
S3 – Reglerteknik
2005-04-06

Introduktion till MATLAB

2E1215

Exempelsamling

Note this exercise compendium is under development, and will be finalized
during 2005. Please help us to improve the document by emailing comments
and suggestions to 2e1215@s3.kth.se.

Preface

This exercise compendium is being developed in an effort to give you, as
participant of 2e1215, full flexibility in combining your course book of choice
with relevant exercises.

Although we recommend the book “Matlab for Engineers Explained” by N.
Bergman and F. Gustafsson, Springer-Verlag, ISBN 1852336978, we acknowl-
edge that there are many alternative texts, some of which are free of charge.
Links to a selection of free MATLAB tutorials on the Internet can be found
on the course homepage http://www.s3.kth.se/courses/2E1215.

We have organized this exercise compendium in different chapters, each cov-
ering a particular aspect of MATLAB programming. The first exercise of
every chapter is intended to give an intuitive introduction and can be treated
without prior knowledge of the field. Detailed solutions are provided for each
exercise. Reading instructions are provided in each chapter, and refer to the
Matlab help text which is available via the menu item “Full Product Family
Help” in the “Help” menu. Please note that the document “Getting started
with Matlab” is also available in PDF format via the help system.

It is our intention that when you feel confident in solving these exercises,
you should also be well prepared for the final exam and ready to use Matlab
effectively in your studies and professional career.

Stockholm, January 2005
The Authors

1 Introduction

Required reading:

Contents/MATLAB/Getting Started/Introduction
Contents/MATLAB/Getting Started/Development Environment

Crash course in Matlab: Introduction

1.1

Execute the following commands and try to interpret the results

>> 5

>> 5 + 3

>> a = 10 - 4

>> a

>> b

>> b = a * 4

>> a * b

>> ans

>> [↑] [↑] [↑] [enter]

>> a [↑] [↑] [↑] [enter]

>> a = 2 * 6;

>> a

>> why

1.2

Try help to get a list of available help topics. Here, the first five might be
most important.

• >> help general - to get a list of general methods

1

• >> help ops - gives a list of basic operators

• >> help lang - help on programming language constructs

• >> help elmat - provides a list of elementary matrix functions

• >> help elfun - provides a list of elementary math functions

Use help FUNCTION to get more information about a specific function or
lookfor KEYWORD to search the available short descriptions of functions for
this keyword.

1.3

Use the command lookfor to find a function that tests whether a given
integer is prime or not.

1.4

Use the command help to find out how the command works and test whether
the number 567827 is prime or not.

2

2 Matrix Manipulation

Required reading:

Contents/MATLAB/Getting Started/Manipulating Matrices

Crash course in Matlab: Arrays and Matrices

2.1

Execute the following commands and try to interpret the results

>> A = [1 2 3; 4 5 6; 7 8 9]

>> A(2,3)

>> A(1,:)

>> A(:,3)

>> A(2:3,1:2)

>> A([3 2],2)

>> A(2,:) = 0

>> A(:,2) = 0

>> A([1 3],[1 3]) = -1

>> A(2,:) = [1 2 3]

>> A([1 3],[1 3]) = [1 2;3 4]

>> A(:,1) = [1; 2]

2.2

Create the following matrices

A =

(

1 2
3 4

)

, B =

(

2 2
3 3

)

, C =

(

2 2
3 4

)

Use isequal to verify that

• A + B = B + A

3

• A ∗ B 6= B ∗ A

• (A + B) + C = A + (B + C)

• (A ∗ B) ∗ C = A ∗ (B ∗ C)

• A ∗ (B + C) = A ∗ B + A ∗ C

• (A + B)t = At + Bt

• (A ∗ B)t = Bt ∗ At

• (A ∗ C)−1 = C−1 ∗ A−1

If the result does not match your expectation, try a-b instead of isequal(a,b)
to compare the two matrices and try to explain your observations.

2.3

Let x=[4 5 9 6].

