v

oS R,

$KTH %

% VETENSKAP
3% OCH KONST ¢

Myt

ROYAL INSTITUTE
OF TECHNOLOGY

EL2450 - Hybrid and Embedded Control Systems

Exercises

Alberto Speranzon, Oscar Flardh, Magnus Lindhé,
Carlo Fischione and Karl Henrik Johansson
December 2008

Plant

Hold Sample

DA |-

Cdrhputer - AD—

int count;
intu;

int ref;

string str;
int main(int y);

int main(int p);
count=count+1; openport(p);
u=1/2*sqrt(y)-r; ref=read(p);

TASK 1 TASK 2

Automatic Control Lab, School of Electrical Engineering
Royal Institute of Technology (KTH), Stockholm, Sweden






Preface

The present compendium has been developed by Alberto Smera@scar Flardh and Karl Henrik Johansson
in the beginning of 2005 for the course 2E1245 Hybrid and Eidbd Control Systems, given at the Royal
Institute of Technology, Stockholm. The material has bgafated later in 2005 and in the beginning of 2006.
Some of the exercises have been shamelessly borrowecdidtalm other sources, and in that case a reference
to the original source has been provided.

Alberto Speranzon, Oscar Flardh and Karl Henrik Johanskomyary 2006.

The material was edited and some problems and solutionsaudgied in 2008, by Magnus Lindhé and Carlo
Fischione. The course code also changed to EL2450.
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Exercises
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Time-triggered control



1 Review exercises: aliasing;-transform, matrix exponential

EXERcISE 1.1(Ex. 7.3in[13])

Consider a sampling and reconstruction system as in FigdreThe input signal is:(¢) = cos(wot). The
Fourier transform of the signal is

X(jw) =7 [6(w — wp) + 6(w + wo)]

and the reconstruction (low-pass) filter has the transfiectfan

. hy, —ws/2 < w < ws/2
Fljw) = { 0, else

wherew; = %’T is the sampling frequency. Find the reconstructed outguasic, (¢) for the following input
frequencies

(@) wo = ws/6

(b) wo = 2w, /6
(€) wo = 4w,/6
(d) wo = 5w, /6

v

o TR L

«. 0
Sampling Reconstruction

Figure 1.1: Sampling and reconstruction of a band-limiigda.

EXERCISE 1.2
Let the matrixA be

Compute the matrix exponentiaf'.



EXERCISE 1.3

Compute the:-transform of
w(kh) = e FMT T > 0.

EXERCISE 1.4

Compute the:-transform of
x(kh) = sin(wkh)

EXERCISE 1.5
Given the following system described by the following diffece equation

y(k+2) — 1.5y(k + 1) + 0.5y(k) = u(k + 1)

with initial conditiony(0) = 0.5 andy(1) = 1.25, determine the output when the inputt) is a unitary step.

2 Models of sampled systems

EXERCISE 2.1(Ex. 2.1in[2])
Consider the scalar system
dz
dt
Yy = cT.

= —ax + bu

Let the input be constant over periods of lengttfSample the system and discuss how the poles of the discrete-
time system vary with the sampling frequency.

EXERCISE 2.2

Consider the following continuous-time transfer function

1
Gs)= ————.
&)= G D6+
The system is sampled with sampling perioe- 1.
(a) Derive a state-space representation of the sampleghsyst

(b) Find the pulse-transfer function corresponding to tfsen in (a).



EXERCISE 2.3(Ex. 2.2in[2])
Derive the discrete-time system corresponding to thewollg continuous-time systems when a zero order-
hold circuit is used

(@)

y:(l O)x
® d? d d
Yy Yy U
29 29y =
dt2+3dt+ Y dt+3u
()
d3y
a

EXERCISE 2.4 (Ex. 2.3in[2])

The following difference equations are assumed to des@aminuous-time systems sampled using a zero-
order-hold circuit and the sampling periad Determine, if possible, the corresponding continuonoeetsys-

tems.

(@)
y(kh) — 0.5y(kh — h) = 6u(kh — h)
(b)
o(kh+h) = (‘8'5 _(1).3> #(kh) + (8?) u(kh)
y(kh) = (1 1) z(kh)
(©)

y(kh) + 0.5y(kh — h) = 6u(kh — h)

EXERCISE 2.5(Ex. 2.11in[2])
The transfer function of a motor can be written as

Determine:
(a) the sampled system

(b) the pulse-transfer function
(c) the pulse response
(d) adifference equation relating input and output

(e) the variation of the poles and zeros of the pulse-trarisfection with the sampling period
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EXERCISE 2.6 (Ex. 2.12in[2])
A continuous-time system with transfer function

G(s) = B e T

is sampled with sampling peridd= 1, wherer = 0.5.
(a) Determine a state-space representation of the samydahs What is the order of the sampled-system?
(b) Determine the pulse-transfer function and the pulsearese of the sampled system

(c) Determine the poles and zeros of the sampled system.

EXERCISE 2.7 (Ex. 2.13in[2])
Solve Problem 2.6 with

andh =1 andr = 1.5.

EXERCISE 2.8(Ex. 2.151in[2])
Determine the polynomiald(q), B(q), A*(¢~')) and B*(¢~!) so that the systems

and
A*(q " y(k) = B* (¢~ u(k — d)

represent the system
y(k) — 0.5y(k — 1) = u(k — 9) + 0.2u(k — 10).

What isd? What is the order of the system?

EXERCISE 2.9(Ex. 2.17 in[2])
Use the z-transform to determine the output sequence ofiffieeethce equation

y(k+2) — 1.5y(k + 1) +0.5y(k) = u(k + 1)

whenu(k) is a step at = 0 and whery(0) = 0.5 andy(—1) = 1.
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EXERCISE 2.10
Consider the following continuous time controller

t t
U(s) = _808+Sly(8)+ 0s + 11

R(s)
sS—+1 S+ 17

wheresg, s1, tg, t1 andr; are parameters that are chosen to obtain the desired dlmgegberformance. Dis-
cretize the controller using exact sampling by means of $soingontrol theory. Assume that the sampling
interval ish, and write the sampled controller on the foutkh) = —H,(q)y(kh) + H,(q)r(kh).

EXERCISE 2.11(Ex. 2.21in[2])

If 5 < «,then
s+
S+«
is called a lead filter (i.e. it gives a phase advance). Censit discrete-time system
z+b
zZ+a

(a) Determine when itis a lead filter

(b) Simulate the step response for different pole and zexatilons

3 Analysis of sampled systems

EXeERcISE 3.1(Ex. 3.2in[2])
Consider the system in Figure 3.1 and let

K
e = -0y K20

Determine the values df for which the closed-loop system is stable.

T € Y
- - H(2)

Figure 3.1: Closed-loop system for Problem 3.1.
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EXeRrcISE 3.2(Ex. 3.3in[2])

Consider the system in Figure 3.2. Assume the sampling isgiemwith periodh, and that the D-A converter
holds the control signal constant over a sampling interi/ak control algorithm is assumed to be

u(kh) = K (r(kh — 1) — y(kh — 7))

whereK > 0 andr is the computation time. The transfer function of the predes

(&) How large are the values of the regulator géin for which the closed-loop system is stable whes 0
andr = h?

(b) Compare this system with the corresponding contindmos-systems, that is, when there is a continuous-
time proportional controller and a time delay in the process

r u 1
) > Clq) ™ AD [»| G(s) ™ DIA [

Figure 3.2: Closed-loop system for Problem 3.2.

EXERCISE 3.3(Ex. 3.61in[2])
Is the following system (a) observable, (b) reachable?

ok +1) = (0(')5 6%5’) (k) + @ u(k)
y(k) = (2 —4)=(k)

EXERCISE 3.4(Ex. 3.7in[2])
Is the following system reachable?

ok +1) = (é O%) (k) + G é) u(k).

Assume that a scalar inputk) such that

is introduced. Is the system reachable froth)?

13



EXERCISE 3.5(Ex. 3.111in[2])
Determine the stability and the stationary value of the outpr the system described by Figure 3.2 with

1
H(a) = q(q —0.5)

wherer is a step function and'(¢) = K (proportional controller), K>O0.

EXERCISE 3.6 (Ex. 3.121in[2])

Consider the Problem 3.5. Determine the steady-state eetoreen the reference signabnd the outpuy,
whenr is a unit ramp, that is(k) = k. AssumeC/(q) to be a proportional controller.

EXERCISE 3.7 (Ex. 3.18in[2])
Consider a continuous-time (CT) system

&(t) = Az(t) + Bu(t)
y(t) = Cx(t).
The zero-order hold sampling of CT gives the discrete-tiD€)(system
xz(kh + h) = ®x(kh) + Tu(kh)
y(kh) = Cx(kh).
Consider the following statements:
(a) CT stable=- DT stable
(b) CT unstable= DT unstable
(c) CT controllable=- DT controllable
(d) CT observable= DT observable.
Which statements are true and which are false (explain whifé following cases:
(i) For all sampling intervalé > 0

(iiy Forall h > 0 except for isolated values

(i) Neither (i) nor (ii).

EXeRcISE 3.8(Ex. 3.20in[2])

Given the system
(¢® + 0.4q)y(k) = u(k),
(a) for which values of<" in the proportional controller
u(k) = K (r(k) - y(k))
is the closed-loop system stable?

(b) Determine the stationary errer— y whenr is a step and K=0.5 in the controller (a).

14



EXERcCISE 3.9(Ex. 4.1in[2])

A general second-order discrete-time system can be weken

o) = (22 Ya) 4 (1) uth
y(k) = (61 62) x(k).
Determine a state-feedback controller in the form
u(k) = —Lx(k)
such that the characteristic equation of the closed-losfegyis

22+plz+p2:O.

Use the previous result to compute the deadbeat controltehé double integrator.

EXeERcISE 3.10(Ex. 4.21in[2])

Given the system
1 0.1 1
z(k+1) = (0.5 01) x(k) + <0> u(k)
y(k) = (1 1) x(k).
Determine a linear state-feedback controller
u(k) = —Lx(k)

such that the poles of the closed-loop system are placed iar@ 0.25.

EXerRcISE 3.11(Ex. 4.5in[2])

The system
N (e RCR AR
y(k) = (0 1) (k).

represents the normalized motor for the sampling interival © 0.25. Determine observers for the state based
on the output by using each of the following:

(a) Direct calculation.
(b) An full-state observer.

(c) The reduced-order observer.

15



EXERCISE 3.12(Ex. 4.8in[2])
Given the discrete-time system

(ki +1) = (82 O%) (k) + (8?) u(k) + (é) ok)
y(k) = (1 0)z(k).

wherew is a constant disturbance. Determine controller such tigainfluence ob) can be eliminated in steady
state in each of the following cases:

(a) The state and can be measured.
(b) The state can be measured.

(c) Only the output can be measured.

EXeERcISE 3.13(Ex. 4.6 in[2])

Figure 3.13 shows a system with two tanks, where the inpuisig the flow to the first tank and the output is
the level of water in the second tank. The continuous-timeehof the system is

s (00097 1\ (0.0263)
~ 00178 —0.0129 0

=0 1)

i

| .
L

Figure 3.13: Closed-loop system for Problem 3.13.

(a) Sample the system with= 12.

(b) Verify that the pulse-transfer operator for the system i

Hq) — 00300 +0.0%
U= 2 1.65¢+0.683

(c) Determine a full-state observer. Choose the gain suatttlie observer is twice as fast as the open-loop
system.

16



EXERCISE 3.14

Consider the following scalar linear system

z(t) = —=bz(t) + u(t)
y(t) = z(t).
(a) Sample the system with sampling perioe: 1,

(b) Show, using Lyapunov result, that the sampled systetaideswhen the input(kh) = 0 for £ > 0.

EXERCISE 3.15

Consider the following linear system

<_01 _O2> o(t) + G) u(t)
2(t).

(a) Sample the system with sampling perioe: 1

(1)
y(t)

(b) Design a controller that place the pole®ih and0.2.

(c) Show, using Lyapunov result, that the closed loop sathgystem is stable

4 Computer realization of controllers

EXERCISE 4.1

Consider the following pulse-transfer

z—1
HE) = =056 —
(a) Design a digital PI controller
K+ K;))z— K
H.(z) = ( . _)1

that places the poles of the closed-loop system in the origin

(b) Find a state-space representation of the digital cthatrim (a).

EXERCISE 4.2(Ex. 8.21in[2])
Use different methods to make an approximation of the tearfahction

G(s) =

a
s+ a

17



(a) Euler's method
(b) Tustin’s approximation

(c) Tustin’s approximation with pre-warping using = a as warping frequency

EXERCISE 4.3 (Ex. 8.3in[2])

The lead network with transfer function +1
S

s+ 2
Give a phase advance of ab@0f atw. = 1.6rad/s. Approximate the network fok = 0.25 using

Gy(s) =4

(a) Euler's method
(b) Backward differences
(c) Tustin’s approximation

(d) Tustin's approximation with pre-warping using = w. as warping frequency

EXERCISE 4.4 (Ex. 8.7 in[2])
Consider the tank system in Problem 2.13. Assume the fatigwpecifications:

1. The steady-state error after a step in the reference \shero
2. The crossover frequency of the compensated system iS a0Z

3. The phase margin is aboi®.

(a) Design a PI-controller such that the specifications @fgléd.

(b) Determine the poles and the zeros of the closed-loogisysivhat is the damping corresponding to the
complex poles?

(c) Choose a suitable sampling interval and approximategh@nuous-time controller using Tustin’s method
with pre-warping. Use the crossover frequency as warpieguency.

EXERCISE 4.5(Ex. 8.41in[2])

The choice of sampling period depends on many factors. Ogéongetermine the sampling frequency is to use
continuous-time arguments. Approximate the sampled systethe hold circuit followed by the continuous-
time system. Assuming that the phase margin can be decrbégsedto 15°, verify that a rule of thumb in
selecting the sampling frequency is

hwe =~ 0.151t0 0.5

wherew. is the crossover frequency of the continuous-time system.

18



EXERCISE 4.6 (Ex. 8.12in[2])
Consider the continuous-time double integrator descriiyed

. 01 0
T = (O 0>x+<1>u
y=(1 0)ax.

Assume that a time-continuous design has been made givengpttitroller

u(t) = 2r(t) — (12) 2(t)

= Az(t) + Bu(t) + K (y(t) — Ci(t))

with K7 = (1,1).

(a) Assume that the controller should be implemented usingraputer. Modify the controller (not the
observer part) for the sampling interval= 0.2 using the approximation for state models.

(b) Approximate the observer using a backward-differerpy@@imation

EXERCISE 4.7
Consider the following continuous time controller

S08 + S tos +t

R(s)
sS—+1 S+17

wheresy, s1, to, t1 andr; are parameters that are chosen to obtain the desired dmgegerformance.

(a) Discretize the controller using forward difference mpimation. Assume that the sampling interval is
h, and write the sampled controller on the foutkh) = —H,(q)y(kh) + H,(q)r(kh).

(b) Assume the following numerical values of the coefficgent; = 10, so = 1, s1 = 2, tp = 0.5 and
t; = 10. Compare the discretizations obtained in part (a) for tmepdiag intervalsh = 0.01, h = 0.1
andh = 1. Which of those sampling intervals should be used for thevdod difference approximation?

EXERCISE 4.8
Consider the following continuous-time controller in stapace form

& = Ax + Be
u = Cx + De

(a) Derive the backward-difference approximation in stdace form of the controller, i.e. deride., I'.,
H and.J for a system

w(k 4+ 1) = ¢ow(k) + Tee(k)
u(k) = Hw(k) + Je(k)

19



(b) Prove that the Tustin’s approximation of the controitegiven by

Aqh A\
b, = (1 I-—
(5 (%)
-1
FCZ<I_ACh> B.h
2 2
-1
H:OC<I—ACh>
2
Ah\ L Bk
=D.+C. (1~ .
J +c( 2) :

5 Implementation aspects

EXERCISE 5.1
Consider the discrete-time controller characterized byptihise-transfer function

1

O = e 1@z T

Implement the controller in parallel form.

EXERCISE 5.2

(a) Given the system in Figure 5.2, find the controll&( s) such that the closed loop transfer function from
r to y becomes

_ _C)P(s)  _sr
Het = 776 P)°
(b) Let
1
Pls) = s+1
Huls) = e
T s t8°
find the expression for the Smith predictdg(s).
T(t) f\ CS(S) e ST - P(S) (t)

Figure 5.2: System of Problem 5.2.

20



EXERCISE 5.3

A process with transfer function

is controlled by the Pl-controller
z

O(Z) = Kp -+ Kz

z —

whereK,, = 0.2 andK; = 0.1. The control is performed over a wireless network, as shawigure 5.3. Due
to retransmission of dropped packets, the network induoesvarying delays. How large can the maximum
delay be, so that the closed loop system is stable?

N
O
I
Y
«Q
&

Wireless Network % ;

Figure 5.3: Closed loop system for Problem 5.3.

EXERCISE 5.4 (Inspired by Ex. 9.15in [2])

Two different algorithms for a Pl-controller are listed. dJhe linear model for roundoff to analyze the sensi-
tivity of the algorithms to roundoff in multiplications arivisions. Assume that the multiplications happen in
the order as they appear in the formula and that they are &dbefore the division.

Algorithm 1.
r epeat
e:=r-y
u: =k (e+i)
i:=i+exh/ti
forever

21



Algorithm 2:
r epeat
e.=r-y
u: =i +kxe
i:=k*i+kxhxe/ti
forever

EXERCISE 5.5
Consider a first-order system with the discrete transfectfan

1 1
H = = —.
(Z) 1—az! “ 8

Assume the controller is implemented using fixed point arétic with 8 bits word length antdl = 1 second.
Determine the system’s unit step response for sufficientbauraf samples to reach steady-state. Assume that

the data representation consists of
e 1 bit for sign
e 2 bits for the integer part
e 5 bits for the fraction part

and consider the cases of truncation and round-off.

22
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Event-triggered control
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6 Real-time operating systems

EXERCISE 6.1

In an embedded control system the control algorithm is impleted as a task in a CPU. The control task
can compute the new control action only after the acquisitésk./, has acquired new sensor measurements.
The two tasks are independent and they share the same CPabs®uhe sampling period is= 0.4 seconds
and the tasks have the following specifications

We assume that the peridd and the deadliné; are the same for the two tasks, and the release time is 0 for
both tasks.

(a) Is possible to schedule the two tasksand.J,? Determine the schedule length and draw the schedule.

