
multiplicera och addera överföringsfunktioner på ett rättframt sätt.

Skapa en ny överföringsfunk-
tion G2 genom att seriekoppla
G(s) och överföringsfunktionen

1
s+ 1

>> G2 = G * 1 / ( s + 1 )

Transfer function:
4

-------------------------
s^4 + 3 s^3 + 6 s^2 + 4 s

3 Poler och nollställen
Poler och nollställen till överföringsfunktioner beräknas med funktionerna pole
respektive tzero. Poler och nollställen kan även ritas med funktionen pzmap.

Beräkna polerna till G(s). Sys-
temet har en reell pol i origo
och två komplexa poler.

>> pole( G )

ans =

0
-1.0000 + 1.7321i
-1.0000 - 1.7321i

Beräkna nollställena till G(s).
Eftersom täljaren i överförings-
funktionen är konstant saknar
systemet nollställen.

>> tzero( G )

ans =

Empty matrix: 0-by-1

1



Rita in systemets poler och
nollställen i det komplexa
talplanet. Poler markeras med
kryss och nollställen, i de fall
de förekommer, markeras med
ringar.

>> pzmap( G )
>> axis([ -2 0 -2 2 ])
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4 Återkoppling
I kursen behandlas återkopplade reglersystem enligt figur 1.

Σ F (s) G(s) Σ+
U

+

+

−

R Y

V

Figure 1. Reglersystem

Med systembeskrivningen

Y (s) = G(s)U(s) + V (s)

och återkopplingen
U(s) = F (s)(R(s)− Y (s))

ges det återkopplade systemet av

Y (s) = Gc(s)R(s) + S(s)V (s)

där

Gc(s) = F (s)G(s)
1 + F (s)G(s)

och

S(s) = 1
1 + F (s)G(s)

Överföringsfunktionerna för det återkopplade systemet kan beräknas med funktio-
nen feedback.

Generera överföringsfunk-
tionen för en proportionell
regulator med förstärkning
Kp = 0.7.

>> F = tf( 0.7 )

Transfer function:
0.7

Beräkna överföringsfunktionen
för det återkopplade systemet.

>> Gc = feedback( F * G, 1 )

Transfer function:
2.8

-----------------------
s^3 + 2 s^2 + 4 s + 2.8

Beräkna känslighetsfunktio-
nen.

>> S = 1 / ( 1 + F * G )

Transfer function:
s^3 + 2 s^2 + 4 s

-----------------------
s^3 + 2 s^2 + 4 s + 2.8

I exemplet ovan hade vi kunnat beräkna Gc på motsvarande sätt som S beräknades,
dvs Gc=F*G/(1+F*G). Med denna metod får dock täljaren och nämnaren i Gc ett
antal gemensamma faktorer som kan förkortas bort. Genom att använda funktio-
nen feedback undviks detta. De gemensamma faktorerna i det första alternativet
kan elimineras genom att använda funktionen minreal(Gc) Testa själv och jämför.
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5 Nyquistdiagram
Nyquistkurvor för en eller flera överföringsfunktioner ritas med funktionen
nyquist. Eftersom funktionen nyquist graderar axlarna automatiskt kan dia-
grammet ibland bli svårläst. Läsbarheten kan förbättras genom att man själv
väljer axlarnas gradering med funktionen axis. Man kan få ut mycket information
ur figuren genom att använda vänster respektive höger musknapp. Med vänster
musknapp kan man t ex markera en punkt på kurvan och få ut motsvarande värde
på ω samt nyquistkurvans värde i denna frekvens. Med höger musknapp får man
en meny med olika operationer som kan göras med figuren.

Rita nyquistkurvan för det
öppna systemet då systemet
G(s) styrs med en proportionell
återkoppling med förstärkning
KP = 0.7. Justera axlarnas
gradering och markera punk-
ten där nyquistkurvan passerar
negativa delen av reella axeln.

>> nyquist( F * G )
>> axis([ -1 1 -1 1 ])
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6 Bodediagram
Bodediagram för en eller flera överföringsfunktioner ritas med funktionen bode.
Även i detta fall kan man läsa av punkter i figuren genom att markera med vänster

musknapp. Med höger knapp får man en meny där man t ex kan välja att markera
frekvenserna där stabilitetsmarginalerna läses av.

Beräkna frekvensfunktionen för
systemet G och rita upp den
i ett bodediagram. Notera
att amplitudkurvan graderas
i decibel. Använd höger
musknapp och lägg in rutnät i
figuren samt markera var fas-
och amplitudskärfrekvenserna
ligger.