(a) Subtract 3 from each element

(b) Add 11 to the odd index elements

(c) Compute the square root of each element

(d) Raise each element to the power of 3

2.4

Create the following matrix using the colon operator

A =













1 2 3 4 5
1 3 5 7 9
1 1.25 1.5 1.75 2

0.1 0.2 0.3 0.4 0.5
5 4 3 2 1













4

2.5

Create the following matrix using the functions ones and zeros

B =





















0 0 0 0 0 0 0
0 1 1 1 1 1 0
0 1 2 2 2 1 0
0 1 2 3 2 1 0
0 1 2 2 2 1 0
0 1 1 1 1 1 0
0 0 0 0 0 0 0





















2.6

Create the following matrix using the colon operator together with element-
wise operations and the functions cumsum, cumprod and mod

C =

















1 2 3 4 5
1 4 9 16 25
1 0.5 0.33 0.25 0.2
1 3 6 10 15
1 2 6 24 120
1 0 1 0 1

















2.7

Create the 5×5 magic square E = magic(5). Verify that the sum along each
row, column and the main diagonal is the same.

2.8

Consider the matrix created in the preceding task and replace all numbers
that are larger than 15 by zeros.

Hint. You can either use the find command or logical indexing.

5

2.9

The Emperor of India put the call out to his subjects that he wanted a
new game invented and that there would be a reward for the inventor of
the best one. An old man came to him with Chess - after showing him the
game and looking at the other inventions CHESS was declared the winner.
The Emperor was so exultant over the invention of chess that he offered the
inventor anything he wanted in the kingdom. The inventor thought for a
minute and then said, ” One grain of rice, Your Majesty.”

”Just one grain of rice?”

”Yes, just one grain of rice on the first square of the chess board, two grains
of rice on the second square, four grains of rice on the third square,” and so
on. Each sqare got double the grains of rice that the last square had.

Create the 8× 8 matrix representing the chessboard with the number of rice
grains specified for each square, like

D =







1 2 4 . . . 64 128

256 512 . . .
...

...
...

. . .







What are the numbers on the 4 squares in the middle of the chess board?

Hint: use the function reshape and set format long to get all important
digits.

2.10

Use Matlab to solve the following set of equations

7x1 + 14x2 − 6x3 = 95

12x1 − 5x2 + 9x3 = −50

−5x1 + 7x2 + 15x3 = 145

Hint: This is a system of linear equations on the form Ax = b.

6

2.11

Plot a spiral originating from the origin that reaches a radius of 5 after 4
revolutions.

2.12

Plot the function

f(x) = sin

(

1

x

)

over the interval [0.01, 0.1]. Add the label ’x’ on the x-axis, the label
’1/sin(x)’ on the y-axis and the title ’A simple example’ to the plot.

How do you choose the x-values to make the plot look nice?

2.13

Determine the solutions to the equation

sin(x) = 3 cos(x)

in the interval x ∈ [−2π, 2π] by plotting the two functions

f1(x) = sin(x) f2(x) = 3 cos(x)

in the same plot. Export the plot to a PDF file.

Hint. You can either use the command help plot to find out how plot can
take multiple (x,y) vector pairs as input, or use the command hold to add
plots to the current axis.

The zoom command can also be useful in finding the solutions with sufficient
accuracy.

7

2.14

The Fourier series is a series representation of a periodic function in terms
of sines and cosines. The Fourier series representation of the function

f(x) =

{

1 0 < x < π

−1 −π < x < 0

is

4

π

(

sin x

1
+

sin 3x

3
+

sin 5x

5
+

sin 7x

7
+ · · ·

)

Plot on the same graph the function f(x) and its series representation using
4, 8 and 12 terms.

Select individual line styles and colors for the four plots according to your
own taste.

2.15

Recall the identity

e = lim
n→∞

rn, rn =

(

1 +
1

n

)n

Make a standard log-log plot of e − rn for n = 5, 10, 15, 20, . . . , 500. What
does the log-log plot tell about the asymptotic behaviour of e − rn.