(b) Suppose that a third task is running in the CPU. The spatiifins for the task are

| C; T,=D;
J,|02 08 03

and we assume that the tagk has higher priority than the taskk and.J,. We also assume the CPU can
handle preemption. Are the three tasks schedulable? Deagctiedule and determine the worst-case response
time for the control task...

EXERCISE 6.2

A digital PID controller is used to control the plant, whidmspled with periodh = 2 has the following transfer
function

1 z2—0.1
P = — .
(2) = 1007 05
The control law is
z
C =151+ —.
(=) (+z_1)

Assume that the control task is implemented on a computer and li@gs= 1 as the worst case computation
time. Assume that a higher priority interrupt occurs at tinze 2 which has a worst case computation tifrig
Determine the largest value 6f; such that the closed loop system is stable.

EXERCISE 6.3

A robot has been designed with three different tasks./z, Jc, with increasing priority. The taskK, is a low
priority thread which implements the DC-motor controlige task/z periodically send a "ping" through the
wireless network card so that it is possible to know if thetesysis running. Finally the tasi-, with highest
priority, is responsible to check the status of the data lat&deen two I/O ports, as shown in Figure 6.3. The
control task is at low priority since the robot is moving vetgwly in a cluttered environment. Since the data
bus is a shared resource there is a semaphore that reghlatscess to the bus. The tasks have the following
characteristics

24



e
Ja | 8 4
Jg| 5 2
Jo| 1 0.1

Assuming the kernel can handle preemption, analyze thewoiy possible working condition:

e attimet = 0, the taskJ4 is running and acquires the bus in order to send a new comipaoik ito the
DC-motors,

e attimet = 2 the taskJo needs to access the bus meanwhile the control.task setting the new control
signal,

e at the same I is ready to be executed to send the "ping" signal.

(&) Show graphically which tasks are running. What happerthe high priority task/o? Compute the
response time af - in this situation.

(b) Suggest a possible way to overcome the problem in (a).

Y

DC-Motors

Data Bus

A

Dedicated Data Bus
Network Card

CPU

Figure 6.3: Schedule for the control tagkand the task handling the interrupt, of Problem 6.2.

EXERCISE 6.4 (Jackson’s algorithm, page 52 in [3])

We consider here the Jackson’s algorithm to schedule & £€t» aperiodic tasks minimizing a quantity called
maximum latenesand defined as

Lz == 13162.%7}( (fz - dz)

All the tasks consist of a single job, have synchronous artimnes but have different computation times and
deadlines. They are assumed to be independent. Each tabk caaracterized by two parameters, deadfine
and computation timé’;

J =AJilJi = Ji(Cy,d;), i=1,...,n}.

The algorithm, also calleBarliest Due Dat§EDD), can be expressed by the following rule

25



Theorem 1. Given a set ofi independent tasks, any algorithm that executes the taskdén of nondecreasing
deadlines is optimal with respect to minimizing the maxinfateness.

(a) Consider a set of 5 independent tasks simultaneoushated at timet = 0. The parameters are indi-
cated in the following table

| i o Jy Ji s
G |1 1 1 3 2
4|3 10 7 8 5

Determine what is the maximum lateness using the schedalgayithm EDD.

(b) Prove the optimality of the algorithm.

7 Real-time scheduling

EXERCISE 7.1(Ex. 4.3in[3])

Verify the schedulability and construct the schedule atiogrto the rate monotonic algorithm for the following
set of periodic tasks

EXERCISE 7.2 (EX. 4.4in[3])

Verify the schedulability under EDF of the task set given kekeise 7.1 and then construct the corresponding
schedule.

EXERCISE 7.3
Consider the following set of tasks

| Ci Ti D,
J|1 3 3
| 2 4 4
Js| 1L 7 7

Are the tasks schedulable with rate monotonic algorithmé the tasks schedulable with earliest deadline first
algorithm?

26



EXERCISE 7.4
Consider the following set of tasks

~
=
=

|G T, D
J1

1 4
Jo| 2 5 5
Js | 3 10 10

Assume that tasld; is a control task. Every time that a measurement is acquiast,/; is released. When
executing, it computes an updated control signal and osiiput

(a) Which scheduling of RM or EDF is preferable if we want tanimize the delay between the acquisition
and control output?
(b) Suppose thatl; is also a control task and that we want its maximum delay batwaequisition and

control output to be two time steps. Suggest a schedule vghiarantees a delay of maximally two time
steps, and prove that all tasks will meet their deadlines.

EXERCISE 7.5
Consider the two taskg, and ./, with computation times, periods and deadlines as definethdéyallowing
table:

G

©

~

Ji| 1
Jo | 1

A~ w|/H
AW

(a) Suppose the tasks are scheduled using the rate monatgarchm. Will J; and.J> meet their deadlines
according to the schedulability condition on the utilipatifactor? What is the schedule length, i.e., the
shortest time interval that is necessary to consider inradxeescribe the whole time evolution of the
scheduler? Plot the time evolution of the scheduler whemdlease time for both tasks istat 0.

(b) If the two tasks implement a controller it is importantimow what is the worst-case delay between the
time the controller is ready to sample and the time a new impkit) is ready to be released. Find the
worst-case response time fér and.J,. Compare with the result in (a).

EXERCISE 7.6
Consider the set of periodic tasks given in the table below:

|G T, O,
Ji|1 3 1
Jo| 2 5 1
J311 6 O

where for taski, C; the worst-case execution timé; denotes the period, an@; the offset for the respective
tasks. Assume that the deadlines coincide with the perida: offset denotes the relative release time of the
first task instance for each task. Assume that all tasks ased at time 0 with their respective offg&t
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(a) Determine the schedule length.

Determine the worst-case response time for tasfor each of the following three scheduling policies:
(b) Rate-monotonic scheduling
(c) Deadline-monotonic scheduling

(d) Earliest-deadline-first scheduling

EXERCISE 7.7

A control task.J. is scheduled in a computer together with two other tagkand.J,. Assume that the three
tasks are scheduled using a rate monotonic algorithm. Assoat the release time for all tasks are at zero and
that the tasks have the following characteristics

| C; T, D
Jo| 1 4 4
Jo| 1 6 6
J.| 2 5 b5

(a) Is the set of tasks schedulable with rate monotonic sdimg? Determine the worst-case response time
for the control task/..

(b) Suppose the control task implements a sampled versitreafontinuous-time controller with delay

&(t) = Az(t) + By(t — 1)
u(t) = Cx(t)

where we letr be the worst-case response tifgof the task/.. Suppose that the sampling period of the
controller ish = 2 and R. = 3. Derive a state-space representation for the sampledatientrSuggest
also an implementation of the controller by specifying a fe®&s of computer code.

(c) In order to improve performance the rate monotonic saliegl is substituted by a new scheduling al-
gorithm that give highest priority to the control task anteirmediate and lowest to the tagk and.J,
respectively. Are the tasks schedulable in this case?

EXERCISE 7.8

Compute the maximum processor utilization that can be msditp a polling server to guarantee the following
periodic task will meet their deadlines
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EXERCISE 7.9
Together with the periodic tasks

we want to schedule the following aperiodic tasks with aipgliserver havingly, = 5 andC; = 2. The
aperiodic tasks are

ay 2 3
a9 7 2
as 9 1
as 29 4

EXERCISE 7.10

Consider the set of tasks in Problem 7.5, assuming that amodjpetask could ask for CPU time. In order
to handle the aperiodic task we run a polling serygwith computation timeCs; = 3 and periodT; = 6.
Assume that the aperiodic task has computation tifpe= 3 and asks for the CPU at tinte= 3. Plot the time
evolution when a polling server is used together with the tasks./; and.J, scheduled as in Problem 7.5 part
(a). Describe the scheduling activity illustrated in thetgl

8 Models of computation I: Discrete-event systems

EXERCISE 8.1

Consider the problem of controlling a gate which is lowerdgewa train is approaching and it is raised when
the train has passed. We assume that the railway is unidinattand that a train can be detected 1500m before
the gate and 1000m after the gate. The sensors give bingsytsute., they give a'0’ when the train is not over
the sensor and a '1’ when the train is over the sensor. Thehget@ sensor which gives a binary information
and in particular gives 'O’ if the gate is (fully) closed art if the gate is (fully) opened. Figure 8.1 shows
a schema of the system. The gate needs to be lowered as sotraimsisapproaching, and raised when the
train has passed. Model the system as a discrete-eventirsy&gsume that trains, for safety reasons are distant
from each other, so that no train approaches before thequetiain has left.

EXERCISE 8.2

A vending machine dispenses soda for $0.45. It accepts amgsd($0.10) and quarters ($0.25). It does not
give change in return if your money is not correct. The soddispensed only if the exact amount of money
is inserted. Model the vending machine using a discretetesysstem. Is it possible that the machine does not
dispense soda? Prove it formally.
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ls, ‘A 5, S

Controller

Figure 8.1: Control of a gate. Problem 8.1.

EXERCISE 8.3
Consider the automaton describing some discrete-evetgnsyshown in Figure 8.3. Describe formally the

Figure 8.3: Automatom of Problem 8.3.

DES. Compute the marked languaBg and the generated language

EXERCISE 8.4 (Example 2.13 in [5])

Consider the automatas of Figure 8.4. Compute the language marked by the autométdn,,(A) and the
language generated by the automatb(y).

Figure 8.4: Automatom of Problem 8.4.
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EXERCISE 8.5 (Example 3.8 in [5])
Consider the automata# of Figure 8.5. Determine the minimum state automaton.

Figure 8.5: Automatom of Problem 8.5.

EXERCISE 8.6 (Example 2.5in [5])

Consider the automaton
A= ({qo0,¢1},{0,1},6,90,{a1})

be a nondeterministic automaton where

6(90,0) = {q0, @1} 9(q0,1) ={a} d(q1,0) = (q1,1) = {q0, @1 }-

Construct an deterministic automatdhwhich accept the same,,,.

9 Models of computation II: Transition systems

EXERCISE 9.1
Consider a Discrete Event System described by an automatbmadel it formally as a transition system.

EXERCISE 9.2

Try to model by a transition system the basic functionaité the keypad of a mobile phone, including the
statesnainmenu, contacts andlock.

EXERCISE 9.3[4]
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Queuing systems arises in many application domain suchraputer networks, manufacturing, logistics and
transportation. A queuing systems is composed by three késinents: 1) the entities, generally referred to
ascustomersthat do the waiting in their request for resources, 2) tseueces for which the waiting is done,
which are referred to aservers and 3) the space where the waiting is done, which is defingdese Typical
examples of servers are communications channels, which &dinite capacity to transmit information. In
such a case, the customers are the unit of information anglige is the amount of unit of information that is
waiting to be transmitted over the channel.

A basic queue system is reported in figure 9.3. The circleessmt a server, the open box is a queue
preceding the server. The slots in the queue are waitingess. The arrival rate of customers in the queue
is denoted by:, whereas the departure rate of customers is denotéd by

Model the queue system of figure 9.3 by a transition systemv iHany states has the system?

queue server

Customers Customers

Arrivals i : Departure
— —

Figure 9.3: A basic queue system.

EXERCISE 9.4[14]

Consider the transition systeffi = {S,%, —, Ss}, where the cardinality of is finite. The reachability
algorithm is

Initialization : Reach; = 0;
Reachy = Sg;
1 =0;
Loop: While Reach; # Reach;_1 do
Reach; 1 = Reach; U {s’ € S: 3 :s € Reach;,0 € ¥,5s -7 ¢’ €—1};
=14 1;

Prove formally that
¢ the reachability algorithm finishes in a finite number of step

e upon exiting the algorithmReach; = Reachp(Ss).

EXERCISE 9.5[14]

Give the Transition Systerf = {S, >, —, Sg} reported in figure 9.5, describe the reach set wher= {3}
andSg = {2} by using the teachability algorithm.
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Figure 9.5: A Transition System.
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Hybrid control
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10 Modeling of hybrid systems

EXERCISE 10.1

A water level in a tank is controlled through a relay congnllwhich senses continuously the water level and
turns a pump on or off. When the pump is off the water level eases by 2 cm/s and when it is on, the water
level increases by 1 cm/s. It takes 2 s for the control signat¢&ch the pump. It is required to keep the water
level between 5 and 12 cm.

(a) Assuming that the controller starts the pump when thel lmaches some threshold and turns it of when
it reaches some other threshold, model the closed-looprsyas a hybrid automaton.

(b) What thresholds should be used to fulfill the specificetio

EXERCISE 10.2

Consider the quantized control system in Figure 10.2. Sugystem can be modeled as a hybrid automaton
with continuous dynamics corresponding /9s)C'(s) and discrete states corresponding to the levels of the
guantizer. Suppose that each level of the quantizer can dmded by a binary word of bits. Then, how
many discrete state¥ should the hybrid automaton have? Describe when discratsitions in the hybrid
automaton should take place.

P(s) v=Q(u)

C(s)

Figure 10.2: Quantized system in Problem 10.2.

EXERCISE 10.3

A system to cool a nuclear reactor is composed by two indeggglydmoving rods. Initially the coolant temper-
aturex is 510 degrees and both rods are outside the reactor cordeifiperature inside the reactor increases
according to the following (linearized) system

z = 0.1z — 50.

When the temperature reaches 550 degrees the reactor mashled down using the rods. Three things can
happen

e the first rod is put into the reactor core
e the second rod is put into the reactor core

e none of the rods can be put into the reactor
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For mechanical reasons a rod can be placed in the core if ihndtalseen there for at least 20 seconds. If no
rod is available the reactor should be shut down. The two cadgefrigerate the coolant according to the two
following ODEs

rod1: & =0.1z — 56

rod2: & =0.1z — 60

When the temperature is decreased 10 degrees the rods are removed from the reactor core. Model the
system, including controller, as a hybrid system.

:

Rod 2

Rod 1

Controlle

Xeaetor

Figure 10.3: Nuclear reactor core with the two control rods

EXERCISE 10.4

Consider the classical sampled control system, shown ur€&i§j0.4. Model the system with a hybrid automa-
ton. Suppose that the sampling period iand that the hold circuit is a zero-order hold.

EXERCISE 10.5
Consider a hybrid system with two discrete stateandq,. In stateg; the dynamics are described by the linear

system
T = Alx = <_1 0 )
p —1

. —1
w:Agx:<0 —pl>

and in statey, by

Assume the system is
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Figure 10.4: Sampled data control system of Problem 10.4.

in stateq; if 2k <t < 2k+1and
in stategs if 2k +1 <t < 2k + 2,

wherek =0,1,2,....
(a) Formally define a hybrid system with initial state which operates in the way described above.

(b) Starting fromz(0) = =, specify the evolution of the stat€?) in the intervalt € [0, 3) as a function of

Q.

EXERCISE 10.6
Consider the hybrid system of Figure 10.6:

(a) Describe it as a hybrid automatdid,= (Q, X, Init, f, D, E, G, R)
(b) Find all the domain®(g¢3) so that the hybrid system is live?

(c) Plot the solution of the hybrid system.

Figure 10.6: Hybrid system for Problem 10.6.
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11 Stability of hybrid systems

EXERCISE 11.1

Consider three balls with unit mass, velocitigsvs, v3, and suppose that they are touching at tireer, see
Figure 11.1. The initial velocity of Ball 1 is;(7p) = 1 and Balls 2 and 3 are at rest, i.ex(7y) = v3(m) = 0.

U1
-

Ball2 | Ball 3

Figure 11.1: Three balls system. The Ball 1 has velogitat timet = 0.

Assume that the impact is a sequence of simple inelasticdtapeccurring at, = 71 = 75, = ... (using
notation from hybrid time trajectory). The first inelastialision occurs at) between balls 1 and 2, resulting
invi(m) = vo(m) = 1/2 andws(m1) = 0. Sincewvy(r]) > wv3(7{), Ball 2 hits Ball 3 instantaneously giving
v1(m2) = 1/2, andvy(72) = v3(2) = 1/4. Nowv;(75) > v2(7%), so Ball 1 hits Ball 2 again resulting in a new
inelastic collision. This leads to an infinite sequence difsions.
(a) Model the inelastic collisions of the three-ball systdescribed above as a hybrid automatidn=
(Q, X, Init, f, D, E,G, R) with one discrete variabl§) = {q} and three continuous variable§ =

{v1,v2,v3}.
(b) Is the execution described above a Zeno execution? ktetiv

(c) What is the accumulation point of the infinite series &$ kiescribed above? Make a physical interpreta-
tion.

EXERCISE 11.2
Consider the following system

T1 -1 0 2 €1
z2|l=(0 -1 3 T2
1"3 -2 -3 =2 I3

Show, using a Lyapunov function, that the system is asynuailbt stable.

EXERCISE 11.3
Consider the following theorem:

Theorem 2. A linear system
T = Ax

is asymptotically stable if and only if for any positive deirsymmetric matrix) the equation
ATP+PA=—-Q
in the unknownP € R™*™ has a solution which is positive definite and symmetric.

Show the necessary part of the previous theoriesy theif part).
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EXERCISE 11.4
Consider the following system

= —x1 + g(2)
To = —T9 + h(ml)

where the functiong andh are such that
lg(2)[ <2l/2 [h(2)] < I21/2

Show that the system is asymptotically stable.

EXERCISE 11.5
Consider the following discontinuous differential eqoas

@1 = —sgn(z1) + 2sgn(x2)
&9 = —2sgn(z1) — SgN(z2).

where
+1 fz>0

sgnz) = {—1 if 2 < 0.

Assumez(0) # 0,
(a) define a hybrid automaton that models the discontinugstes

(b) does the hybrid automaton exhibit Zeno executions feryeinitial state?

EXERCISE 11.6
Consider the following switching system

T =aqr, ay<0 Vg
whereq € {1,2} and

O ={zeR|ze2k2%k+1),k=0,1,2,...}
Qo ={zcRlzec2k+1,2k+2),k=0,1,2,...}

Show that the system is asymptotically stable.

39



EXERCISE 11.7
Consider the following switching system

T = A
whereq € {1,2} and
-1 0
w=(o )
-3 0
ne(P0)

Let ), be such that

Q) = {z € R¥z; >0}
Qy = {z € R?|z; < 0}

Show that the system is asymptotically stable.