>> bode( G )
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För att bestämma skärfrekvenser samt fas- och amplitudmarginal kan man även
använda funktionen margin, vilken förutom att rita upp amplitud- och faskurvorna
även skriver ut dessa värden. Gm och Pm betecknar amplitud- respektive fasmarginal.
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Beräkna frekvensfunktionen för
systemet G och rita upp den i
ett bodediagram.

>> margin( G )
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Gm = 6.02 dB (at 2 rad/sec) ,  Pm = 50.3 deg (at 1.13 rad/sec)
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För att t ex kunna göra jämförelser mellan två frekvensfunktioner kan dessa ritas
i samma diagram.

Beräkna frekvensfunktionerna
för systemen G och G2.

>> bode( G, G2 )
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Skalan på frekvensaxeln kan väljas genom att som sista argument i funktionsan-
ropet ange största och minsta frekvensvärdet mellan krullparenteser .
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Beräkna frekvensfunktionen för
systemet G från 0.1 till 10 rad/s
och rita upp den i ett bodedia-
gram.

>> bode( G, { 0.1, 10 } )
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7 Simulering

7.1 Stegsvar

Den vanligaste typen av simulering är att beräkna ett systems stegsvar. Detta
kan utföras med funktionen step, med vilken man både simulerar systemet och
ritar dess stegsvar. I likhet med tidigare kan man läsa av enskilda värden i figuren
med vänster musknapp och få en meny med olika val med höger knapp. Genom
att t ex välja Peak Response från Characteristics markeras tidpunkt och värde
för överslängen. Placera markören över punkten i diagrammet visas tillhörande
numeriska värden.

Antag att systemet G styrs med proportionell återkoppling med förstärkning Kp =
0.7.

Beräkna och rita upp det
återkopplade systemets
stegsvar. Markera stegsvarets
översläng.

>> step( Gc )
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I normalfallet väljs simuleringstiden automatiskt, men genom att ange ett extra
argument kan man välja simuleringstiden själv.
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Beräkna det återkopplade sys-
temets stegsvar under femton
sekunder och rita upp resul-
tatet.

>> step( Gc, 15 )
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7.2 Allmän insignal

För att simulera linjära system med allmänna insignaler kan man använda funk-
tionen lsim(G,u,t). Indata till denna funktion är ett (eller flera) system G, en
insignalvektor u och en tidsvektor t.

Antag exempelvis att vi vill studera reglerfelet för det återkopplade systemet ovan
då referenssignalen är en ramp. Vi vet att sambandet mellan referenssignal och
reglerfel ges av känslighetsfunktionen

E(s) = S(s)R(s)

där
S(s) = 1

1 + F (s)G(s)

Skapa en tidsvektor mellan 0
och 10 med steget 0.1.

>> t = ( 0 : 0.1 : 10 ).’;

Simulera det återkopplade sys-
temet då referenssignalen är en
ramp med lutning 0.5. Re-
glerfelet går i detta fall mot
0.71. Funktionen ritar även
insignalen, men den kan välja
bort på menyn som nås via
höger musknapp.

>> lsim( S, 0.5*t, t )

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Linear Simulation Results

Time (sec)

A
m

pl
itu

de

För att skapa sinus- och fyrkantsignaler kan funktionen gensig användas.

8 Rotort
För att avgöra hur rötterna till ekvationen

P (s) +KQ(s) = 0

rör sig i komplexa talplanet då K går från noll och mot oändligheten kan man
rita ekvationens rotort med funktionen rlocus. Indata till funktionen är en över-
föringsfunktion med polynometQ(s) som täljare och polynomet P (s) som nämnare.
Med höger musknapp kan man markera relevanta punkter i figuren, såsom t ex då
rotorten passerar imaginäraxeln.
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Rita upp rotorten för det
återkopplade systemets karak-
teristiska funktion då systemet
G styrs med en proportionell
återkoppling. Markera där
en av rötterna passerar imag-
inäraxeln.

>> rlocus( G )
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För att t ex kontrollera för vilken förstärkning polerna har viss dämpning kan man
med höger musknapp lägga in ett nät vilket markerar polplaceringar med samma
avstånd till origo respektive samma dämpning.

9 SISO Design Tool

Ett ytterligare användbart verktyg är SISO Design Tool, vilket är ett användar-
gränssnitt med vilket man enkelt kan studera ett system ur olika aspekter såsom
stegsvar, bodediagram, poler och nollställen, etc. Verktyget SISO Design Tool star-
tas genom att skriva sisotool. Automatiskt kommer de skapade LTI-objekten att
finnas tillgängliga för analys. I figuren nedan visas ett exempel på vilka figurer
som kan visas samtidigt. Testa dig fram!
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Figure 1. SISO Design Tool.
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10 Tillståndsbeskrivning
I Control System Toolbox finns även en datastruktur för att hantera system på
tillståndsform

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

För att skapa ett system på denna form används funktionen ss, med vilken man
kan skapa ett system på tillståndsform från början eller konvertera ett system från
överföringsfunktionsform.