2.16

To get an impression of other visualizations, type the following commands
and try to interpret the results

>> figure

>> x = -2.9:0.2:2.9;

8

>> bar(x,exp(-x.*x));

>> figure

>> x = 0:0.25:10;

>> stairs(x,sin(x));

>> figure

>> x=-2:0.1:2;

>> y=erf(x);

>> e=rand(size(x))/10;

>> errorbar(x,y,e);

>> figure

>> r=rand(5,3);

>> subplot(1,2,1); bar(r, ’grouped’);

>> subplot(1,2,2); bar(r, ’stacked’);

>> figure

>> x=randn(200,1);

>> hist(x,15);

2.17

Create a vector v with 10 normally distributed elements using the function
randn. Extract the positive elements in v using the following two techniques

(a) Use the find command to find the indices of the positive elements, and
extract the elements of v in these entries

(b) Use logical indexing, i.e., first extract the elements by first creating a
vector with ones on the positions where v has positive elements and
zeros on all others; then use this vector to index v and extract the
positive elements.

9

3 Strings and Sorting

Required reading:

Contents/MATLAB/Getting Started/Programming with MATLAB/...
.../Other Data Structures/Characters and Text

Crash Course in Matlab: Advanced Data Structures/Strings

3.1

Execute the following commands and try to interpret the results

>> a = 5

>> b = ’5’

>> double(a)

>> double(b)

>> text = ’Hello World’

>> text([1, 7])

>> ascii = double(text)

>> char(ascii)

>> length(text)

>> tworows = [’Peter’; ’Karin’]

>> tworows = [’Anna’; ’Karin’]

>> tworows = [’Anna ’; ’Karin’]

>> tworows = char(’Anna’,’Karin’)

>> double(tworows)

3.2

What are the ASCII codes representing the capital letters A–Z, the lower
case letters a–z and the numerals 0–9?

10

3.3

Define the string ’2 times 3 equals 6’

(a) Find all occurences of the letter ’e’

(b) Find all white spaces in the string.

(c) Remove all white spaces from the string

3.4

How many ’a’ appear in the help text for the function char?

How many times does the word ’form’ occur in the help text?

3.5

Create a random vector vec with 10 elements

(a) Sort the elements in ascending order (smallest first, largest last). De-
termine the index of the second smallest element of vec.

(b) Sort the elements of vec in descending order (largest first, smallest
last).

3.6

Suppose that we represent a standard deck of playing cards by a vector vec
containing one copy of each integer from 1 to 52.

(a) Show how you can use the commands sort and rand to “shuffle” vec

by rearranging its contents in a random order.

(b) Use lookfor and help to search for a Matlab command that permutes
the elements of a vector, and use this command to shuffle the cards.

11

3.7

The following table contains the names of students and their results on the
MATLAB course:
>> tab = char(’Adam 5’,’Bjorn U’,’Christian 4’,’David 4’,...

’Eva 3’,’Frodo 4’,’Gerry 5’,’Hans 3’,...

’Irene U’,’Johan 4’,’Karin 5’)

Sort the table by grades.

3.8

Why does
>> char(’2’ + ’5’ - ’3’)

give the ”correct” result
ans =

4

but
char(’4’ + ’5’)

gives the ”wrong” result
ans =

c

12

4 Scripts and Functions

Required reading:

Contents/MATLAB/Getting Started/Programming with MATLAB

Crash course in Matlab: Scripts and Functions
Crash course in Matlab: More on Functions

4.1

Write a function add.m that takes two input arguments and returns the sum
of those two.

4.2

Write a function grade.m that computes the correct grade for a given number
of points. The grade is determined by the following rule:

grade =















5 if 90 ≤ points ≤ 100
4 if 70 ≤ points ≤ 89
3 if 50 ≤ points ≤ 69

’U’ otherwise

You may assume that the given number of points is between 0 and 100.

4.3

Write a function grade2.m that does exactly the same as in the preceding
task. grade2.m must not contain any if-clause - use switch instead.

13

4.4

Write a function hello.m that displays ”Hello World” if no input argument
is given. If a name is given as input, the function should display ”Hello
NAME” instead. If the user types >> help hello a help text on how to use
this function should be displayed. The function does not have to return any
value.

Hint: use nargin to determine whether or not an input was given.

4.5

Write a function middle.m that takes as input a vector of numbers. If it
is called with one output as in middle(vec) or result = middle(vec) it
should return the median of the numbers in the vector. If it is called with
two outputs as in [mean, med] = middle(vec) it should return the mean
value as the first output and the median as the second one.