EXERCISE 11.8

Consider the following switching system
T = A

_(—a1 b
a=(g %)

_[(—az b
e ),

Assume that;, b; andc;, i = 1,2 are real numbers and that,¢; > 0. Show that the switched system is
asymptotically stable.

whereq € {1,2} and

EXERCISE 11.9

Consider a system that follows the dynamics
T = A1:L'

for a timee/2 and then switches to the system
T = Asx
for a timee/2. It then switches back to the first system, and so on.
(a) Model the system as a switched system
(b) Model the system as a hybrid automaton

(c) Letty be a time instance at which the system begins a period in mdthee first system) with initial
conditionz,. Determine the state & + ¢/2 andtg + e.

(d) Letetend to zero (very fast switching). Determine the soluttom ltybrid system will tend to.
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EXERCISE 11.10
Consider the following hybrid system

where

Let Q, be such that

O = {z € R?z; > 0}
Qy = {z € R?z; < 0}

show that the switched system is asymptotically stablegusicommon Lyapunov function.

EXERCISE 11.11(Example 2.1.5 page 18-19 in [12])
Consider the following switched system witte {1, 2}

T =Agx

-1 -1
v=(i )

~1 —10
A2_<0.1 —1)'

(a) Show that is impossible to find a quadratic common Lyapduanoction.

where

(b) Show that the origin is asymptotically stable for anytshing sequence.

EXERCISE 11.12
Consider the following two-dimensional state-dependeritchied system

. Alw if Tl < 0
xr =
Asx ifxy >0

where
-5 —4 -2 —4
A1 = <_1 _2> and A2 = <20 _2> .
(a) Prove that there is not a common quadratic Lyapunov immailitable to prove stability of the system

(b) Prove that the switched system is asymptotically stabieg the multiple Lyapunov approach.
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12 \ferification of hybrid systems

EXERCISE 12.1
Consider the following linear system

T = <_1 0 > T
0 =5
Assume that the initial condition is defined in the followiset
zg € {(x1,29) € R%|z) = 29, —10 < z1 < 10}
We want to verify that no trajectories enter iBad set defined as
Bad = {(z1,22) e R| =8 <271 <0A2< 29 <6}

EXERCISE 12.2
Consider the following linear system

T = 5 0 T
N0 -1)7
Assume that the initial condition lies in the following set

20 € {(21,22) ER*[ —2< 21 SOA2< 35 < 3}

Describe the system as a transition system and verify thafjectories enter Bad set defined as the triangle
with verticesv; = (—3,2), v2 = (-3, —3) anduvs = (—1,0).

EXERCISE 12.3
Consider the following controlled switched system

T 01 T
(.1>: 1 <1>—|—Blu if |z <1
T2 5 T2
T 1 x 0
(.1>: 1 <1>+<>u it 1<z <3
T2 - T2 1
3
T 1 r1—1 0
(.1>:— (1 >+<>u otherwise
T2 5 L2 1

Assume that the initial conditions afg € {z € R?|||z| > 3},

W= O Wl

Wl — O

(a) Determine a control strategy such that Rgac; # (), i.e. ; can be reached from any initial condition
whenB; = 0.

Suppose in the followind3; = (0,1)7,
(b) Is it possible to determine a linear control input suclt tA, 0) is globally asymptotically stable?
(c) Construct a piecewise linear system such tha) is globally asymptotically stable.

(d) Suppose now, that we do not want that the solution of theali system would enter thigad set (2.
Determine a controller such that Reach(2; = 0.
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EXERCISE 12.4

A system to cool a nuclear reactor is composed by two indeggglydmoving rods. Initially the coolant temper-
aturex is 510 degrees and both rods are outside the reactor cordeifiperature inside the reactor increases
accordingly to the following (linearized) system

z = 0.1z — 50.

When the temperature reaches 550 degrees the reactor measiolldown using the rods. Three things can
happen

e the first rod is put into the reactor core
e the second rod is put into the reactor core
e none of the rods can be put into the reactor

For mechanical reasons the rods can be placed in the coreas$ ihot been there for at least 20 seconds. The
two rods can refrigerate the coolant accordingly to the twllofving ODES

rod1l: #=0.1z — 56
rod2: #=0.1z — 60

When the temperature is decreasedtd degrees the rods are removed from the reactor core.

a Model the system as a hybrid system.

b If the temperature goes above 550 degrees, but there iglravailable to put down in the reactor, there
will be a meltdown. Determine if thiBad state can be reached.

:

Rod 2

Rod 1

Controlle

Xeactor

Figure 12.4: Nuclear reactor core with the two control rods
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Figure 13.1: The transition system

13 Simulation and bisimulation

EXERCISE 13.1
Figure 13.1 shows a transition systdm= {S, >, —, Sy, S}, where

S ={q0,---,q6}

¥ ={a,b,c}

— : According to the figure
So = {qo}
Sk ={q3, 96}

Find the simplest quotient transition systéhthat is bisimular tdl".

EXERCISE 13.2

Here we should insert a problem that the students do theesseShow a systeri’ and three candidates .
Determine which systems are bisimularito



Solutions
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Time-triggered control
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Solutions to review exercises

SoLuTION 1.1
Before solving the exercise we review some concepts on sagnghd aliasing

Shannon sampling theorem

Let z(¢) be band-limited signal that is{ (jw) = 0 for |w| > wy,. Thenz(t) is uniquely determined by its
samplesc(kh), k = 0,+£1,£2,... if
Ws > 2wy,

wherews = 27 /h is the sampling frequency, the sampling period. The frequenay /2 is called the Nyquist
frequency.

Reconstruction

Let z(¢) be the signal to be sampled. The sampled sigpél) is obtained multiplying the input signalt) by
a period impulse train signalt), see Figurel.1. We have that

zs(t) = x(t)p(t)

pt)= > 6(t—kh).

k=—00

Thus the sampled signal is

o0

zo(t) = > x(kh)S(t — kh).

k=—00

If we let the signalz,(t) pass through an ideal low-pass filter (see Figure 1.1.1) wifiulse response
. Wg
fit) = smc(7t>

and frequency response
h, —ws/2 <w < ws/2;

Fljw) = { o, otherwise.
as shown in Figure 1.1.1. The output signal is

£e(t) = 24(1) * F(1) = / Tt - 1) ()

:/OO ( > x(kh)é(t—7—kh)> f(r)dr
T \k=—c0

_ k;mx(kh)sinc<§(t ~kh))

_ g: x(kh)sinc(%(t—kh)).

Notice that perfect reconstruction requires an infinite hanof samples.
Returning to the solution of the exercise we have that thei€otransform of the sampled signal is given

by
Xs(w):% S X(w o+ hwy)

k=—o00

(@) The reconstructed signalis(t) = cos(wpt) sincews = 6wy > 2wp.
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F(jw)

y
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A\ A .
VY —wu/2) ws2

Figure 1.1.1: Impulse and frequency response of an ideaplass filter.

A Xs(t)
wo — Ws : 77777777777777 | TWwo - Wws

|

! T ! T - T
|

. o S

—wp wo
—Wo — Ws  —w, W wo + ws

Figure 1.1.2: Frequency response of the signal with= w /6

(b) The reconstructed signalis(t) = cos(wpt) Sincew, = 6wp/2 > 2wy.

E——
[
R
[
E——
[
\/
&

—Wo — Ws —Wg Ws

Figure 1.1.3: Frequency response of the signal with= 6w, /2

(c) The reconstructed signalds () = cos ((—wo + ws)t) = cos(wp/2t) sincews = 6wp/4 < 2wy.

(d) The reconstructed signalis (t) = cos ((—wo + ws)t) = cos(wp/5t) sincew, = 6wy /5 < 2wp.
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Figure 1.1.5:

Ws

Frequency response of the signal with= 6w /5
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Figure 7.16 Effect of aliasing on a sinusoidal signal. For each of four values of

wo, the original sinusoidal signal (solid curve), its samples, and the reconstructed sig-

nal (dashed curve) are illustrated: (a) wy = ws/6; (b) wy = 2ws/6; (C) wy = 4ws/6;

(d) wg = 5ws/6. In (a) and (b) no aliasing occurs, whereas in (c) and (d) there is
aliasing.
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SOLUTION 1.2

We have that
e = agAh + Iay.

The eigenvalues ofih are+ih thus we need to solve

ih

e = apih + oy
e~ = —ayih + a;.
This gives
eth —e=ih ginh
an = =
0 2ih h
eih + e—ih
o] = ———— = cosh.
2
Thus

e = <_1 0 h + cos h 01

We remind here some useful way of computing the matrix expitigleof a matrixA € R™*". Depending
on the form of the matrix4d we can compute the exponential in different ways

e If Ais diagonal then

ai; 0 0 e 0 0
Ao 0 ao O LA 0 e922 0
0 0 .. am 0 0 ... co
e Ais nilpotent of orderm. ThenA™ = 0 andA™*" = 0 fori = 1,2,.... Then itis possible to use the
following series expansion to calculate the exponential
2 m—1
eA:I+A+%+---+h

e Using the inverse Laplace transform we have
et =1 ((sI — A)_l)

e In general it is possible to compute the exponential of aisédr any continuous matrix functiofi( A)))
using the Cayley-Hamilton Theorem. For every functjothere is a polynomiagb of degree less tham
such that

fA) =p(A) = apA" '+ A" P - o]

If the matrix A has distinct eigenvalues, thecoefficientay, . . . , a,, 1 are computed solving the system
of n equations

FO) =p\) i=1,...,n.
If the there is a multiple eigenvalue with multiplicitity:, then the additional conditions

FO0) =pD ()

FmDg) = pmh(y)

hold, wheref(®) is theith derivative with respect ta.
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SOLUTION 1.3

We recall here what is the-transform of a signal. Considerdiscrete-time signak:(kh), k = 0,1,....

z-transform ofx(kh) is defined as
Z{x(kh)} = X(2) = Y _a(k
k=0

wherez is a complex variable.

Using the definition

o0 (0.0] k
X(z) = Ze kh/T ,—k _ Z{ —h/T —1}
k=0 k=0
If |e="/T2=1| < 1 then
1 z
X() 1—z"le /T 4 e h/T
SOLUTION 1.4
Using the definition
[o¢]
= Z sin(wkh
k=0
Since h o
Jw —jw
sinwkh = ¢ .e
21
then - -
o 1 iwh —1}k 1 { —iwh —1}k
2 Z { 21 Z
k=0 k=0
If [eFwhz=1| < 1 then
1 z z zsinwh
X(z) = — —__ — . =...= .
(2) 2i (z etwh e “”h> 22 — 2z coswh + 1

SOLUTION 1.5
For a discrete-time signal(k), we have the following

similarly,
Z(zpao) = 22 X(2) — 22 2(0) — z z(1)
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The discrete step is the following function

0, if k<0;
”(""):{ 1, if k> 0.

Thus

Using the previoug-transform we have
2Y(2) = 22y(0) — z2y(1) = 1.52 Y (2) + 1.5z y(0) + 0.5 Y (2) = 2 U(z) — 2 u(0).
CollectingY (=) and substituting the initial conditions we get

0.522 — 0.5z z

Y —
=15 rost 215705

U(z)

SinceU(z) = z/(z — 1) then
0.5z n 22
2—05 (2—1)2(z2-0.5)"

Y(z) =
Inverse transform gives

05(k+1)—1 0.5+
y(k) = 0.551 + ( ( 0.52) + 55 >u(k; —1)

—1
= 0.5 4 <k0—5 + 0.5k—1> u(k —1)

Solutions to models of sampled systems

SOLUTION 2.1
The sampled system is given by

xz(kh + h) = ®x(kh) + Tu(kh)
y(kh) = Cx(kh)

where

d=c
h
o=
z(kh + h) = e~ (kh) + 2 (1 - e_“h> u(kh)
y(kh) = cz(kh).

h
e “®dsb =

(1 - e—ah) .

Q|

Thus the sampled system is

The poles of the sampled system are the eigenvaluds dfhus there is a real pole at®. If h is small
e~ ~ 1. If a > 0 then the pole moves towards the originfamcreases, if. < 0 it moves along the positive
real axis, as shown in Figure 2.1.1.
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' a>0 A <0
) hincr. /  hincr.

Figure 2.1.1: Closed-loop system for Problem 2.1.

SOLUTION 2.2

(a) The transfer function can be written as

1 a 3 1 1
) = G G+ s+l Tst2 s+l st2

A state-space representation (in diagonal form) is then

= (0 ) et (B
SN0 -2 1
—— ——

A B

y:(l —1)m.

c

The state-space representation of the sampled system is

z(k +1) = ®x(k) + Tu(k)

where

sinceA is diagonal.

(b) The pulse-transfer function is given by

H@ﬁdﬂd—@YW:(l—U(Z%TZE2><t;j>

232+ et —1/2e7) + (3/2e73 —e72 —1/2e7)

) —eGE—e?)
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SOLUTION 2.3

(a) The sampled system is

x(kh + h) = ®x(kh) + T'u(kh)
y(kh) = Cx(kh)

where
h
P = Al I'= / e Bds.
0
To compute=”" we use the fact that

e =L ((sI-A)) =71 (ﬁ <_31 i)) .

Since

then
AR _ cosh sinh
~ \—sinh cosh/’
Equivalently we can compute'” using Cayley-Hamilton’s theorem. The matef” can be written as

e = agAh + ar I

where the constantg, anda; are computed solving the characteristic equation
Ao , _
et = ao\; +aq k=1,....n

wheren is the dimension of the matrid and \; are distinct eigenvalues of the matrh. In this
example the eigenvalues dfh are+hi. Thus we need to solve the following system of equations
oih

e = —qyih + ay

== ao’ih +a;

which gives

ao

1o _ih> _ sinh

" 2hi (e ¢ h
1/ . 4

a =3 (e’h + e_lh> = cos h.

Finally we have
Ap_ sinh (0 1 1 0\ [ cosh sinh
© T (—1 0 h+cosh 0 1) \—sinh cosh)’
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(b) Using Laplace transform we obtain
s%Y (s) 4+ 3sY (s) + Y (s) = sU(s) + 3U(s).
Thus the system has the transfer function

s+ 3 2 1

G = = — .
)= Fi3sr2 551 512

One state-space realization of the system with transfextitmG (s) is

() )

~—~—
A B

Y= (2 —1) x.
——
c
Thus the sampled system is
x(kh + h) = ®x(kh) + Tu(kh)
y(kh) = Cx(kh)

with

We need to comput@ andT. In this case we can use the series expansiartbf

A%p?

eAh = 1+ Ah + +...

sinceA? = 0, and thus all the successive powers4fThus in this case

1 00
dp=e= n 1 0
h?/2 h 1

h h T T
r:/ eASBds:/ (1 s s%/2) ds=(h h%/2 NL®/6)
0 0
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SOLUTION 2.4

We will use in this exercise the following relation

(@)
y(kh) — 0.5y(kh — h) = 6u(kh — h) = y(kh) — 0.5¢" 'y(kh) = 6¢ 'u(kh)

which can be transformed in state-space as

w(kh + h) = ®x(kh) + Tu(kh) = 0.52(kh) + 6u(kh)
y(kh) = x(kh).

The continuous time system is then

z(t) = ax(t) + bu(t)

where, in this case sinégk andI' are scalars, we have

ln<I> ln2

b—F// 121n2

(b)
e m = (707 g o) e+ (57w

y(kh) = (1 1) z(kh).
We compute the eigenvalues ®f

s+ 0.5 -1
def(s — @) = ( 0 s+03

A =—05, X =—0.3.

>:0<:>(s+0.5)(s+0.3)20

Both eigenvalues ob are on the negative real axis, thus no corresponding canigaystem exists.
(c) We can proceed as in (a). In this case= —0.5 which means that the sampled system has a pole on the

negative real axis. Thus, as in (b), no corresponding coatiga system exists.

SOLUTION 2.5
(Ex. 2.11in[2])

(a) A state space representation of the transfer function is
T = 00 T+ ! U
—\0 -1 1
y=(1 -1)=
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In this case

(b) The pulse-transfer function is given by

H(z)=C(zI —®)"'T=(1 —1) <Z o Lo _h> B (1 _he_h>

(h+e—1z+ 1 —eh—he ™)
G-D—ch)

(c) The pulse response is
0, k= 0;
h(k) = { CP*-IT, k> 1.

Since
Pk — (eAh)k — pAkh

then we have

pw=cor=( -0 (5 o) (4 )

— b e~ (kh=h) 4 —hk

(d) A difference equation relating input and output is otea fromH (q).

(h+em—1)g+(1—e—he™")

y(kh) = H(g)u(kh) = o

u(kh)

which gives

y(kh +2h) — (1 + e My(kh + h) + e "y(kh) = (h+ e " — Du(kh + h) + (1 — e — he ")u(kh)

(e) The poles are in = 1 andz = e~". The second pole moves from 1 to O/agoes from 0 tax. There

isazeroin
1—e— he

h+eh—1
The zero moves from -1 to 0 &sincreases, see Figure 2.5.1

zZ = —

SOLUTION 2.6

(8) We notice that < h. The continuous-time system in state-space is

t=_0 o+ 1 -u(t—r1)
A B
y=_1 =

C
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h
0 5 10 15 20

Figure 2.5.1: The zero of Problem 2.5 as functiorhof

Sampling the continuous-time system with sampling peficd 1 we get

z(k +1) = ®a(k) + Tou(k) + Tiu(k — 1)
y(k) = =(k),

where
d=ecth=¢"=1
h—T1
Ty = / edsB = 0.5
0

I = eA(h_T)/ e dsB = 0.5.
0

The system in state space is

() = (65 (a )+ () oo
(k)

=00 (i)

The system is of second order.
(b) The pulse-transfer function is

D= O(a] — @)= 2 0OEED
H(z) = C(z] — ®)~'T S

To determine the pulse-response we inverse-transféfm).

H(z) = 70;5(3_4_1? =05 <Z_1z i T+ z_2z i 1) .
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The inverse transform of/(z — 1) is a step. Thus we have the sum of two steps delayed of 1 and 2

time-steps, thus the pulse-response is

0, k=0
h(kh) ={ 05, k=1;

1, k> 1.

(c) We can consideH (z) computed in (b). There are to poles, one:ig- 0 and another i = 1. There is
azeroinz = —1.

SOLUTION 2.7
In this case the time delay is longer than the sampling periagl h. The sampled system with= 1 is

z(k+1) = dzx(k) + Pou(k —(d— 1)) + Tyu(k — d)
y(k) = x(k),
where we computé as the integer such that
7= (d-1)h+7, 0<7' <h

and wherd’y andI'; are computed as in the solution of exercise 2.6, whasaeplaced by’'. In this example
d = 2 and7’ = 0.5, and where

We still have a finite dimensional system (third order).