Överför systemet G till till-
ståndsform.

>> G = ss( G )

a =
x1 x2 x3

x1 -2 -2 0
x2 2 0 0
x3 0 1 0

b =
u1

x1 2
x2 0
x3 0

c =
x1 x2 x3

y1 0 0 1

d =
u1

y1 0

Continuous-time model.

Matriserna A,B,C och D i tillståndsbeskrivningen ingår nu i datastrukturen G.
För att komma åt matriserna kan man referera till dem direkt genom att skriva
G.a, G.b etc.

Beräkna egenvärdena till ma-
trisen A i tillståndsmodellen

>> eig( G.a )

ans =

0
-1.0000 + 1.7321i
-1.0000 - 1.7321i

Denna möjlighet är användbar t ex när man skall beräkna polplacerande tillstånds-
återkoppling på formen

u(t) = −Lx(t) + r(t)

vilket kan göras med funktionen place (och i special-fall med acker).

Bestäm en tillståndsåterkop-
pling som placerar det återkop-
plade systemets poler i
närheten av −2. Lägger man
alla polerna exakt i −2 kan
återkopplingen inte beräknas
med hjälp av place, så polerna
sprids ut en aning. För att
få alla polerna exakt i −2
kan acker användas, men
den funktionen har så dåliga
numeriska egenskaper att den
alltid bör undvikas till förmån
för place.

>> L = place( G.a, G.b, ...
-2 * ( 1 + [ -0.01 0 0.01 ] ) )

L =

2.0000 1.9999 1.9998

Det återkopplade systemet

ẋ(t) = (A−BL)x(t) +Br(t)

y(t) = Cx(t)

kan nu skapas t ex med funktionen ss.
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Generera tillståndsbeskrivnin-
gen för det återkopplade sys-
temet. Kontrollera att polerna
placerats på önskat sätt.

>> Gc = ss( G.a - G.b * L, G.b, G.c, 0 );
>> eig( Gc.a )

ans =

-2.0200
-2.0000
-1.9800

Det återkopplade systemets stegsvar kan nu beräknas och ritas upp med funktionen
step.

Beräkna och rita upp det
återkopplade systemets steg-
svar.

>> step( Gc )
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På detta sätt ser vi endast den utsignal som definieras av vektorn C. Vill vi
studera samtliga tillstånd kan detta göras genom att låta C vara en enhetsmatris
med dimension lika med systemets ordningstal.

Skapa det återkopplade sys-
temet på nytt, men med
samtliga tre tillstånd som utsig-
naler.

>> Gc = ss( G.a - G.b * L, G.b, eye(3), 0 );
>> step( Gc )
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För att beräkna linjärkvadratisk tillståndsåterkoppling kan funktionen lqr använ-
das.
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11 Sammanfattning av komman-
don

11.1 Användbara kommandon i Control System
Toolbox

tf System på överföringsfunktionsform
ss System på tillståndsform
pole Poler
step Stegsvar
tzero Nollställen
feedback Återkoppling
nyquist Nyquistdiagram
bode Bodediagram
bodemag Bodediagrammets amplitudkurva
sigma Generalisering av bodemag
margin Bodediagram och stabilitetsmarginaler
rlocus Rotort
lsim Simulering med godtycklig insignal
place Polplacerande tillståndsåterkoppling
lqr Linjärkvadratisk tillståndsåterkoppling
ctrb Styrbarhetsmatris
obsv Observerbarhetsmatris
ltiview Startar LTI Viewer
pzmap Pol-nollställediagram
minreal Förkortning av gemensamma faktorer
sisotool Grafiskt gränssnitt

11.2 Användbara MATLAB-kommandon

abs Absolutbelopp
eig Egenvärden
conv Polynommultiplikation
det Determinant
diag Diagonalmatris
imag Imaginärdel
inv Matrisinvers
real Realdel
roots Rötter till polynom
grid Nät i figurer
hold Frysning av figur
loglog Diagram i log-log skala
plot Diagram i linjär skala
cd Byte av bibliotek
dir Listning av bibliotek
clear Radering av variabler och funktioner i arbetsminnet
load Inläsning av variabler från fil
save Lagring av variabler på fil
who Listning av variabler i arbetsminnet
helpdesk Startar HTML-baserad hjälpfunktion
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