Hint: use nargout to determine the number of outputs requested

4.6

Write a function sortcolumns.m that works similar to sortrows, but sorts
the columns of a matrix.

4.7

Write a function fundiff(f,x,y) that takes the name of a function f (as a
string), and two scalar values x and y as inputs and returns the difference
between the corresponding function values, i.e.,

f(x) − f(y)

The following lines demonstrates how the function should work

14

>> f=’sin’; x=1; y=2;

>> fundiff(f, x, y)

ans =

-0.0678

Hint. Use the command feval.

4.8

Write a function i=signchange(x) that finds where the vector x changes
sign.

The following lines demonstrates how the function should work

>> x=[-1 2 3 -5 -6 4 7];

>> signchange(x)

ans =

2 4 6

4.9

Write a function I=trap(f,a,b,n) that implements the trapezoidal quadra-
ture rule

∫

b

a

f(x) dx ≈
h

2
[f(x0) + 2f(x1) + 2f(x2) + · · · + 2f(xn−1) + f(xn)]

where h = (b− a)/n and xk = a + kh. Test your function on sin(x) + cos(x)
for 0 ≤ x ≤ π/3.

The inputs to trap are f: the name of the MATLAB function (as a string)
to integrate, the lower and upper integration limits a and b and the number
of discretization points n, and returns an approximation of the integral.

Hint: use feval

15

4.10

Write a function newton(f,df,x0,tol) that implements Newton’s method
for root-finding on a scalar equation

xn+1 = xn −
f(xn)

f ′(xn)

The first input is the name (a string) of a function f and the second input
is the name of a function that returns the derivative f ′. The third input
is an initial guess of the root. Continue the iteration until either |f(xn+1)|
or |xn+1 − xn| is less than tol or a maximum number of 100 iterations is
reached.

4.11

Write a function helper.m that takes as inputs the name of a MATLAB
function and one of the letters ’l’, ’r’ or ’c’ and returns a matrix containing
the first 20 words of the help text for the given function either left justified,
right justified or centered.

4.12

If a data source produces symbol k with probability pk, the first-order entropy

of the source is defined as

H1 = −
∑

k

pk log2 pk

Essentially, H1 is the average number of bits needed per symbol to encode
a long message; i.e., it measures the amount of information content (and
therefore the potential success of compression strategies). The value H1 = 0
corresponds to a single symbol, while for M symbols of equal probability,
H1 = log2 M .

Write a function [H,M]=entropy(v) that computes the entropy of a vector v.
The probabilities should be computed empirically, but counting occurrences
of each unique symbol and dividing by the length of v.

16

Hint: the commands find and unique may be helpful.

4.13

One way to compute the exponential function ex is to use its Taylor series
expansion around x = 0. Unfortunately, many terms are required if |x| is
large. But a special property of the exponential is that e2x = (ex)2. This leads
to a scaling and squaring method: divide x by 2 repeatedly until |x| < 1/2,
use a Taylor series (16 terms should be more than enough) and square the
result repeatedly. Write a function expss(x) that does this. Test your
function on the x values −30,−3, 3, 30.

Hint. The function polyval can be useful for evaluating the Taylor series.

4.14

Re-write the function trap so that it does not use any loops.

Hint. Set up a vector of all x values and evaluate f for it. Then set up a
vector of quadrature weights and use an inner product.

4.15

Re-write the function entropy so that it does not use any loops.

Hint. The functions sort, diff, find and (perhaps) sum can be useful.

17

5 Example Tasks from old Exams

5.1

--

Barbecue!

--

You want to arrange a barbecue for which you have to buy sausages,

bread and beer. Beer is sold in packages of 6, 11 and 20 bottles

and sausages are sold in packages of 5, 8 and 14. The three

different available sizes of bread packages will be given as an

input argument. Is it possible to buy exactly x of each without

any leftovers?

Syntax: OkFlag = barbecue(x, b1, b2, b3)

where OkFlag is a Flag indicating if it is possible (1) or not (0)

to buy exactly x without leftovers

x is the number of beer, bread and sausages to buy

b1, b2, b3 are the three available bread package sizes

with b1 < b2 < b3

Example 1:

x = 37; b1 = 4; b2 = 11; b3 = 14

Is it possible to buy exactly 37 beer, bread and sausages without

leftovers?