SOLUTION 2.8

The system
y(k) —0.5y(k — 1) = u(k — 9) + 0.2u(k — 10)

can be shifted in time so that
y(k+10) — 0.5y(k +9) = u(k + 1) + 0.2u(k)

which can be written as
(¢'" = 0.5¢")y(k) = (¢ + 0.2)u(k).
Thus

A(q) = ¢"° - 0.5¢°
B(q) =q+0.2
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and the system order is dé@;) = 10. We can rewrite the given system as
(1—0.5¢ Yy (k) = (1 +0.2¢" Hu(k —9).
where
A (g =1-05¢""
B*(¢ ) =1+02¢""

with d = 9. Notice that
B(q) q+02 g1+ 0.2¢7 1 B B*(q71)

A(q)  q10—0.5¢° 9 1—-05¢"1  A*(g~ 1)

SOLUTION 2.9

We can rewrite the system
y(k+2) — 1.5y(k +1) + 0.5y(k) = u(k + 1)

as
¢*y(k) — 1.5qy(k) + 0.5y(k) = qu(k).
We use the z-transform to find the output sequence when the imp step, namely

0, k<O
“(k):{ 1, k>0.

wheny(0) = 0.5 andy(—1) = 1. We have
2(Y(2) —y(0) —y(1)z) — 1.52(Y(2) — y(0)) + 0.5Y (2) = 2(U — u(0)).
We need to computg(1). From the given difference equation we have
y(1) = 1.5y(0) — 0.5y(—1) + u(0) = 1.25
Thus substituting in the z-transform and rearranging thegewe get
(22 = 1.52 +0.5)Y (2) — 0.52% — 1.252 + 0.752 = 2U(2) — 2.
Thus we have
0.5z(z — 1) . z
(z—1)(2—0.5)  (2—1)(z—0.5)
Now U(z) = z/(z — 1) this we obtain

Y(z) = U(z).

0.5z 2 1

Y = s et oo

Using the following inverse z-transforms

z —el/T

z-1 <Z—1 ? > _ o~ (k=1)In2

z—1< : >:e_k/T, e VT =05=T=1/In2

z—0.5
Z <<z—11>2> -7 <W> —hd

y(k) = 0.5¢FM2 4 9(k — 1) 4 ¢~ (b=Dn2

we get
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SOLUTION 2.10
The controller can be written as

U(s) = =Uy(s) + Ur(s) = =Gy(s)Y (s) + Gr(s) R(s)

where the transfer functions, (s) andG,(s) are given

S0S8 + S1 S1 — SoT'1
Gy(s) = =s _
y(s) s+m o+ s+

tos + 11 t1 — tor
G = =ty + ———.
T() S+rnr 0 s+nr

We need to transform this two transfer functions in stategform. We have

y(t) = —r1xy(t) + (81— s0m1)y(t)
uy(t) xy(t) + soy(t)

and

Ty (t) = =1, () + (t1 — tor1)r(t)
up(t) = xp(t) + tor(t).

The sampled systems corresponding to the previous contintime systems, when the sampling intervakjn
are

zy(kh + h) = ®x,(kh) + v,y(kh)
uy (k) =y (k) + soy(kh)

and
zr(kh + h) = @z (kh) + v,r(kh)
ur(kh) = x,(kh) + tor(kh)
where
H=c Ml
" B 1\ S1— ST
Yy = / e "ds (s1 —sory) = —(e7 " = 1) ————
0 1
h
t1 — 1
Yo = / e 18] (tl . tOTI) _ _(e—rlh o 1) 1 07‘1‘
0 1

From the state representation we can compute the pulséerdnsction as

uy (kR) = <q T o so> y(kh)

up(kh) = < o g +t0> r(kh).

q— ¢r

Thus the sampled controller in the form asked in the problem i

_ ¢ - — tod,
w(kh) = — 2 27_9 - 509y o (kh) + W r(kh).
Yy r

Hy(q) Hr(q)
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SOLUTION 2.11
(Ex. 2.21in [2]) Consider the discrete time filter

z+b
zZ+a

ar ewh 4 p o coswh + b+ isinwh
g eiwh 4 g ) 9 coswh + b+ isinwh

sinwh sinwh
=arctan | ——— | —arctan | — | .
b+ coswh a + coswh

(@)

We have a phase lead if

sinwh sinwh
arctan | ———— | >arctan | ——— |, O<wh<m
b + cos wh a + coswh

sinwh sin wh

> .
b+ coswh =~ a-+ coswh

Thus we have lead i < a.

Solutions to analysis of sampled systems

SoLuTION 3.1
The characteristic equation of the closed loop system is

2(2z—02)(z—04)+K=0 K>0.

The stability can be determined using the root locus. Théirsgapoints arez = 0, z = 0.2 andz = 0.4. The
asymptotes have the directiofisr/3 and—=. The crossing of the asymptotes is 0.2. To find the valu& of
such that the root locus intersects the unit circle we leta + ib with a? 4+ b? = 1. This gives

(a +ib)(a+ib—0.2)(a +ib—04) = —K.
Multiplying by a — ib and sinces? + b> = 1 we obtain
a® —0.6a — b* + 0.08 +i(2ab — 0.6b) = — K (a — ib).
Equating real parts and imaginary parts we obtain

a?—0.6a—b>+008=—-Ka
b(2a — 0.6) = Kb.

If b= 0then

a? —0.6a — (1 — a®) + 0.087 = —a(2a + 0.6)
4a® —1.2a — 0.92 = 0.

Solving with respect ta we get

0.652
== . . . ==
a=0.15+£+v0.0225 + 0.2 0.352
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Root Locus

0.5T

Imaginary Axis

System: H

Gain: 0.705

Pole: 0.652 - 0.758i

Damping: 0.00019

Overshoot (%): 99.9

Frequency (rad/sec): 0.86
U3

Figure 3.1.1: Root locus for the system in Problem 3.1

This givesK = 0.70 and K = —1.30. The root locus may also cross the unit circlé & 0 fora = +1. A
root atz = —1 is obtained when

—1(-1-02)(-1-04)+K =0
namely whenk = 1.68. There is aroot at = 1 when K = —0.48. The closed loop system is stable for

K <0.70

SOLUTION 3.2

We sample the systerii(s). In order to do this we derive a state-space realizationefiten system
i =
y _=

which gives the following matrices of the sampled system

d=c"
=

0_1q
h
/ ds = h.
0
h

H(q)=C(gl —@)"'T' = -1

The pulse transfer operator is

(&) Whenr = 0 the regulator is
u(kh) = Ke(kh)

and the characteristic equation of the closed loop systexorbes
1+C(2)H(z) =Kh+z—-1=0.

The system is stable if
1 -Khl <1 = 0<K<2/h.
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When there is a delay of one sampte= h then the characteristic equation becomes
22— 24+ Kh=0.

The roots of the characteristic equation (the poles of tistesy) must be inside the unit circle for guar-
anteeing stability and thus;| < 1 and|z2| < 1. Thus|zi||z2| = |z122] < 1. Sincezize = Kh we

have
K <1/h.
(b) Consider the continuous-time systéfs) in series with a time delay of seconds. The transfer function
is then K
G(s) = —e .

S
The phase of the system as function of the frequency is

argG(jw) = —g —wT
and the gain is
_ K
Gliw)] =~

The system is stable if the gain is less than 1 at the crossfi@egrency, which satisfies

T T
—— — W T =T = We = —
2 2T

The system is stable if

K
w)l =& o
|G (jwe)| <

C

which yields
K < o {oo 7=0

s _
2T 57 T =T

The continuous-time system will be stable for all valuegsoif 7 = 0 and forK < 7/2h whent = h.
This value is about 50% larger than the value obtained fos#mepled system in (a).

SOLUTION 3.3
(a) The observability matrix is

C 2 —4
wo=(ca) = (1 )
The system is not observable since r@ik) = 1, or defV, = 0.

(b) The controllability matrix is
6 1
W.— (I ar) = <4 1)

which has full rank. Thus the system is reachable.
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SOLUTION 3.4
The controllability matrix is

11 1 1
We=(r (I)F):(l 0 05 o>

which has full rank (check the first two rows @f.), thus the system is reachable. From the inpute get the

system
ok +1) = (é 0‘?5> (k) + (g’) o(k).

0 0
We= (1 0.5>

which has rank one, and thus the system is not reachableifrom

In this case

SOLUTION 3.5
The closed loop system is

__Cl9)H(q)
(@) WithC(q) = K, K > 0 we get
K
y(k) = mr(k‘)-

The characteristic polynomial of the closed loop system is
22— 052+ K =0,

and stability is guaranteed if the roots of the characierilynomial are inside the unit circle. In general for
a second order polynomial
22+ a1z +as =0

all the roots are inside the unit circlé if

as < 1
as > —1+ay
as > —1—ay.

If we apply this result to the characteristic polynomial lné given systent ., we get

K<1
K>-15
K > -05

which together with the hypothesis that > 0 gives0 < K < 1. The steady state gain is given by

. K
lim Het(2) = 775

1The conditions come from the Jury’s stability criterion kg to a second order polynomial. For details see pag. 82]in [
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SOLUTION 3.6
The z-transform of a ramp is given in Table 2, pag. 22 in [1] and we ge

z

R(z) = m

Using the pulse transfer function from Problem 3.5 and the fialue theorem we obtain

z —

lim e(k) = lim (r(k) —y(k)) = llin

k—oo k—oo 1

! Hy(z)R(2)
—_————

F(2)

if (1—271)F(z) does not have any root on or outside the unit circle. Fofth€z) as in this case the condition
is not fulfilled. Let us consider the steady state of the fiestw@tive of the error signal(k)

i i 2 1 22-0.52 2 0.5
1m = 11m —
k—oo 2—1 z 22-05z2+K(z—1)2 K+05

which is positive, meaning that in steady state the referema the output diverge.

SOLUTION 3.7
(@) (i) - Poles are mapped as= e*". This mapping maps the left half plane on the unit circle

(b) (i) - The right half plane is mapped outside the unit @rcl

(c) (ii) - Consider the harmonic oscillator:

which is controllable since
0 1
we= (1 o)

has full rank. If we sampled with sampling periadve get

coswh sinwh 1 — coswh
z(kh +h) = <— sinwh cos wh> z(kh) + < sinwh > u(kh)

r
y(kh) = (1 0) z(kh)

If we chooseh = 27 /w thenT' is the 0 vector and clearly the system is not controllable.
(d) (i) - as in (c) we can find example sampling periods thakerthe system not observable.

SOLUTION 3.8
The open loop system has pulse transfer operator

1

Hy=——
07 21 04q

and the controller is proportional, thdgq) = K.
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(a) The closed loop system has pulse transfer operator

KHy K
1+KHy ¢®>+04¢+ K"

From the solution of Problem 3.5 we know that the poles aneénthe unit circle if

HCZ =

K<1
K>-1404
K>-1-04 = -06<K<1

(b) Lete(k) =r(k) — y(k) then
E(z) = (1 — Hy) R(2).
If K is chosen such that the closed loop system is stable, theviiha# theorem can be used and

z—1 1 2—1 22404z z 1.4
lim e(k) = lim =~ R(z) = _
dim e(k) = — =g B = oL ks 1 14K

If for example we choos& = 0.5 thenlimy_ o, e(k) = 0.74.

SOLUTION 3.9
The closed loop system has the following characteristi@aggu
det(z] — (® —T'L)) = 22— (a11+aga—bolo—b1l) z4a11 a2 —a12a21 +(a12by—aby )01+ (ag by —ai1bo)ls.

This must be equal to the given characteristic equations, th

< bl b2 > <€1> N <p1+tl’<I>>
a12by — azebr  ag1by —ai1bz ) \ L p2 — det @
where tr® = a1 + age anddet ® = aq1a92 — aj2as1. The solution is

61 . i a21b1 — allbg —b2 p1+tr P

Uy A —a12bs + ageby by po — det @

whereA = a21b% — a12b§ + b1ba (a2 — ai1). To check whem\ = 0 we consider the controllability matrix of
the system

b1 aiiby + aizbe
We=(I' o) = (bz az1by —|—a22b2>
and we find that\ = det W,.. There exists a solution to the system of equation aboveifyistem is control-
lable, since then the rank of the controllability matrixidl and det W, # 0.
For the double integratar;; = a12 = ass = by = 1 andas; = 0 andb; = 0.5. In order to design an dead

beat controller we need to place the poles in zero, thus p» = 0. This yields
0y -1 -1 2\ (1
b)) -0.5 —05)\-1) \15/)"

In this case the characteristic equation is

SoLUTION 3.10

(z—0.1)(z — 0.25) = 2% — 0.352 + 0.025.

Using the result from Problem 3.9 we find that= 0.5 and L is obtained from
1T _ 0 _ 1 /05 0 0.75 '\ _ (0.75
Uy A \0.1 1) \—-0.025 0.1)"°
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SoLuTION 3.11

(a) The static observer gives

ylk—n+1)
2(k) = "W, :
y(k)
0 0 0
CcT 0 .0 u(k —n+1)
+ ((I)n—ZI‘ e 30 . F) _ (I)n—lwo—l cor CcTr Co 0 :
: : o u(k —1)
con2r Cco"?r ... Cr
Wy
N
In this case we have
_(CN_ (0 1\ o1 (455 455
co 022 1 ° 1 0
0 0
Wu = (cr) = o.o3>
U="T"-—0oW W,

0.22 0.78 0Y [—4.55 4.55 0\ /(0114
0.03 022 1 1 0 0.03) 0 ’

a(k) = oW, (y(’y“(;)l)> + Wk — 1)

_ <—3O.55 3.155> <y(l;(;)1)> N <0%14> alk — 1).

(b) The dynamic observer has the form

Thus we get

#(k + 1|k) = (@ — KO)i(klk — 1) + Tu(k) + Ky(k).

We choose such that the the eigenvalues®f- K C are in the origin (very fast observer). Using the
results in Problem 3.9 where we u$é andC7” instead of® andT", we obtain

2.77
K= (17):

2(klk) = (I — KC) [®2(k — 1|k — 1) + Tu(k — 1)] + Ky(k).

(c) The reduced observer has the form

In this case we want to fin&l’ such that

-CK=1
— (I — KC)® has the eigenvalues in the origin.
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The first condition imposek, = 1. Since

(- KC)D = <0.78 —0.22k; —k1>

0 0

in order to have eigenvalues in the origin we need to chdgse- 0.78/0.22 = 3.55. The reduced
observer is then

&(klk) = (8 _30'55> 2k —1k—1)+ <0'Bl4> u(k — 1) + <3'f5> y(k).

Sincezq(k|k) = y(k) the we get

s = (5P P) () (9 e

which is the same as the static observer computed in (a).

SOLUTION 3.12

The constant disturbanegk), which typically has high energy at low frequencies, can éscdbed by the
dynamical system

w(k+1) = Ayw(k)
v(k) = Cpw(k),

where the matrix4,, typically has eigenvalues at the origin or on the imaginagig.aWe consider the aug-

mented state vector
w
The augmented system ca be described by
z\ (A Cyu x n B "
w)  \0 A,) \w 0
X
y=(C 0) <w>

Sampling the system gives the following discrete-timeeyst
zk+1)\ (D Dy (z(k) r
(iD= (6 ) o)+ (5) v
_ (k)
0= 0 (5)
where
w(k + 1) = @w(k)
v(k) = Cpw(k),
and®,,, relatesz(k + 1) andw(k). In this exercise the disturbance can be modeled by thersyste
w(k+1) =w(k)
v(k) = w(k),

and the process is described by



(a) If the stater and the disturbance can be measured then we can use the controller
u(k) = —Lz(k) — Lyw(k).
This gives the closed loop system

z(k+1) = ®z(k) + Pppw(k) — I'La(k) — I'Lyw(k)
y(k) = Cu(k)

In general it is not possible to eliminate completely theuefice ofw(k). This is possible only if
®,.., — 'L, = 0. We will therefore consider the situation at the output gasly state

y(00) = C (I — (&~ TL)) " (B4 — Ly, )w(o0) = Hy(1)w(oo).
The influence ofw (or v) can be zero in steady state if
H,(1) =0.
Let ¢;; the (i, j) element of®> — I'L and-~; theith element of". Then

1—Lyy — Lyy1 — ¢12L4,
C(I—(®—TL) " (®p0 — TLy) = — Y1 — ¢22 + P22 Lum — d12 2 _ g

—1+ @22 + P11 — P11022 + P12021

yields
_ —1+ ¢22
=71 + P2271 — 1272

If L is the feedback matrix that gives a dead beat controllet,sha

L= (321 557)
such that
—0.142 —0.114
¢-ll= < 0.179  0.142 >

then we havd.,, = 5.356.

(b) In this case the state is measurable, but not the distaebarhe disturbance can be calculated from the
state equation

O w(k —1) =a(k) — Px(k — 1) — Tu(k — 1).
The first element of this vector gives
wk—1)=(10) (x(k) — Px(k —1) —Tu(k —1)).

Sincew(k) is constant and:(k) is measurable, it is possible to calculat¢k) = w(k — 1) . The
following control law can then be used

u(k) = —Lx(k) — Lyw(k)

where L and L, are the same as in (a). Compared with the controller in (agtiea delay in the
detection of the disturbance.
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(c) Ifonly the output is measurable then the state and therbisnce can be estimated by using the following

observer:
(Z((]/z—tll» N (%) q)fw) <i((?)> + (E) u(k) + < Iﬁ,{w ) e(k)
e(k) = y(k) — Ci(k).

The gainsK and K,, can be determined so that the error goes to zero, providedhtaugmented
system is observable. Létk) = @ (k) — z(k) and similarlyw(k) = w(k) — w(k). Then

k+1)\  [(®-KC Ou,)\ (z(k)
wk+1))  \ —K,C 1 w(k)) "
The characteristic equation of the system matrix for therasr

23 4 (kp —2.2)22 + (1.05 — 1.7ky + ko + ky)z + 0.7k1 + 0.15 — 0.7k, — ko = 0.

The eigenvalues can be placed at the origin if

2.2
K= <—O.64> K, = 3.33.

The controller is

whereL andL,, are the same as (a).

SOLUTION 3.13

(a) The eigenvalues of the matrikare

A = —0.0197
Ao = —0.0129.

The matrices of the sampled system are

~an (0790 0
b= _<O.176 0.857

0.281
L= <0.0296>
(b) The pulse transfer operator is given by

-1
4 g — 0.790 0 0.030g 4 0.026
H(q)=C(qgl —®)"'T=(0 1) ( 0176 g 0.857 (0.281 0.0297) = Z —165¢ 1 0.68

(c) The poles of the continuous-time system are at -0.0187@0129. The observer should be twice as fast as
the fastest mode of the open-loop system, thus we chooselie qf the observer in

L — 00192212 _ () 6o

The desired characteristic equationdof- K C'is then
22 —1.242 +0.38 = 0.
Using the results from Problem 3.9 we obtain

K =(0.139 0.407).
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SOLUTION 3.14

(a) The sampled system is

(k4 1) = ®x(k) + Tu(k)

y(k) = z(k)
where
P =e°
1—e®
T =
5

(b) In order to to prove stability with Lyapunov argument weed to choose a Lyapunov functidh Let
V' = |z|. The increment of the Lyapunov function is then

AV = |zF| = |z| = e 2] — |z| = (7 — 1)]z| < 0.

sinceu(k) = 0. SinceAV < 0, then the system is stable. We actually know that the sysgem i
asymptotically stable, since the pole is inside the undleirWe can conclude ocamsymptoticalstability
using the Lyapunov argument, noticing that’ < 0 if = = 0. Thus the system is asymptotically stable.

SOLUTION 3.15
(a) The sampled system is

where

(b) The characteristic polynomial is
(z—0.1)(z — 0.2) = 2% — 0.3z + 0.02.

Using the result from Problem 3.9 we obtain

_ 2 _ 2
<€1> 1 ! 26 1 26 (—0.3+e—1 +e—2> B <0.3059>
T 00636 _el—2 | T
f2)  =00636 \ _ 2y 1y g 0.02 — e e 0.0227

(c) The closed loop system is

0.1745  —0.0143
a(k+1) = (—0.1323 0.1255 > z(k).

Dc
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We consider the following Lyapunov function
V(z) =alz

then
AV (z) =27 0Tz — 2Tz = 27 (®T 0, — 1) 2.
————
Q, symmetric

Since the eigenvalues of the symmetric mafiixare negative therl\V' < 0. Thus the closed loop
system is stable. Notice th&tl’ < 0 if « # 0 thus the closed loop system is asymptotically stable (the
eigenvalues are placed in 0.1 and 0.2).

Solutions to computer realization of controllers

SOLUTION 4.1

(a) The characteristic polynomial of the closed loop sysiteeyual to the numerator af+ H H., that is,
24+ (K4 K;—25)z— K+ 1.
The poles of the closed-loop system are in the origin if

K+ K;—25=0
-K+1=0
which yieldsK = 1 andK; = 1.5.
(b) We can use the following partial fraction expansion (=)

N
Hc(z):M+z_1.

With simple calculations we obtaif/ = 2.5 and N = 1.5. Thus the state-space representation of the
controller is
x(k+1) =x(k) + e(k)
u(k) = 1.5z(k) + 2.5e(k)

SOLUTION 4.2
(a) Using Euler's method we get

a ah
H(z) = = )
(2) (z=1)/h+a z—1+ah

This corresponds to the difference equation
y(kh + h) + (ah — 1)y(kh) = a h u(kh).
The difference equation is stable if
lah — 1] <1 = 0 < h < 2/a.

The approximation may be poor even if the difference eqnadtictable.
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(b) Tustin’s approximation gives

H(z) a - (z 4+ lah/2)
DT9.21 T (U tahj2)z + (ahj2 1)
- +a
hz+1
_ ah/2 z4+1
~ 1+ah/2 ah/2-1
+ah/2+1

The pole of the discrete-time system will vary from 1 to - 1 whevaries from 0 taxo. The discrete-time
approximation is always stabledf> 0.

(c) Tustin’s approximation with prewarping gives

a a/o z+1
H(z)= = /
z—1 l1+a/a ajoa—1
« +a 2+ —
z+1 a/oa—1

where
a

‘= tan(ah/2)
SOLUTION 4.3

(a) Euler's method gives

(z—1)/h+1 z—14+h z—0.75
= :4
(z—1)/h+2 z—1+4+2h z—0.5

H(z)=4

(b) Backward differences give

(z—=1)/(zh) +1 z(1+h)—1 z—0.80
HE) =4 o2~ Saram+1 - > “oeer

(c) Tustin’s approximation gives

22z—1

H(2) :4g—z+1+1:4z(1+h/2)—(1—h/2) 70778
2z—1 ) z(14+h)—(1—h) T 2-06
Ez—|—1

(d) Tustin's approximation with pre-warping

z—1

a +1 1+1/a)—(1—1 —0.775
H(z) =4 z+1 :42( /) ~ @) _ 35061

z—1 z(1+2/a)—(1—-2/a) z — 0.596

« + 2

z+1

All the four approximation has the form

zZ+a

H(z):Kz+b.
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The gain and phase at= 1.6rad/s are obtained from

e“h +q (eh + a)(e™™h 4 b)

e@h 15 (eh + b)(e “@h + b)

% 14 ab+ (a+ b)cos(wh) +i(b — a) sin(wh)
1+ b2 + 2bcos(wh)

H(e“h) = K

(b —a)sinwh
1+ ab+ (a+ b) cos(wh)

argH (¢™") = arctan

, 1+ a® + 2acos(wh)
H(e™M| =K :
[H ()] \/1 + b2 + 2bcos(wh)

The four different approximations give @at= 1.6rad/s the following results

|H(.)] argH (.) Rel. err. |.|| Rel. err. arg(.)
Continuous-time (no approx{) 2.946680646| 0.3374560692
Euler 2.966414263 0.4105225474 0.67% 21.65%
Backward 2.922378065 0.2772636846 -0.82% -17.83%
Tustin 2.959732059 0.3369122161 0.44% -0.16%
Tustin with prewarping 2.946680646 0.3374560692 0.0% 0.0%

SOLUTION 4.4
The tank process in Problem 2.13 has the transfer function

0.000468

Gls) = (5 +0.0197)(s + 0.0129)

(a) Atthe desired cross-over frequency we have

|G (iw.)| = 0.525
argG (iw.) = —115°.
We use a Pl controller in the form
K(Ts+1)

Fls) = Ts

and we have the following specificationsuat

— gain 1/0.525
— phase -15.

This givesK = 1.85 andT = 149.
(b) The characteristic equation of the closed loop system is
5% 4+ 0.03265% 4 0.00112s +5.91 1075 = 0

which has roots; » = —0.0135 &+ ¢0.0281 ands; = —0.006. The complex poles have a damping of
¢ = 0.43. The zero of the closed loop system-i§.0062.
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(c) Tustin’s approximation with given warping is

1.85 [ a—— + 0.0067
Ho(2) = z+1 _ 1.85(a +0.0067) [, 0.0134
o z—1 B o (o +0.0067)(z — 1) )
az +1

The rule of thumb for the selection of the sampling periodgiv
h~6 — 20sec
The choice ofi = 12 seems to be reasonable. This giwes 0.165 and

H,(z) = 1.925 <1 + %) .

SOLUTION 4.5

The sample and zero-order hold circuit can be approximagedsjlay of/2 seconds. Indeed the output of the
zero-order hold is
up(t) = u(kh), kh <t <kh+h

u(k‘h) uh(t)

—~» ZOH >

Figure 4.5.1: The zero-order hold.

If u(kh) = §(kh) thenuy(t) is the impulse response of the ZOH filter. In this case thewytpt us call it,
uf (t) is a pulse of height and duratior: i.e.,

up(t) = (1(t) = 1(t = h)).
The Laplace transform of the impulse response is the trahgfetion of the ZOH filter, which is
ZOH(s) = L{A®) = [ 3 (U0~ 1t~ ) e d = (1= M)/
0

When we sample a signal we have a scaling factdr/éf as

Xs(jw) :% Z X (j(w + kws)).

k=—o00
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Thus for smallh we have

_ e—sh _ _ 2
5AJ\4PLE(3)-ZOH(S):%(1 : ) _1-1+sh Sffh) /2+“':1—%+~-m6_8h/2

which is approximately a delay &f/2. If we assume a decrease of the phase margii of 15°, then

180°wch weh
2r  0.035

A¢ZOH = wch/2 = 50 — 150,

which then gives

weh =0.17 — 0.52
or

weh = 0.15 — 0.5.

SOLUTION 4.6
Consider the general problem of controlling a continudnnetsystem

Ax(t) + Bu(t)

.
—~
~
~— —

with the continuous-time controller

The closed-loop system is

&(t) = (A — BL)x(t) + BMr(t) = Acz(t) + BMr(t)
y(t) = Cux(t).

If »(¢) is constant over one sampling period, then the previoustiequean be sampled, giving

x(kh + h) = ®.x(kh) + T .Mr(kh)
y(kh) = Cx(kh), (0.0)
where
. = gAch

h
Fc:/ e dsB.
0

Let us assume that the controller . )
u(kh) = Mr(kh) — Lz(kh)

is used to control the sampled system

xz(kh + h) = ®x(kh) + Tu(kh)
y(kh) = Cx(kh),

where
d = Ah

h
I‘:/ eAldsB.
0
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In this case the closed-loop system is
z(kh 4 h) = (® — TL)x(kh) + T Mr(kh)
y(kh) = Cx(kh). (0.0)
It is in general not possible to choogesuch that
d.=d-TL.
However, we can make a series expansion and equate termsnéss
L= Lo+ Lih/2

then
®.~ I~ (A—BL)h+ (A* — BLA— ABL — (BL)*) h*/2 + ...

and
® —TL~TI+ (A~ BLy)h+ (A*— ABLy— (BL1)?*) h?/2 + ...

The systems (0.0) and (0.0) have the same poles up to andimglardern? if
L=L(I+ (A-BL)h/2).

The modification onV/ is determined by assuming the steady-state values of (BdDj(a0) are the same. Let
the reference be constant and assume that the steady-aitateof/the state is®. This gives the relations

(I—®)2x" =T .Mr

and
(I (@ ri)) 20 = T Mr

The series expansion of the left-hand sides of these twaesaare equal for power éfup to and includingy?.
Then, we need to determiné so that the expansions of the right-hands are the saniedodh?. Assuming

M:M0+M1h/2

then
.M ~ BMh+ (A~ BL)BMh?*/2 + ...
and .
I'M ~ BMyh + (BM; — ABMy)h*/2 + ...,
which gives

M = (I — LBh/2)M.
(@) We need to compute and M, which are

. 1 h/2 1 n/2

L:L(_h/2 1_h>:(1 2)<_h/2 1_h>:(0.8 1.7)

M=2-2h=16

(b) The backward difference approximation gives

1 _hq_lfc(kh) = (A — KC)z(kh) + Bu(kh) + Ky(kh)

(I — Ah — KCh)i(kh) = ¢ i (kh) + Bu(kh) + Ky(kh).
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Let

. 1 L oh
o = (I — Ah— KCh) 1:m<—h 1+h>'

This gives,

#(kh) = (®gi(kh — h) + ®oBu(kh) + o Ky(kh)
081 0.16) . 0.03 0.19
- (—0.16 0.97) &(kh—h) + (0.19) u(kh) + <0.16> y(kh).

(c) Simulate the continuous-time controller and the digetine approximation. Let(0) = (1,1)” and
#(t) = (0,0)7.

SOLUTION 4.7

(a) To obtain the forward difference approximation we sitilgt s = %1 in the continuous-time expression.

We obtain
s0q — So + hsy

q+mrh-—1

toq — t() + htl

kh) = —
u(kh) q+mrih—1

y(kh) + r(kh)
(b) In order to compare the discretizations we examine tbation of the controller pole. We use the graph

available in order to compute the poles for the exact dizagbn. We have the following results:

Discretization \ h=0.01 \ h=0.1 \ h=1
Exact 0.9048 | 0.3679 | 0.00004540
Forward differenc 0.9 0 -9

We notice that the forward difference approximation yiedgisunstable system fdr = 1 (pole in -9).
Forh = 0.1, the forward difference approximation gives a pole at thigioywhich corresponds to a one
step delay. Thus this approximations of the continuoug-tmntroller cannot be considered satisfactory.
For h = 0.01 the pole of the forward difference approximation is veryseld to the exact discretization
which means that this is a better choice.

We could also consider how the sampling interval relateheadbminating time constant of the system.
We know that the relation between this two parameters isigayethe following rule-of-thumb

1y
N, = — ~4-10.
A 0

In this case only the controller dynamics are available,usirig the time constant of the controller that
isT. = 1/r; = 0.1 we see that only foh = 0.01 the rule-of-thumb is fulfilled.

SOLUTION 4.8

(a) The backward differences approximation substitytesth (= — 1)/zh. We can consider the Laplace
transform of the controller’s equation yields

sX(s) = AX(s) + BE(s)
U(s) =CX(s)+ DE(s)

Substitutings with (z — 1)/zh we get the following equations
x(k+1) —x(k) = hAz(k + 1) + hBe(k + 1)
u(k) = Cz(k) + De(k).
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(b)

We consider first the state update equation. Dividing theadggat timek + 1 andk we get the following
x(k+1)—hAz(k+1) — hBe(k + 1) = z(k) =: w(k + 1).
Solving this equation fox: in terms ofw ande we get
z(k+1) = (I —hA)  w(k +1) 4+ (I — hA) ' Bhe(k + 1)
thus, sinceuv(k + 1) = x(k) we get
w(k 4+ 1) = (I — hA) tw(k) + (I — hA) "' Bhe(k).
This gives that
d, = (I —hA)™?
.= (I—hA)"'Bh.
From the output equation substitutingk) we get directly
u(k) = C(I —hA)™L +{D + C(I — hA)"'Bhle(k).
Thus
H=C(I—-hA)™!
J=D+C(I—hA)"'Bh.

To compute the Tustin’s approximation we proceed in e way, and we substitutewith 2(z —
1)/(h(z + 1)). The state equation then becomes

Ach B:h
z(k+1)—x(k) = 5 (z(k+1) —z(k)) + 5 (e(k+ 1)+ e(k)).
Again collecting the: + 1 terms on one side we get
Ah Bh Ah Bh
= wk+1).
Thus we can derive(k + 1) from the previous equation as functionwfk + 1) ande(k + 1)
z(k+1)= (I - %)—110(13 +1) — (I — %)—1%% + 1).
The state equation becomes
Ah Ah Ah Ah Bh
wk+1)= I+ =) - 5) " wk)+ (T +=)I— =) +1)—e(k).
2 2 2 2 2
P, T
The output equation becomes
Ah Ah._{B
ulk) = O = E M wk) + (D + 0~ 2 PRy ey,
~————
H. Je
Notice that is possible to writE. in a more compact way as follows
Ah Ah. Bh Ah Ah Ah. _, Bh
((I+7)(I—7) +[)7—(([+ 5 )t U 2))([ 5) 3
Ah._, Bh
=55
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Solutions to implementation aspects

SOLUTION 5.1
The poles of the controller are

1 3
21:1; 2225; 2374:—1/4:]:Z‘§

We can represent the controller in Jordan form as

21 : Sl(k + 1) =1 Sl(k) + 2.286y(k)
% so(k) — 3.073y(k)
(ss(k+1)\ [ 5 3\ [ss(k) 1.756
s (si(kz—i— 1)> - (f@ i) (si(kz)) + (1.521) y(k)

4

22132(1{7—1—1) =

The control inputu(k) is then
u(k) = 0.5s1(k) 4+ 0.8677s2 (k) 4+ 0.8677s3(k)

Another way to get the parallel form is the following. We erthe given transfer function as

b}

PP >

23

Figure 5.1.1: Parallel form for the controller of Probler 5.

H(z) = 1 A . B i Cz+ D
(=1 (z—1/2)(22+1/224+1/4)  z2—1 2z-1/2  224+1/22+1/4
where the constantg, B, C, D are to be determined. It easy to find that the two polynomial ame equal if
and only if

A=114, B=-267, D=095 (=152

Then the system is the parallel of

1.14
¥1: Hy, = po—
—2.67
Par v =
1.52z + 0.95
Y3 : Hy,

T 22+ 1/2z+1/4°
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y(kh)

Figure 5.3.1: Closed loop system for Problem 5.3.

SOLUTION 5.2
(a) The closed loop system fromto y shown in Figure has the following transfer function

(s) = Cs(s)P(s)e T
1+ Cy(s)P(s)e=s™"
In order to findCs(s) we need to solvéi (s) = H..(s) which gives
C()P()e™T _ CPs)
14 Cy(s)P(s)e=s™ 14+ C(s)P(s)
Cs(s)(1+C(s)P(s)) = C(s) (1 + Cs(s)P(s)e™*T)
C(s)

Css) = T e PG) = O P(s)e ™
(b) We first findC'(s):
Clo)—
S

—S+16_ST — L = C(S) — M.
s2+4s+8 52+ 4s

1+ C(s)

s+ 1
Using the result in (a) we get
Ciu(s) 8(s+1)

T 2+ ds+8(1—eT)
SOLUTION 5.3
The control problem over wireless network can be repredesdeshown Figure 5.3.1. The del&yis such that

A(y(kh)) = y(kh —d(k))  d(k) € {0,...,N}
The closed loop system is stable if
P(e™)C(e™) - 1
1+ P(e®)C(ew)| = Nlew — 1|
whereN is the number of samples that the control signal is delayelicBl that the previous result is valid if
the closed loop transfer function is stable. In this caselbsed loop transfer function is stable with poles

w € [0, 27]

21 = 1, 29 = 0.861, zZ3 = 0.5, Z4 = 0.447.

If we plot the bode diagram of the closed loop system withalayl versus the functioh/(N|e™ — 1]) for
different values ofV we obtain the results shown in Figure 5.3.2. It can be sedritithaclosed loop system is
stable if N < 3. Thus the maximum delay is 3 samples. Notice that the resahly a sufficient condition.
This means that it might be possible that the system is stablarger delays than 3 samples.
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Bode Diagram
60 I
== Closed loop system
=« N=1
Co N=3
50 = N=4 4

Magnitude (dB)

10"

Frequency (rad/sec)

Figure 5.3.2: Bode diagram of the closed loop system of Rrot$.3 and the function/(N|e™ — 1|) for
different values ofV.