Beer: 6 + 11 + 20 = 37 -> OK

Sausages: 5 + 4*8 = 37 -> OK

Bread: 3*4 + 11 + 14 = 37 -> OK

Answer: 1 (It is possible to buy exactly 37 of each without

leftovers)

18

Example 2:

x = 27; b1 = 4; b2 = 11; b3 = 14

Is it possible to buy exactly 27 beer, bread and sausages without

leftovers?

Beer: there is no way to buy exactly 27 bottles of beer

Sausages: 5 + 8 + 14 = 27 -> OK

Bread: 4*4 + 11 = 27 -> OK

Answer: 0 (It is not possible to buy exactly 27 of each)

Basic functionality:

>> OkFlag = barbecue(37,4,11,14)

OkFlag =

1

>> OkFlag = barbecue(27,4,11,14)

OkFlag =

0

A correct solution gives one point if it passes a set of random

input problems.

Hint: This problem originates from the so-called McNugget numbers

--

19

Solutions 2

2.2

>> A = [1 2;3 4]

>> B = [2 2;3 3]

>> C = [2 2;3 4]

>> (A+B) - (B+A)

>> (A*B) - (B*A)

>> (A*B)*C - A*(B*C)

>> A*(B+C) - (A*B + A*C)

>> (A+B)’ - (A’+B’)

>> (A*B)’ - B’*A’

>> (A*C)^(-1) - C^(-1)*A^(-1)

2.3

>> x = [4 5 9 6]

>> x = x - 3

>> x(mod(1:4,2)==1) = x(mod(1:4,2)==1) + 11

>> x = sqrt(x)

>> x = x.^3

2.4

>> A=[1:5;1:2:9;1:0.25:2;0.1:0.1:0.5;5:-1:1]

2.5

>> B=zeros(7)

>> B(2:6,2:6)=ones(5)

>> B(3:5,3:5)=ones(3)*2

20

>> B(4,4)=3

2.6

>> A = [1:5;...

[1:5].^2;...

1./[1:5];...

cumsum(1:5);...

cumprod(1:5);...

mod(1:5,2)]

2.7

>> E = magic(5)

>> sum(E,1)

>> sum(E,2)

>> sum(diag(E))

2.8

>> E>15

>> E(E>15) = 0

>> find(E>15)

>> E(find(E>15)) = 0

2.9

>> CB = reshape(2.^[0:63],8,8)’

>> format long

>> CB(4:5,4:5)

21

gives
(

134217728 268435456
34359738368 68719476736

)

grains of rice on the four squares in the middle.

2.10

>> A = [7 14 -6; 12 -5 9; -5 7 15]

>> b = [95; -50; 145]

>> x = A\b

2.11

¿¿ t = 0:0.01:2*pi*4; ¿¿ x = 5*t/(8*pi).*cos(t) ¿¿ y = 5*t/(8*pi).*sin(t) ¿¿
plot(x,y)

2.12

>> figure(1)

>> x = 0.01:0.001:0.1

>> plot(x,sin(1./x))

>> figure(2)

>> x = 0.1 ./ (1:0.01:10)

>> plot(x,sin(1./x))

2.13

>> x = -2*pi:0.01:2*pi

>> figure(1)

>> plot(x,sin(x),’r’,x,3*cos(x),’b’)

>> figure(2)

22

>> plot(x,sin(x),’r’)

>> hold on

>> plot(x,3*cos(x),’b’)

2.14

>> x = -pi:0.01:pi

>> fx = ones(size(x))

>> fx(find(x<0)) = -1

>> four = 4/pi * sin(x)

>> for cnt = 2:12

>> c = 2*cnt -1

>> four(cnt,:) = [four(cnt-1,:) + 4/pi * sin(c*x)/c]

>> end

>> plot(x,fx,’k’)

>> hold on

>> plot(x,four(4,:),’r’)

>> plot(x,four(8,:),’g’)

>> plot(x,four(12,:),’b’)