SOLUTION 5.4

The linear model for multiplication with roundoff is showm Figure 5.4.1. The signalis a stochastic variable
representing the roundoff, and it is uniformly distributedhe interval(—§/2, §/2). It thus has variancé” /12.
Before computing the variance afas function of the variance éfwe show that the two algorithms compute

Y ly l6
(r - Q =
\J T

Figure 5.4.1: Linear model for multiplication with roundiof

the same. For Algorithm 1 we have

ot —itoh /b
u:k‘(e—l—i)l g/t

u=ke+ k(i —1)+ keh/t;
whereas for algorithm 2 we have

it=ki+keh/t;
—

u=1+ke u=ke+k(i—1)+ keh/t;.

Alg 1: We have that

2
Var(i*} = Var(i + Var {(ch + 0 7+ ¢} = Varli} + (141 ) 5.

Using the approximation of roundoff we have that: k(e + i) + € and thus

2
Var{u} = kVar{i} + (15—2 .
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Alg 2: We have that

2 2
Var{it} = kVar{i} + % + Var {((k‘e +e)h+e) tl + e} =kVar{i} + <2 + tﬁ + %) % .

Using the approximation of roundoff we have thats i + ke + ¢ and thus
2

Var{u} = Var{i} + % .

If we consider
Var{it} = aVar{i} + f(6?)

then aftem iteration we have that .
Var{i}, = (Z a’) (6%,
i=0
where we have considerétur{i}o = 0. Thus we have that

Alg 1: In this case

, 1) 02
Var{i}, =n <1 + t_z> 2

and thus 52
kn

V n= 1|k —+1) =

ar{u} < n+ > + > 13

n—1
. N /ho1 52
Var{i}, = (ZEZO k ) (E + 0 + 2> 1
E"—1\ (h 1 52 8
Var{ujn = (m) <t7+ g“) TR

In order to compare the two algorithms, we assuime ¢; = 1. (This is just for comparison, since multiplica-
tion with 1 normally does not add any roundoff error.) We thewe for the two algorithms, that

Alg 2: In this case

and thus

52
12

k" —1 &
Var{u}?) = <4 ] + 1> -

Var{u}{V) = (2kn + 1)

If we assumé: < 1 andn large then

k" —1 4
4 1l —+1
k—1 * 1—k *
and thus
2kn+1 > —4 +1
1—k
which allows to conclude that the first algorithm is worstrtlilae second. Ik > 1 andn large then
k™ —1 k"
4 1~
kE—1 * kE—1
and thus

2%kn(k —1) +1 < k"

which allows to conclude that in this case the second alyoris worst than the first.
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SOLUTION 5.5
Fora = 1/8 the transfer function is

1 y(z
H(z) = =
ERE
8

thus in time we have

For a step(k) = 1 for k > 0 thus
1
y(k:):gy(k—l)—kl k > 0.

The data representation is the following

+ 2 1 1/2 1/4 1/8 1/16 1/32
g oo . 0O o o O O

Sign Integer «—— Fraction —
The steady state value is
—1 1
lim = SEE — 1.14285714.
z—1 z 1 z—1 1—-0.125
1-— gz_l

If we compute the steady-state value when truncation anadaftiare considered, and we have limited word-
length we obtain

iteration | y(k) with truncation |  y(k) with roundoff exact
0 1 1 1.0
1 001.001000 001.0010006 1+ %
2 001.00100b 001.00101b 1+31+H=1+3+4=1+5
1 1 1 73
3 001.001000 001.00101b l+s+mtsm =1+t
00 001.001006 = 1.125 | 001.00101b = 1.15625 1.14285714

which then gives the following steady-state values

yr =1.125 Truncation
y? =1.15625 Roundoff
yE =1.14285714 Exact

If we compute the relative error for the truncation an rowffdve have

e Truncation:

e Roundoff;

T E
Yss — Yss
E
ss

R E
Yss — Yss
E
ss

~ +1.2%

~ —1.6%
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Part |l

Event-triggered control
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Solutions to real-time operating systems

SOLUTION 6.1

(a) The two tasks are not independent in this particular basever. We first compute the CPU utilization
0 C. C,
U= T STt

where the period,. = T, = h. The two tasks needs to be finished within the new samplirggvat. Thus we

have

0.1 0.2
U= 04 + 01 0.75

thus the CPU is utilized 75% of the time. We still do not knowit iis possible to schedule the tasks so that
they meet their deadlines. In order to do this we calculatestthedule length and we draw the schedule. The
schedule length is

lem{T,,T.} = 0.4

Ja Je
t T
0 0.1 0.2 0.3 0.4

Figure 6.1.1: Schedule for the two tasksand./. of Problem 6.1.

(b) The utilization factor in this case is

01,02 02

U=oatoatos™

1

Thus the CPU will be fully occupied. In order to see if the taake schedulable we draw the schedule. In this
case the schedule length is

lem{T,,T.,T,} =0.8.

Notice thatJ, starts after 3 time steps since the release timg is 0.3. The worst case response time for the
control task/. is 0.4 as is can be seen from Figure 6.1.2.

SOLUTION 6.2

In a closed loop with a delay we know that the stability is gueed if

P(e)C(e™) - 1
1+ P(e)C(e)| = Nlew — 1]

w € [0, 7]

whereN = [R./h], with R, the worst case response time of the control tdskaused by the high priority
task.
From the previous equation we have immediately that

1+ P(e™)C(e)]

N < — - g
e’ — 1][P(e™)C (e™)]
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Figure 6.1.2: Schedule for the two tasks J. and.J, of Problem 6.1.

and this should hold for alb € [0, 7]. We have that the magnitude of the closed loop transfer ifumds

P(e“)C(e™) | . [10e™ —1]
1+ P(e@)C(e)|  ~|130ei — 103

and thus we have that '
1 [130e™ — 103|

N < 5— :
3|(e* —1)(10e™ — 1)

for allw € [0, 7]. This means that

.1 |130e™ — 103]
N < min —— :
wel0,x] 3 ‘(6“‘} — 1)(106“" — 1)‘

Since the right hand side of the previous inequality can barged as the magnitude of a transfer function with
one zero and two poles on the positive real axis, it is cleantmimum is atv = .
Thus we have that .
1 |130e™ — 103|
3](e™ = 1)(10e% —1)]|,,_,

SinceN is an integer then we have that = 3. Thus we have thak, = 2N = 6.

We know that the worst case computation time for the conég isC. = 1 with period7, = h = 2. and
that the high priority task is not released until timne- 2. The worst case response time for the control task is
given by

N < ~ 3.53.

R.=C.+Cy

which than gives”; = 5. The schedule in this case looks as in Figure 6.2.1. As we cacenthe control task
misses its deadlines at= 4 andt = 6. The control task is then delayed and the worst case respionses
exactly R. = 6, which represents the maximum delay of the control task.

SOLUTION 6.3

(a) The situation is depicted in Figure 6.3.1. Let us cormrdide single instances.

0) The task/4 is released and its starts its computations. The bus isdocke
1) The taskJo requires to be executed. Since it has high priority the CRigipts the tash{4.
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Figure 6.2.1: Schedule for the control tagkand the task handling the interrupt, of Problem 6.2.

Jo I I

L T

2 I

T

Figure 6.3.1: Priority inversion. Problem 6.3

2) SinceJo needs to access the bus, and this resource is occupied gk tthe task/ is stopped.
At the same time tasld{z asks for CPU time, and sincg is stopped and it has higher priority of
Ja, Jp can be executed. The executionJgf prevents/ 4 to release the bus.

3) The task/p with medium priority has finished to be executed and the CRiivian to the task/4.
4) Task.J 4 finishes to write on the bus, and it releases it.
5) TaskJ¢ finally can use the bus and it is scheduled by the CPU.

What we can see from this particular situation is that a higarity task as.J¢ is blocked by a low
priority task. We have a situation callgdiority inversion The response time for the high priority task
Jo inthis case iRc = 4.1.

(b) A possible way to overcome the problem is to useptierity inheritance protocal In this case the task
J4 inherits the priority of the task which has higher prioritydaneeds to use the blocked resource. The
task.J 4, thus acquires high priority and is able to release the resaas soon as possible, so that the high
priority task.J~ can be served as soon as possible. The priorities are set ttetault one, once the bus

is released.

SOLUTION 6.4

(a) Using the EDD algorithm the tasks are scheduled corisgléhe deadlines. Those that have early
deadline are scheduled first. From the table given in thelgmolve see that the order of scheduling
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Ji— Js — J3— Jy — Jo.

The schedule is shown in Figure 6.4.1. The maximum latersesgual to—1 due to task/,. The fact

d1 d5 d3 d4 d2

J1 Js5 J3 J4 J2

I -

\ \ \ \ \ \ \ \ o
o 1 2 3 4 5 6 7 8 9 10

Figure 6.4.1: Jackson’s scheduler

that the lateness is negative means that all the tasks nedetidadlines.

(b) Leto be a schedule produced by any algoritdmif A is different from EDD, then there exist two tasks
J, and.J, with d, < d;, with .J;, scheduled before the task. Now, leto’ be a schedule obtained fram
by exchanging/, with .J, in the scheduler, so thatJ, is scheduled beford, in ¢’. If we exchangeJ,
with J, in o the maximum lateness cannot increase. In fact for the stdedue have that the maximum
lateness is

Lmaxab = fa - da
as can be seen from Figure 6.4.2.

\l

Figure 6.4.2: Jackson’s scheduling - proof

In ¢/ we have that
L = max (L}, L}).

mazxqp

We can have two possible cases

- L, > Lj,thenL] =L = f! —d,, and sincef, < f, then we havd.! < Limaz,,»

mazxgp maxgp

- L, < Lj,thenL! =L, = f;—dy = fo—dy, and sincel, < d, we have thal, < Liag,,-

max qp mazxqp

Since in both caseE;m%b < Lmaz,,, then we can conclude that interchanging the tagkand.J, in

o we cannot increase the lateness of a set of tasks. By a fimtdewof such transpositions, can be
transformed irvgpp. Since at each step the lateness cannot increass;, is optimal.
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Solutions to real-time scheduling

SOLUTION 7.1

Notice that the four assumptions under which the scheditlati#st can be use are satisfied. We can remember
here the assumptions

Al the instances of the task are regularly activated at constant rate,

A2 all instances of the periodic task have the same worst case execution tithe

A3 all instances of a periodic task have the same relative deadline, which is equal to the period
A4 all tasks are independent i.e., there are no precedelat®ns and no resource constraints.

The schedulability test gives

1 2 3 1
——4+Z4+=0. : =323 -1
U 4+6+10 0.8833 £ 0.7798 = 3( )
thus we cannot conclude if it is possible to schedule theethmeks. We need to use the necessary condition,
which ensures that the tasks are schedulable if the wosst-@sponse time is less than the deadline. The
priority is assigned so thaf; has highest priority,/o, medium priority and/; lowest priority. The analysis
yields

Ri=C=1<D; =4

for taskJ; we have

RY=Cy=2
RO
R%:CQ+’V—2-‘01:2—|—1:3
Ty
Rl
R3:02+{?2w01:2+1:3§D2:6
1
for task.J3 we have
RI=0C3=3
' [RYT (R
Ri=Cs+ |2 |Ci+ |=2|Co=3+2+1=6
Ty 15
FRLT FR1T
RE=0C3+ |2 |01+ | 2| Co=3+2+2=7
Ty T5
FR2T FR2T
RI=Cy+ | 2| O+ | 22| Ca=3+2+2=9
Ty 15
B3 B3
Ry=C3+ | 22| C1+ |72 | Co=3+3+4=10
Ty T
5 (R3] [ R3]
R4203—|— |1+ |=2|C=34+34+4=10<D3=10
Ty T

Thus the three tasks are schedulable with rate monotonesdlmedule length is given by
|Cm(T17 T5,T,3 ) = 60

The schedule is shown in figure 7.1.1.
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Figure 7.1.1: Rate monotonic scheduling for the tasks/, and.Js, in Problem 7.1

SOLUTION 7.2

The CPU utilization is L 9 3
=-—+-+—=0. <1
U 4+6+10 0.8833 <
thus the schedulability test for EDF ensures that the thaskstare schedulable. The schedule length, as in
Problem 7.1, is

|Cm(T1, 15,T 5 ) = 60.
The schedule is shown in figure 7.2.1.

| I T I N

| ! !
0 10 20

S N M
» I ME @ pEnn .

Figure 7.2.1: EDF scheduling for the tasks .J; and.J3, in Problem 7.2
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SOLUTION 7.3
The CPU utilization is

3
c; ¢ Cy Cs3 1 1 1/3
U= =24+ 24 22— 124 - 09762 £ 322 —1) = 0.7798
;TZ— Ty T2+T3 3+4+7 £ 3 )
Let us consider the first 10 steps of the RM schedule. The Rigrifihgn assigns to/; the highest priority, to
Jo middle priority and taJ; the lowest. The schedule length is

[\

lcm(3,4,7) = 84

but we draw here only the first 9 steps, as shown in Figure .7\8/& can notice that the task misses its
deadline at 7 and it is scheduled in the next time slot. Thes#t of tasks is not schedulable with RM.

n

0O 1 2 3 456 7 8 9 !

” .

01 2 3 456 7 8 9 ¢
N

J3 _

\\\\\\\ =

4 t
0 1 2 3 4 5 6 7 8 9

Figure 7.3.1: RM scheduling for the tasi{s, J, and.Js, in Problem 7.3. Notice that the task misses its
deadline.

Since the utilization factot/ is less than one, then we can use the EDF algorithm to schéurlt@sk. The
schedule is shown in Figure 7.3.2.

SOLUTION 7.4

(a) The CPU utilization is
1 2 3
U_Z+5+E_0'95
The RM algorithm assigns the highest priority.fp, middle to.J, and the lowest to/;. The schedule
length is given by
lcm(4,5,10) = 20.

The RM scheduling algorithm assigns the highest priorityhto control task/; which then has worst-
case response time &f = 1. In the case of the EDF we need to draw the schedule in ordemipate
Ry. The schedule is shown in Figure 7.4.1. The EDF gives a wast response time éf; = 2 as

is shown in Figure 7.4.1. With the EDF algorithm is possildes¢hedule tasks that are not schedulable
with RM, but we do not have anymore "control” on the respoitee bf some tasks.
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Figure 7.3.2: EDF scheduling for the tasks .J, andJs, in Problem 7.3. Notice that all the tasks meet their
deadlines.
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2 B B
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Figure 7.4.1: EDF scheduling for the tasks .J> and.J; in Problem 7.4.

(b) In order to havek, = 1 we need to assign the highest priority to the task 2. We themtgi./; middle
priority and./; the lowest. The tasks meet their deadline if the worst-caspanse time is less than the
deadline. In this case we have

for task.J; we have

RV =C1=1

RO
R1:01+[?1w02_1+2=

2

Rl
Rf:Cl+[—1-‘Cg—1+2:3<D1:

2



for task./3 we have

RY=0C3=3
[RY] [RY]

RE=C3+ | 2| C1+ | 22| Co=3+1+2=6
T T
Rl Rl

RE=C3+4+ | 2| C1+ |22 Co=3+2+4=9
T T
-t R

RE=C3+ | 2|01+ | 22| Cy=3+3+4=10
T T

4 _R?)— _R?)—

R3203—|— =11+ |=2|C=34+3+4=10<D3=10
T T

Thus the three tasks are schedulable. The schedule is shdvigure 7.4.2

Jo

J1

— — — T \ \
01 23 456 7 8 9 1011 121314 1516 17 18 19 20 !

» [0 A0 L

i
0 10 20

t

Figure 7.4.2: Fixed-priority scheduling for the tasks .J, andJs, in Problem 7.4..J5 in this case has the
highest priority.

SOLUTION 7.5

(&) The tasks will meet their deadlines since the scheditiabondition for RM scheduling is fulfilled:

NG _G 6T 12 _ 1) a
U_ZT_T1+T2_12<2(2 1) ~ 0.8

The schedule length is equal to I€HL, 72) = 12. The time evolution is shown in Figure 7.5.1.

(b) The worst-case response time for the higher prioritidas given by the worst-case computation time.
ThusR; = C = 1. For the second task we the worst-case response time is tedipy

R2
Ry = Cy + lrﬁ—‘ .
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Figure 7.5.1: Rate monotonic scheduling for the tagkand.J, in Problem 7.5

In order to solve the equation we need to use an iterativeepoe. LetR9 = 0, then

| [ RY]
R2:CQ—|- ﬁ Ci=0=1
R3=Cy + & Ci=Cy+Cp =2
T1
R?;:CQ—I- & =Cy+C1=2.
T1

Thus R, = 2. This agrees with the time evolution plotted in (a).

SOLUTION 7.6

Since the tasks have an off98f we cannot use the response time formula for rate-monotomée $t
assumes that all tasks are released simultaneously at tivwe @eed to solve the problem drawing the
schedule.

(a) In order to draw the schedule for the three tasks we neednipute the schedule length. The schedule
length is the least common multiple (I.c.m.) of the task pasiplus the offset. The l.c.m. is 30, thus the
schedule length is 30+1=31.

(b) Rate-monotonic
The rate-monotonic assigns the priority so thiahas the highest priority/s medium priority and/s the

lowest.
1 4 7 10 13 16 19

6
J3. | I | I
1 |
6

0
Thus the worst-case response time for tdslks Ry = 3.

(c) Deadline-monotonic
The deadlines agree by assumption with the periods, soideadbnotonic scheduling is identical to
rate-monotonic scheduling. Thus the worst-case respimsefar taskJ, is Ry = 3.
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(d) Earliest-deadline-first
The schedule is shown below.

1 4 7 10 13 16 19 22 25

~Y

The worst-case response time fbris Ry = 3.

SOLUTION 7.7
(a) The utilization factor

Ci 01 LG G 1 2 ] /3
U= o= C 2 2 ~0.82 4323 — 1) ~ 0.76.
27 %tn—iT5%e % 3( )

so we derive the worst-case response times for all taskspiitigty assignment is such thdi has the
highest priority,.J. intermediate priority and- the lowest priority. Thus the analysis yields

=R =0C=1
R\=C.=2
0
RéZCc—F’V%—‘ Ci =3
1
= R.=3<D.=5

R2
R CQ%”VTI—‘C&-F’V
= Ry =4< Dy =6.

Thus the set of task is schedulable with the ate monotonarigthign, with the worst-case response time
for the control task equal t&. = 3.