2.15

>> n = 5:5:500

>> r = (1 + 1./n).^n

>> loglog(n,exp(1)-r)

2.17

>> vec = randn(1,10)

>> pos = find(vec >= 0)

>> vec(pos)

>> help logical

>> pos = (vec > 0)

>> islogical(pos)

23

>> vec(pos)

24

Solutions 3

3.2

>> [char((32:255)’),’ ’*ones(224,2),num2str((32:255)’)]

gives the ascii codes of all printable characters. Thus, we get

• A-Z: char(65:90)

• a-z: char(97:122)

• 0-9: char(48:57)

3.3

>> str = ’2 times 3 equals 6’

>> find(str == ’e’)

>> blank = find(str == ’ ’)

>> str(blank) = []

3.4

>> text = help(’char’)

>> sum(text == ’a’)

>> sum(lower(text) == ’a’)

>> length(strfind(text,’form’))

>> length(strfind(text,’ form ’))

3.5

>> vec = rand(1,10)

25

>> [val, ind] = sort(vec)

>> ind(2)

>> val(end:-1:1)

>> -sort(-vec)

3.6

>> help sort

>> rvec = rand(1,52)

>> [val, ind] = sort(rvec)

>> vec = ind

>> lookfor permute

>> lookfor permutation

>> help randperm

>> vec = randperm(52)

3.7

>> tab = char(’Adam 5’,’Niklas U’,’Christian 4’,’David 4’,...

’Eva 3’,’Frodo 4’,’Gerry 5’,’Hans 3’,...

’Irene U’,’Johan 4’,’Karin 5’)

>> tabr = strjust(tab,’right’)

>> tabr(tabr(:,end)==’U’,end) = ’2’

>> [v, ind] = sort(-tabr(:,end))

>> tab(ind,:)

3.8

The numerals 0-9 have the ascii codes 48-57, respectively. Thus, ’2’ + ’5’ - ’3’

is evaluated to 50 + 53 - 51 = 52 and char(52) returns the string ’4’.

’4’ + ’5’ is evaluated to 52 + 53 = 105. As 105 is the ascii code for ’c’,
char(’4’ + ’5’) returns ’c’.

26

27

Solutions 4

4.1

1: function [output] = add(arg1, arg2)

2:

3: output = arg1 + arg2;

4: return

4.2

1: function [output] = grade(points)

2:

3: if (points >= 90)

4: output = 5;

5: elseif (points >= 70)

6: output = 4;

7: elseif (points >= 50)

8: output = 3;

9: else

10: output = ’U’;

11: end

12: return

1: function [output] = grade(points)

2:

3: output = floor((points+10)/20);

4: if (output < 3)

5: output = ’U’;

6: end

7: return

28

4.3

1: function [output] = grade2(points)

2:

3: switch floor(points/10)

4: case {9,10}

5: output = 5;

6: case {7,8}

7: output = 4;

8: case {5,6}

9: output = 3;

10: otherwise

11: output = ’U’;

12: end

13: return

4.4

1: function [] = hello(name)

2: %HELLO function

3: % usage: hello to display ’Hello World’

4: % hello(’NAME’) to display ’Hello NAME’

5:

6: if (nargin == 0)

7: disp(’Hello World’)

8: else

9: disp([’Hello ’ name])

10: end

11: return

4.5

1: function [outp1, outp2] = middle(vec)

2:

3: if (nargout < 2)

29

4: outp1 = median(vec);

5: else

6: outp1 = mean(vec);

7: outp2 = median(vec);

8: end

9: return

4.6

1: function [v, i] = sortcolumns(x,row)

2: if (nargin==1)

3: row=1;

4: end

5: [v,i] = sortrows(x’,row);

6: v=v’;

7: return

4.7

1: function [output] = fundiff(f, x, y)

2:

3: output = feval(f,x) - feval(f,y);

4: return

4.8

1: function [output] = signchange(x)

2:

3: output = find(diff(x>=0))+1;

4: return

30

4.9

1: function [output] = trap(f, a, b, n)

2:

3: h = (b - a) / n;

4: output = 0;

5: for x = a:h:b;

6: output = output + 2 * feval(f,x);

7: end

8: output = h/2 * (output - feval(f,a) - feval(f,b));

9: return

4.10

1: function [output] = newton(f, df, x0, tol)

2:

3: x(1)=x0;

4: x(2)=x(1)-feval(f,x(1))/feval(df,x(1));

5: cnt=2;

6: while (((x(cnt) - x(cnt-1) > tol) ||

7: (feval(f,x(cnt)) > tol)) &&

8: (cnt < 100))

9: x(cnt+1)=x(cnt)-feval(f,x(cnt))/feval(df,x(cnt));

10: end

11: return

4.11

1: function [output] = helper(func, just)

2:

3: text = help(func);

4: [word,remainer] = strtok(text);

5: output = word;

6: for i = 1:19

7: [word,remainer] = strtok(remainer);

31

8: output = strvcat(output,word);

9: end;

10: switch just

11: case ’l’

12: justify = ’left’;

13: case ’c’

14: justify = ’center’;

15: otherwise

16: justify = ’right’;

17: end

18: output = strjust(output,justify);

19: return

4.12

1: function [output] = entropy(str)

2:

3: unstr = unique(str);

4: output = 0;

5: for k=1:length(unstr)

6: p_k = sum(str==unstr(k))/length(str);

7: output = output - p_k*log2(p_k);

8: end

9: return

4.13

1: function [output] = expss(x)

2:

3: cnt = 0;

4: while (x > 0.5)

5: x = x/2;

6: cnt = cnt + 1;

7: end

8: output = 0;

9: for i = 0:15

32

10: output = output + x^i/factorial(i);

11: end

12: while (cnt > 0)

13: output = output^2;

14: cnt = cnt - 1;

15: end

16: return

4.14

1: function [output] = trap(f, a, b, n)

2:

3: h = (b - a) / n;

4: x = a:h:b;

5: output = h / 2 * (feval(f,x) * [1 ones(1,length(x)-2)*2 1]’);

6: return

4.15

1: function [output] = entropy(str)

2:

3: vec = diff([find(diff(sort(str))>0) length(str)]);

4: p = [vec length(str)-sum(vec)]/length(str);

5: output = - log2(p)*p’;

6: return

33

Solutions 5

5.1

Of course, there are many possible ways to solve this problem. The algorithm
implemented below tries first to make up the whole number of e.g. beer just
with the largest package size. If it did not succeed, it reduces the number of
the smallest package size bought in the previous trial and distributes the freed
quantity on smaller package sizes until it found a valid combination. The last
combination tested is buying only small packages. If even this combination
is not valid, the required number can not be bought without leftovers.

1: function OkFlag = barbecue(x, b1, b2, b3)

2:

3: A = [6 11 20; 5 8 14; b1 b2 b3];

4: % the rows of A correspond to available

5: % packages sizes of beer, sausages and bread

6:

7: for line = 1:3

8: % for each foodstuff do

9: a = A(line,:);

10:

11: % try to buy only large packages

12: c=[0 0 ceil(x/a(3))];

13: % c are the numbers of small, medium and large

14: % packages bought

15:

16: delta = x - c*a’;

17: % delta are the leftovers

18:

19: while (delta ~= 0)

20: % while there are leftovers

21:

22: ind = find(c(2:end));

23: % what was the minimum package size in the last

24: % trial? (except small packages)

26:

27: if isempty(ind)

34

28: % if there where only small packages in the

29: % last trial and even this combination was

30: % not valid, the required number can not be

31: % bought without leftovers

32: OkFlag = 0;

33: return

34: end

35:

36: c(ind(1)+1) = c(ind(1)+1) - 1;

37: % otherwise, reduce the number of this

38: % smallest package size ...

39: c(1:ind(1)) = 0;

40: for j = ind:-1:1

41: delta = x - c*a’;

42: c(j) = floor(delta/a(j));

43: end

44: % and distribute the remaining quantity over

45: % smaller packages

46:

47: delta = x - c*a’;

48: % are there any leftovers?

49: end

50: % no? great! continue with the next foodstuff

51: end

52: % valid combinations found for all three

53: % great! return success

54: OkFlag = 1;

55: return

35