(b) Sincer = R, = 3 > h = 2 then the sampled version controller in state space from is

w(kh + h) = ®a(kh) + Toy(kh — (d — 1)h) + Try(kh — dh)
u(kh) = Cxz(kh)
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wherer = (d — 1)h + 7/ with 7 < h andd € N. Thus if we choose = 2 we getr’ = 1. The state
space description becomes

x(kh + h) o Iy Ty x(kh) 0
(y(kh - h)) - (o 0 I) (y(kh - 2h)) + (o) y(kh)
y(kh) 0 0 0 y(kh —h) I

x(kh)
u(kh) = (C 0 0) (y(kh — 2h))
y(kh —h)

A sketch of a computer program is given below. Notice that w&uee that initial values of(0),
y(—2h), y(—h) are known.

Computer Code

y=array{y(-1),y(-2)};

nexttime = getCurrentTime();

k=0;

while truedo
new_y=AD_conversion();
x(k) = ®a(k — 1) + Ty(k —3) + Toy(k — 2);
u(k) = Cx(k);
DA_conversion();
y(k) =new_y;
k=k+1;
nexttime = nexttime + h;
sleepUntil(nexttime);

end while

(c) The set of tasks will be schedulable if the worst-caspaese timeR; is less than thé; fori € 1,2, ¢
In this case the control task has the highest priodtyintermediate priority and, the lowest priority.
The analysis yields

= R.=C.=2
RI=0C1=1

0

3

1
R%:ClJr{&WCC:?)

&3

>R =3<D; =4

RY=Cy=1

Ry =Csy+ et Ce+ Bl e -4

2 — L2 Tc c Tl 1=
R} R}

2 2 2 —

RQ—CQ—I—’VTC-‘CC—F’VTI-‘CH 4

= Ry =4 < Dy =6.

Thus the tasks are schedulable even if the thgk a high priority task. In doing this the delayis then
equal toR, = 2.
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SOLUTION 7.8

The schedulability of periodic tasks can be guaranteed biuating the interference by the polling server on
periodic execution. In the worst case, such an interfer&tdge same as the one introduced by an equivalent
periodic task having a period equal 1 and computation time equal tG;. Independently of the number of
aperiodic tasks handled by the server, a maximum time equ@l is dedicated to aperiodic requests at each
server period. The utilization factor of the polling sengiUs; = C,/T, and hence the schedulability of a
periodic set with» tasks and utilizatio/,, can be guaranteed if

U, + Us < (n+1)(2Y/0+D _1)

Thus we need to have

Usg(n+1)(21/(n+1) —1)—Up:(n—|— )(21/ (n+1) Z
i=1

RS

which in this case is
1 2
U, <3213 —1) — £ g ~0328 = Umer — (.3298
SOLUTION 7.9
The tasks and the polling server can be scheduled since weutechthe maximum utilization as

1
TtgtE=0TTs 3243 —1)=0.78

S
I

3 Q
+

P
I

ol N

The schedule is shown is Figure 7.9.1

SOLUTION 7.10

The polling server has peridl, = 6 thus has lower priority with respect t§ and.J,. The time evolution is
given in the following Figure 7.10.1.

Note that the server is preempted bothJyand.J5, so the aperiodic task is finished to be served only after one
period of the server i.eZ; = 6. The server has lower priority, so it runs only aftgrand.J, have terminated.
Attime ¢ = 0 the server is ready to be executed, but since no aperiodis ¢éas waiting the server is suspended.
At t = 3 the aperiodic task is requiring the CPU but it will need totwaitil the polling server is reactivated
i.e., untilt = Ty = 6. At this time the server is ready to handle the request of pleeiadic task, but thg; and

Jo with hlgher prlorlty preempt the server.

Solutions to models of computation I: Discrete-event systaes

SoLUTION 8.1
Let us define the following event alphabet

E= {817 517 52, 527 53, 8_3}
where
s; Is triggered whert; becomes 1

3; is triggered wherb; becomes 0 i =1,2,3.
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Figure 7.9.1: Polling server of Problem 7.9

We consider the following four possible states for the gate
Q@={0,C.R,L}

whereO stands for 'opened’(’ for 'closed’, R for 'raising’ and L for ’lowering’. The transition function is
defined as following

0(0,81)=1L
0(0,51) =0
0(L,59) =C
0(L,sy) =L
§(C,53) =C
0(C,s3) =R
d(R,s2) =0
d(R,52) =R
0(R,s1) = L.

We defined as initial state the stabe and as set of final states
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Figure 7.10.1: Polling server of Problem 7.5

Thus the automaton is
A=(Q,E,0,0)

whereQ), ¥ and) are defined as before. In Figure 8.1.1 is shown the automaton.

S1

O, {u

R~ (o

53

Figure 8.1.1: Control of a gate. Problem 8.1.

SOLUTION 8.2

We consider the following automaton as model of the vendiaghime

A= (Q7E757q07Qm)

where we have the state-space
Q@ = {0, 10,20, 30, 40, 25, 35,45, 0}
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where the stat® denote 'overfull’. The event alphabet is

E ={D,Q}.
The initial state igy = 0 and the set of final states(g,, = {45}. The transition map is
5(0,D) =10
5(0,Q) =25
0(10,D) =20
5(10,Q) =35
9(20,D) = 30
5(20,Q) =45
9(25,D) = 35
0(25,Q) =0
9(30,D) = 40
4(30,Q) = 0O
9(35,D) =45
4(35,Q) =0
5(40,Q) =
4(40,D) = 0.

The automaton is shown in Figure 8.2.1. We can compute thkaddanguage by inspection

QD

Figure 8.2.1: Automatonrl of Problem 8.2.

Ly (A) = {DDQ, DQD, QDD}.

We notice directly form Figure 8.2.1 that the machine wilt dspense soda if the wrong amount of money is
inserted. In that case we can reach the stéew 40 or O from where is not possible to reach the stéieor if
we reach the staté&$ or 35 and we overpay we will not get a soda. Notice that we can coatio insert coins
and the soda will never be dispensed i.e., we have a livelock.

In order to prove it formally we can notice that

DDD € L(A)
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but clearly
DDD ¢ L,,(A).

Thus the automaton blocks.

SOLUTION 8.3

In order to compute the marked language and generated lgagua consider the following notation. LB(“]

be the set of all strings such thai(¢;, z) = ¢;, and if6(¢;, y) = qe, for anyy that is prefix (initial segment)
of z ore, then? < k. That is,Rfj is the set of all strings that take the finite automaton froatesy; to stateg;
without going through any state numbered higher thaiNote that by “going through a state” we mean both
entering and leaving that state. Thus j may be greater thak. It is possible to definé%fj recursively

k k—1( pk—1\ pk—1 k—1
Rij:Rik (Rkk )Rkj URij

and

R {{awqi,a) =g} ti=j
Y Haldlai ) = g5} ifi#

We then have that
Ln(A)= ] Ry

qj €Qm

and

A set of stringstj can be in general represented by tégular expressionsfj, which allows a more compact
notation.
The automaton is formally defined by the following five-tuple

A=(Q,E,5,q0,Qm)

where
Q={q, e}
E=1{0,1}
6(q1,0) = q2
5(q17 1) ={q1
5(q27 O) = q2
5(q27 1) =4q1
qdo = 41
Qm = {QZ}
The first column of the table is computed by inspection canmﬂmther%,
\k:O k=1
Tlfl € €
iy | O 0
r§1 1 1
rhy | e 10
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The second column is computed using the recursive formtiadaced before. In particular we have

iy = () = (e et e=ec
7“%2 = r?l (r?l)*rgz + T?2 =€(e)'04+0=
ry =19 (rfy) 1+ = 1) e+1=1
ray = 190 (1) P + 19 = 1(€)*0 + € = 10

The marked language is then
Ly (A) =11y = 1ri5(r35) 139 + 71y = 0(10)*10 + 0 = 0(10)*
In this case the generated language is
L(A) =7} + 735 = 0(10)*1 + ¢ + 0(10)*

The prefix closurd.,,(A) is

Lm(A) = {s € E*|3t € E*, st € Lin(A)}.

We prove thatl,,(A) = L(A).

Prove L,,(A) C L(A): Letz € L,,(A) then is trivial to see that € L(A).

Prove L,,(A) 2 L(A): Letnowz € L(A). Thenz = {¢,0,010,01010,0101010,...,01,0101,010101,01010101,.. .. }.
The strings inL,,,(A) are0, 010, 01010, 0101010, . . . thus prefixes arée, 0,01,0101,01010,010101,... }
and as we can see thenc L,,(A).

We can conclude thdt,,(A) = L(A), thus the DES is nonblocking.

SOLUTION 8.4

In this case the automaton is
A= (Qv E7 67 q0, Qm)

where
Q={a1,%,q}
E ={0,1}
6(q1,0) = g2
6(q1,1) = g3
8(q2,0) = q1
6(q2,1) = g3
6(g3,0) = 2
8(g3,1) = @2
qo = q1
Qm = {q2, 43}

We apply the recursive formula introduced in the solutioadblem 8.3 to compute the marked language and
the generated language.
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k=0 k=1 k=2
| e € (00)*
riy |0 0 0(00)*
ri |1 1 0*1
rk |0 0 0(00)*
rhy | e e+00 (00)*
rho |1 1+01 0*1
ko0 0 (0 +1)(00)*0
rk, | 0+1 0+1 (0 +1)(00)*
rh | e € e+ (0+1)0"1

Certain equivalences among regular expressions has beénaisimplify the expressions. For example
iy =19, (r?l)*rgz + 19 = 0(e)*0 + e = e+ 00
or, for example for?, we have
i3 = 115(r3s) T3 + rig = 0(e + 00)*(1 4+ 01) + 1
Since(e + 00)* = (00)* and(1 4 01) = (e + 0)1, the expression becomes
iy = 0(00)* (e +0) +1+1
and sincg00)* (e + 0) = 0* the expression reduces to
riy = 00"1 + 1 = 0*1.

We have that
Ly(A) =13 + 7"%3

where

iy = 113(r33) 13y + 1l = 0%1(e + (0 + 1)0*1)"(0 + 1)(00)* + 0(00)*
= 0*1((0 + 1)0*1*) (0 + 1)(00)* + 0(00)*

and
iy =ris (7‘?33)*7”?%1 + i = 0"1(e+ (0 + 1)0*1)*(5 +(0+1)0"1) +071
=0"1((0+1)0*1*)"

Thus we have
Lin(A) =135 + 15 = 0°1((0 + 1)0*1) " (e + (0 4 1)(00)*) 4 0(00)*.

The generated languadg A) is given by
L(A) =1}, +riy+ 715

where
iy = ris(r3s) v +ri = (0°1((0 4 1)0*1)*(0 + 1)0 + €) (00)*
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SOLUTION 8.5

Two stategp andgq are said to bequivalent p = ¢ if and only if for each input string:, §(p, =) is a marked
state if an only ifé(¢q, ) is @ marked place. Two statpsandq are said to be distinguishable if there exists an
x such thav(p, z) is in Q,, andd(q, x) is not.

We build a table as follows

b|X

c|X X

d X X X

e X X X

f| X X X X

g| X X X X X X

h|X X X X X X
a b c¢c d e f g

where an "X’ is placed in the table each time a pari of statemofbe equivalent. Initially an "X’ is placed
in each entry corresponding to one marked state and one adkethstate. It is in fact impossible that a
marked state and a non-marked state are equivalent. In émepd er place an 'X’ in the entrigg, ¢), (b, ¢),
(c,d), (c,e), (¢, f), (¢,g) and(c, h). Next for each pair of statgs and ¢ that are not already known to be
distinguishable, we consider the pairs of states J(p,a) ands = d(q, a) for a input symbok. If statesr
adns have been shown to be distinguishable by some stritiggnp andq are distinguishable by the string:.
Thus if the entry(r, s) n the table has an 'X’, an "X’ is also placed at the enfpyq). If the entry(r, s) does
not yet have an 'X’, then the pafp, ¢) is placed on a list associated with thes)-entry. At some future time,
if (r, s) entry receives and 'X’, then each pair on the list associatitl the (r, s)-entry also receives and 'X'.

In the example , we place and "X’ in the entfy, b), since the entryd(b,1),4d(a,1)) = (¢, f) is already
with "X’. Similarly, the (a,d)-entry receives an "X’ since the entiy(a,0),(b,0)) = (b,c) has an "X'.
Consideration of th€a, e)-entry on input0 results in the paifa, ¢) being placed on the list associated with
(b,h). Observe that on input 1, bothande go to the same statg and hence no string starting with 1 can
distinguisha from e. Because of the O-input, the pdir, g) is placed on the list associated with g). When
the (b, g)-entry is considered, it receives an "X’ on account of a luirgnd(a, g) receives a 'X’. The string 01
distinguishes: from g.

At the end of the algorithm = ¢, b = h andd = f. The minimum automaton is shown in Figure 8.5.1.

SOLUTION 8.6

We can construct a deterministic automaton

A =(Q',{0,1},0, [q0], Q)

acceptingL,,,(A) as follows. The sef) consists of all subsets @f. These we denote witlyo], [¢1], [g0, q1]
and . Since¥(qo,0) = {qo, ¢1} then we have

¢'(l90], 0) = [g0, 1]
and similarly
'([90), 1) = [@] 0'([@1),0) = 0'([¢a]. 1) = [a0, qu].
Naturally,é’(,0) = §'(,1) =. Finally
&' (g0, 1], 0) = [q0, q1]

since
d({q0,q1},0) = 0(q0,0) Ud(q1,0) = {q0, @1 }U = {q0, 1 },
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Figure 8.5.1: Minimum automaton of Problem 8.5.

and similarly we get
5([q07 Q1]) = [q()v Q1]

The final stats ar€)’,, = {[¢1], [q0, ¢1]}.

Solutions to models of computation Il: Transition systems

SOLUTION 9.1

An automatond = (Q, E, J, q0, Q) can be easily described by a transition sys®m= {S, %, —, Ss, S}
where

e The state iS5 = Q.

e The generator set is = E.

e The transition relation is» S x 3 x S = 4.
e The set of starting states & = qo.

e The set of final states ISy = Q.

Therefore, a transition system is just another formal wagetscribe a Discrete Event System

SOLUTION 9.2

The states\ ain M enu, Contacts and Lock M enu of a typical keypad can be modelled by figure 9.2.1.
The transition system is théft- = {S, %, —, Sg, Sr}, where

e S ={MainMenu,Contacts, LockMenu,UnLock}.

e The generator set IS = {menu, contacts, exit, #x}.
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contacts

Figure 9.2.1: Possible states of a Keypad of a cellphone.

e The transition relation is= S x ¥ x S = §, where

d(MainMenu,#x) = LockMenu,

d(MainMenu, contacts) = Contacts ,

e A starting state i = LockMenu.

e Afinal state isSp = LockM enu.

SOLUTION 9.3

The queuing system of figure 9.3 has a generatoEset{a, d}.

A natural state variable is the number of customers in quibus,the state-space is the set of non-negative
integersS = {0, 1,2,...}.

The transition relation is

f(zya)=2z+1 Vo >0
fle,d)y=2—-1 Vo > 0.

The starting state is chosen to be the initial number of customers in the system.
In figure 9.3.1, the transition system representing thecbqistue system is reported. It is evident that the
cardinality of the state is infinite, but it is also countable

a a a
b b b

Figure 9.3.1: A basic queue system.

SOLUTION 9.4
The proof is as follows:
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1. In each iteration the number of elementsRiench; increases by at least 1. Since it can have, at most,
as many elements as S, there can only be as many iterations aarhber of elements in S (minus the
number of elements if).

2. Reach; is the set of states that can be reached in i steps, thus agytistd can be reached in a finite
number of steps must be in one of tReach;.

SOLUTION 9.5
Let Ss = {3}. By applying the reachability algorithm we have

Se =3

Reachy = {3}

Reach; = {1,3,5,6}
Reachs = {1,2,3,5,6}
Reachg = S

Reachy = S
Reachr({3}) =S

Let Sg = {2}. By applying the reachability algorithm we have

Sg =2

Reachy = {2}

Reach; = {2,4,5}
Reachy = {2,4,5}
Reachr({2}) = {2,4,5}
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Part Il

Hybrid control
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Solution to modeling of hybrid systems

SoLUTION 10.1

(a) Let the water level be > 0 m and use four discrete states. Let the thresholds hendz,;;. The
suggested model is illustrated in Figure 10.1.1.

“Pump off”

T < Zpp?

\TZ: 0
“Wait for on”

T>27?

“Wait for off”

“Pump on”

Figure 10.1.1: Hybrid model of the tank and relay contraiteProblem 10.1.
(The variabler is included as a “timer”, used to keep track of how long thaesysstays in the waiting
states.)

(b) The water level decreases 0.02 m=0.04 m while waiting for the pump to turn on. Thus we need to
chooser,,,=0.09 to prevent underfilling. Similarly, choose

Zofp = 0.12 = 2-0.01 = 0.10.

SoLuTION 10.2

We see that can assume” values, called;,i € {0,...,2" — 1}. So we introduceV = 2* discrete states;.
In stateg;, the system has; as constant control signal, illustrated in Figure 10.2.1.

v; ——| P(s) » Q(s) —> u

Figure 10.2.1: Dynamics of staggin Problem 10.2.

When do we switch states? We define the edges as

E = {(qi7Qi+1)a (Qi+17Qi)’i - 07 cee 7N - 2}7

i.e.,, the system can only switch between adjacent states. Thehswgs are controlled by guards and domains.
The guards define when switchingabowed and when the system is outside the domaimustswitch:

G(¢i, gi1) = {u = v; + D/2}
G(gi+1,4i) = {u < vip1 — D/2}
D(¢;)) ={vi—D/2 <u<wv;+D/2}

So the hybrid system can be illustrated as in Figure 10.2.2.
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/

u<wv;—D/2 > u>vy+ D/2

Figure 10.2.2: Control system with quantizer, modeled agaaith system. (Problem 10.2)

SoLUTION 10.3
A hybrid system system modeling the nuclear reactor is shovagure 10.3.1.

x = 510,c1 = c9g = 20

x > 550 andc; > 20 x > 550 andey > 20

= 0.1z — 50
c1=ce¢=1

T < 510 andcy := 0

= 0.1z — 56
¢l =c¢=1

2 = 0.1z — 60
c1=c=1

z < 510 andcy := 0

Figure 10.3.1: The hybrid system for the nuclear reactor

SoLuTION 10.4

We model the system on linear state space form with a coetrol= f(y) and neglect the time for computing
the control signal. (The computing time could otherwise loelated as an extra waiting state between sampling
y(t) and applying the new(¢).) The suggested hybrid model is illustrated in Figure 110.4.

“Execution”

“Computation”
u:= f(Cx)
T7:=0

Figure 10.4.1: The sampled control system in Problem 10.4.

The control law, as well as any quantization effects in th& &/ A/D converters are incorporated infdy).
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SoLUTION 10.5

(@) We need a timer variabteio control the switching, so the full state(is, ). Now the hybrid automaton
can be described &8 = (Q, X, Init, f, D, E, G, R), with

Q={q,q}
X =R?>xRT
Init = ¢; x (0,0)

flap, @, t) = [ A 1 ]T

D(g) = {(z,t)"|t < 1}
E={(q1,9), (22, 01)}

G(q1,42) = G(g2, 1) = {(=, )|t > 1}

T
R((h,(]g,!l?,t) = R(QQ,Q1,ZE,t) = [ z 0 ] :

(b) The trajectory evolves as follows:

eitgg, te0,1)
z(t) = eM2tNg(1), te]l,2)
eMt=22(2), te2,3)

In order to express(¢) as a function ofry we need to derive:(1) andz(2) as functions ofry. We have

and

Combining the two previous equations we have

ety tel0,1)
z(t) = { eA2(t-DeAiy, te(l,2)
eMt=2eA2pdig, e [2,3).

SOLUTION 10.6
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(a) The hybrid automaton is defined Hs= (Q, X, Init, f, D, E, G, R) with

Q={q,9,q3}
X=R
Init =¢1 x0
flg,2) =2
flg2,z) = -1
flgs,z) =z +2
D(q1) ={z € Rlz <5}
D(q2) = {z € R|z > 3}
D(q3) to be defined
E={(q1,92), (92,43)}
G(q1,¢2) = {= € Rlz > 5}
(¢2,93) = {w € Rjz < 3}
(01,92, ) =
(92, q3,7) = —2

o~ @D

R

(b) In order for the hybrid automaton to be live we need to emghat the domainD(q3) contains the
trajectory of the systenmi = x + 2 with initial conditionzy = —2. But

To=-2=i=-2+2=0,

so the state will stay constant. Thus all domains that flfill= 2} € D(q3) guarantee liveness of the

system.

(c) The state-trajectory of the hybrid system is shown inuFedL0.6.1, wherey = 0, i, = 2.5 andm, = 4.5.

q3
q2
q1

,,,,,,,,,,,,,,,

-2

Figure 10.6.1: Trajectory of the hybrid system in Problen610

Solutions to stability

SoLuTION 11.1

of hybrid systems
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(a) A possible solution ig7 = (Q, X, Init, f, D, E, G, R) where

Q={q}

X =R?andz = (1)1,1)2,1)3)T
Init = ¢ x (1,0,0)

f(g,x) = (0,0,0)"

D(q) ={z € R3|v1 <wy <ws}

E={(¢q,9)}

G(q,q) = {x € R3|v; > v} U {z € R3|vy > v3}

V1 + v v+ V2

2 72

V9 + v3 v + vg
2 72

, U3
R(q,q,x) =

U1,

if v1 > v9

if vy > U3

(b) The collisions result in the following evolution for tltentinuous state:

11 111 331

(17070) - (57 57 0) - (57 Z» Z) -

88 4

which constitute a infinite sequence. We have that the solusi Zeno since it has an infinite number of
discrete transitions over a finite time interval, which irstbase is a zero time interval.

(b) Sincevi(;) — v3(;) = 27° — 0 asi — oo andvy(7e) = V2(7o0) = v3(7o0), it follows that the
accumulation point is (1/3,1/3,1/3). The physical intetption is that after an infinite number of hits, the
balls will have the same velocity (equal to one third of thdahvelocity of ball 1).

SOLUTION 11.2
We can consider the following Lyapunov function:

1
V(z)=zzlz
It is an acceptable candidate, since
V(z) =20,
with equality only atz = 0. We then have
. -1 0
V=uTi=0"Az = (wl To xg) 0 -1
-2 -3

which gives

2 1
3 )
—2 xr3

Viz)=—2? — 23— 222 <0 Va # 0

Thus we can conclude that the system is asymptoticallyestabl
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SOLUTION 11.3

Let P be a positive definite symmetric matrix which satisfies
ATP+PA=—Q.

Then the functior// (z) = z” Pz is a positive definite function. Let us computéz)

: d
V(z) = a(a:TP:E) = i Pr+ 2T Pi = 2T AT Pr + 2T PAx = 27 (ATP + PA)z = —27 Qu.

ThusV(az) is negative definite. For Lyapunov’s stability criteria wancconclude that the system is asymptoti-
cally stable.

SOLUTION 11.4

Let us consider the following Lyapunov function

Let us compute the time derivative bf(z). We have

V(w) = X111 + Xl = —UC% - 95% + x19(22) + 22h(71)
§ —X1 — To + §ZL'1|:L'2| + §ZL'2|:L'1|
< —af — 25 + |z122|

1
= —5(95% +a3)
where we used|z| — |z2])? > 0, which gives|z zo| < 3(2% + 23). Thus
V<0 Vr#0

thus the system is asymptotically stable. Notice that weataneed to know the expressions fgr) andh(.)
to show asymptotic stability.

SOLUTION 11.5
(a) Depending on the sign af or x5 we have four systems. if; > 0 andz, > 0 then we have

iy =-1+2=1
ig=-2—-1=-3

If 1 < 0andxzy > 0then we have

T1=14+2=3
To=2—-1=1

If ;1 < 0andxy < 0then we have
T1=1-2=-1

To=24+1=3
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I

Figure 11.5.1: A trajectory of the system in Problem 11.5¢ @bt represents the initial state.

If z1 > 0 andxy < 0 then we have

rp=—-1-2=-3
—24+1=-1

Tg =

A trajectory is represented in Figure 11.5.1. We can theressmt the discontinuous system as a hybrid
system with four states. Formally we hakfle= (Q, X, Init, f, D, E, G, R) with

whereqy depends on the staig.

Q = {QI>Q2>Q27 Q4}
X =R?

Init = go x (x10, 720),

flq,z) = (1,-3)T

flag,2) = (3, 1)7

flgz,z) = (—-1,3)T

flaa, ) = (=3, =17

D(q1) = {z € R?|z; > 0,29 > 0}

D(g) = {z € R¥z; < 0,29 > 0}

D(g3) = {z € R*|z; < 0,29 < 0}

D(qs) = {z € R?|z; > 0,25 < 0}
(

We still need to define the set of edgEsand the guardés. Since a trajectory of the given discontin-
uous system is always such that from the 1st quadrant it movée 4th and then 3rd and 2nd (see
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Figure 11.5.1), the set of edges is then

E={(q1,q4), (94, 43); (a3, 92), (g2, q1) }-

The guards are

G(q1,q1) = {z € R?|zy < 0}
G(qs, 3) = {z € R?|z; < 0}
G(q3,q2) = {x € R?|zy > 0}
G(q2, 1) = {x € R?|z; > 0}.

(b) We can notice that for any initial conditior:(0) # 0) a solution of the hybrid system will look like a
'spiral’ which is moving towards the origin. As we approatle brigin the number of switches increases,
until we have an infinite number of switches in finite time. $hue have Zeno behavior.

SOLUTION 11.6
Consider the Lyapunov function candidate
V(z) = zx*

For bothqg = 1 andg = 2 it holds that
V(z) =zi = a2 <0,

with equality only forz = 0. ThenV(x) is a common Lyapunov function for the switched system, ansl it
asymptotically stable.

SOLUTION 11.7
The matricesd; and A, commutej.e.

3 0

Aidy = [ 0 10

] — AyA,.

Further, they are both diagonal, which means that the eaiees are the diagonal elements. All eigenvalues
are negative, so each matrix is asymptotically stable.

If the system matrices commute and are asymptotically estéioén the switched system is also asymptoti-
cally stable.

SOLUTION 11.8
1st method The second component of the stateatisfies
(iz = —CqT2

whereq = {1,2}. Thereforer,(t) decays to 0 asymptotically at the rate correspondingito{c;, c2}.
The first component of satisfies the equation

T = —aqx1 + bql’g.

This can be viewed as the asymptotically stable system —a,x, excited by a asymptotically decaying
input b,z2. Thusz; also converges to zero asymptotically.

120



2nd method A second way to show that the switched system is asymptigtisible consists in constructing
a common Lyapunov function for the family of linear systely. In this case it is possible to find a
quadratic common Lyapunov function
V(z) = 2T Px

with P = diag(dy, d2) with dy, ds > 0, sinceP must be positive definite. We then have

—(ATP 4+ PA) = <2d1“q _dlbq>

=1,2
—dyby  2dscq =5

To ensure that this matrix is positive definite we candix> 0 and then choosé, > 0 large enough so
that
Adydiageq + dibl > 0, g=1,2.

Thus this concludes the proof.

SOLUTION 11.9

(a) To model the system as a switching system, we introduiceex variabler:

T = A

F=1,
whereq € {1,2} and

1
le{x,7'|ke§7'<(k+§)e,k:0,1,...}

1
Q2:{x,7'|(k‘—|—§)e§7'< (k+1e,k=0,1,...}.

(b) A corresponding hybrid automatonis = (Q, X, Init, f, D, E, G, R), with

Q= {q1, ¢}

X =R" x RT ( state vector(z, 7)7)
Init = ¢ x (mo,to)T

flar,2,m) = (A, )T

f(az,2,7) = (Aga, )T

D(q) ={z,7|T <€/2} Vg € Q
E={(q1,9), (%2, q1)}

G(e) ={z,7|T > €¢/2}Vee E
R(e,z,7) = (x,0)T Ve € E.

Note that here we let be reset at every switching instant, to simplify the system.
(c) Ifthe system starts in = ¢, with z = x( att = to, we get
z(to 4 €/2) = e/ %y

and
z(tg + €) = eA2/2eM 2.
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(d) We use the definition of the matrix exponential:
e = T+ Ae + A%E + O(&%)
This allows us to write
eA2¢/2eMV2 — (T4 Age/2+...) (I 4 Are/2+...)
— T4 (A + A9)/2 + As A2 /A + ...~ {ase >0 ) me T e

So for fast switching (smad), the system behaves like the average of the two subsystems.

SOLUTION 11.10
We choose&) = I and test if

p1 O
P =
[0 p2]

solves the Lyapunov equation

T _ —2p1 0 o —1 0
paceap= e 0 [ 0]

Apparently it does, if we choosg;, = 1/2 andp, = 1/4. SoV(z) = 2T Pz is a Lyapunov function for
system 1. Does it also work for system 27?

V(z) =i P+ 2T Pi = 2T AyPx + 2T PAgx

7| -3 0
=z { 0 —5/2 r <0V,

with equality only forz = 0. SoV (z) is a common Lyapunov function for systems 1 and 2 and the bedkc
system is asymptotically stable.

SOoLUTION 11.11
(a) Without loss of generality we can consider a positivertdefimatrix P in the form

()

ATP+PA <0 Vg

Assume the matri¥’ satisfies

then forq = 1 we have

2—-2 2q+1—1r
AT p _ _ q q
AP =P <2q+1—r 2q+2r>

and this matrix is positive definite only if
qg<1

(r —3)2
8

8¢ +1+r2—6r<0=¢*+ <1 (0.0

Similarly for the other matrix we have

_ 4 _
—A§P—PA2:< 2-3 2q + 10 1O>

20+ 10 — & 20 + 2r
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which is a positive definite matrix if

q <10
(r — 300)2
800

The inequalities 0.0 and 0.0 represent the interiors of tlijgsseids As can be seen in Figure 11.11.1 the
two ellipsoids do not intersect.

6007 — 800¢% — 1000 — 12 = ¢° + < 100. (0.0)

100(3 — V8) ~ 17

J)
3+ VB~ /O

Figure 11.11.1: Ellipsoids representing the inequalif@®6) and (0.0).

(b) We would like to show that the system is however asymgaiti stable. In order to do that, since the
switching is arbitrary, we consider a 'worst-case-switicfii which we define as follows. The vectors
Az and A;x are parallel on two lines which pass through the origin. bhsilines define a switching
surface, we then choose to follow the trajectory of the vefitdd which is pointing outward, so that
we have a 'worst-case-switching’, in the sense that it shoubve away from the origin. The situation
is shown in Figure 11.11.2. The switching surface can bedaoiving the equation which describes
collinearity

(A1) x (A22) =0

which gives the equation
(—wl — xg)(O.lxl — 1’2) + ($1 — 1’2)($1 + 10$2) =0.
The equations of the two lines are

o = 1.181’1
o = —0.08$1.

In order know which of the two vectors is pointing outward vee cletermine wheA;z) x (Asz) > 0
which gives that between the line0.08z; and1.18z, the vectorsdsx are pointing outward. We now
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Alx

Figure 11.11.2: Worst case switching in Problem 11.11

need to show that the trajectory is converging toward thgimri Let us consider, for example, the
following initial condition
xo = (100, —8)

which is a point on the switching surface = —0.08x;. The trajectory follows the vector field, x and
intersects the next switching surface at the point

z1 _ AT
(1.18951)_6 o

which in our case is the point with coordinat@s, 29.5). Then the trajectory is given by the vector field
Asx and the intersection point with the switching surface-i86.3, 6.8). The next pointig—21.7, —25).

The next point is the intersection of the trajectory with #wdtching surface that contained the initial
conditionz,. We have the intersection &5, —2). Thus after one rotation we have that the distance
of the trajectory to the origin is decreased from 100.1 td 25 hus the system converges to the origin
considering the 'worst-case-switching’.

SOLUTION 11.12

(a) Use the same ideas as in Problem 11.11.

(b) Let us consider the following two positive definite symritematrices

1 0 10 0
P1—<0 3> and Pg—(o 3>

If we consider the following Lyapunov equations

T
AP+ PA q=1,2
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we have

10 7
ATP +PA = - (7 12) =@

—40 20
AT Py 4+ PyAy = ( 20 12) = Q2

Since the matrice§); and@, are symmetric matrices and the eigenvaluessd€g;) = {—3.9, —18.1}
ando(Q2) = {—1.6,—50.1}, the two matrices are negative definite. Thus the two lingatesns are
asymptotically stable.

Let us consider the two Lyapunov functions

Vi = acTle

Vo = 27 Pyx.

In order to prove stability using the Lyapunov function aggarh we need to prove that the sequence

{Vo(a(mi,))}
is non-decreasing. In this case we can notice that we hawentibehing whenz, changes sign. We can
notice that
lim Va(x) = 323
Jim Vo) = 33
and

lim Vi(z) = 323
r1—0"

Thus the two Lyapunov function form a continuous non-insieg function, see Figure 11.12.1.

~

-t
| | | | | |
q:l\q:Q\q:l\q:Q\q:l\q:Q\

Figure 11.12.1: Multiple Lyapunov functions for Problem 12

Solutions to verification of hybrid systems

SoLUTION 12.1

The trajectories of the linear system are shown in Figur&.12It easy to prove that no trajectories intersects
the Badset.
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Figure 12.1.1: Trajectories of the linear system in Probléni.

Q3

92

i
NV

Figure 12.3.1: State-space patrtition for the system inlernoli2.3
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Figure 12.3.2: Trajectories of the linear system in Prohlens.

SOLUTION 12.3

The partition of the state-space is shown in Figure 12.3.1.

(@)

(b)

(©

Let us consider the system in the regfon It is easy to determine a linear state feedbagle) = K3z
which places the poles im = p, = —1, since the system is controllable. The feedback contrai Fai
in this case

Notice that if we uses as controller for the system 2 we have a closed loop stabteraywith poles

1

p1=-3 pgz—g.

Notice moreover that the closed loop system for system 3Hesduilibrium point in(—1/3,0) since

the closed loop system is
i 0 —1\ (=1 n 0
2 )\ ~1

This means that all trajectories starting(s will go towards(—1/3,0), which is in€2;. Hence they will
enterQ)y, which also is stable witli0, 0) as equilibrium. Thus the trajectory will ent&;. An example
of trajectories is shown in Figure 12.3.2.

If B; = (0,1)7 then as you can notice the dynamics in the@gt= {||z|| > 3} is the negative of the
dynamics inQ2; (modulo a bias term that only makes the equilibrium diff€reTherefore is we use
the linear controllelys computed in (a), this will not make the system 1 stable. Tiugspeed to use a
different controller for the two regions.

A simple choice to stabilize the system 1 is a feedbackrober that place the poles i = ps = —1.
Such controller controller for the system 1 is Let the cdigro

= (5 ) ()
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x =510,c¢1 = co =20

x > 550 andc; > 20 x > 550 andce > 20

= 0.1z — 50
¢l =c¢=1

i =0.1r — 56 T < 510 andC1 =0

c1=ce¢=1

x > 550 andey := 0

Figure 12.4.1: The hybrid system for the nuclear reactor

Notice that that controllerg, and g3 place the poles of the systems 1 and $in= p, = —1. Both
controllers stabilizes the system(i, since the closed loop for the system 2, wlggiis used, has poles
in

pr=-3 p2=-1/3

and usingy; the poles are
— 11447

P12 = 3

thus a possible control strategy is

gs(x) otherwise

o(&) = {91(96) i o]l < a

with 1 < o < 3, which means that we can use eitlgeror gs in any subset of the regidn,.

(d) If the bad region corresponds f then we need to avoid the trajectory to go entef2inat all. One
possible solution is to design a control lamv such that the eigenvalues of the closed loop system for
system 1 are placed jm » = =£i. In this way we have that the trajectories are confined in@ecivith
radius 1.

SOLUTION 12.4
A hybrid system system modeling the nuclear reactor is shovagure 12.4.1.
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Sr

Figure 13.1.1: The resulting quotient transition systémwhich is bisimular tcr".

Solutions to simulation and bisimulation

SoLuTION 13.1

We use the bisimulation algorithm, and start by defining thetignt transition system &= {5, 3, =, Sy, Sr}.
Further, letPre, (P) denote all states from which we can get?an one transitioro.

We initialize the algorithm by letting; = {q1,...,q5} and$ = {So, SF,S1}. Now there areP; = S,
P, = Sp ando = b such that

Py (\Prey(P2) = {qu, g2} # 0.
Thus we must partition the sét :

Ry = P |Prey(P2) = {q1, 92}
Ry = P\Prey(Ps) = {q4, 05}
S = S\Pl ﬂ{Rl,RQ} = {SO,SF,RLRQ}

Now there are no mor&;, P, ando that fulfill the criterion in the algorithm, so it terminateBhe resulting
guotient transition systeffi is given in Fig. llI.
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