EP2200 Queueing theory and teletraffic systems

Summary

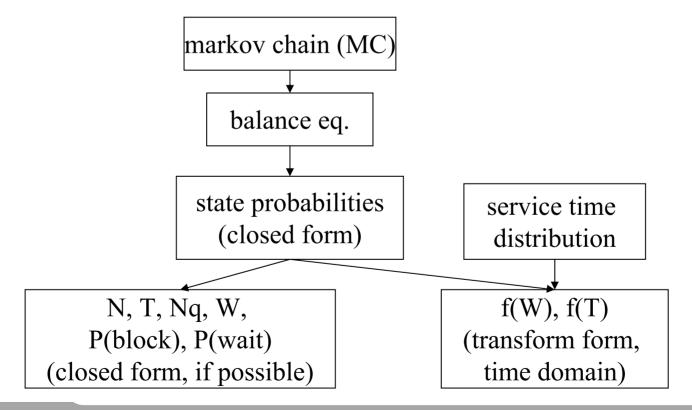
Viktoria Fodor KTH EES/LCN

Course content

- Markov-processes tool to analyze queuing systems
- Markovian queuing systems (M/M/*/*/*)
- Semi-Markovian queuing systems (M/*/1)
- Queuing networks
- Knowledge on different levels, e.g.,
 - M/M/1
 - derive the waiting time distribution
 - analyze similar systems
 - M/G/1
 - apply the P-K transform equations for different service time distributions

Markov-process

- Definition of continuous time Markov chain and the memoryless property
- Continuous time Markov-chains
 - state probability distribution in steady state matrix equation
 - balance equations derivation from the matrix equation
 - application for continuous time stochastic systems
- What "state probability in steady state" means (for ergodic systems)?
 - statistical average: consider the process at arbitrary point of time, what is the probability that the process is in state k
 - time average: consider one process for a long time, what fraction of time the process is in state k
- Poisson process and B-D process as special cases

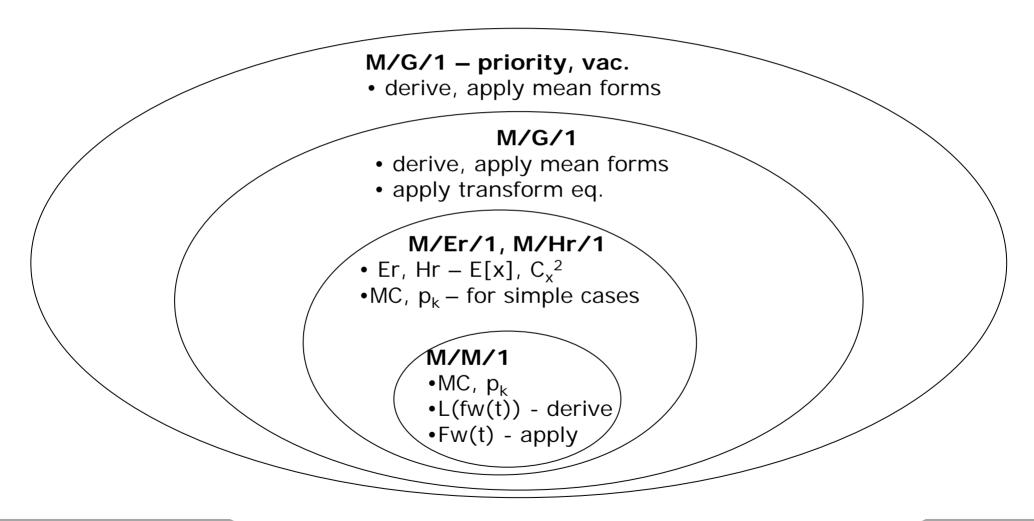

Queuing systems

- General results
 - Kendall notation application
 - Little's result no proof but application
 - Definitions of offered load and utilization

- Markovian queuing systems
- Semi-markovian queuing systems
- Queuing networks

Markovian queuing systems – M/M/*/*/*

- Can be represented with continuous time MC
 - state: number of customers in the system
- Performance in steady state


Markovian queuing systems – M/M/*/*/*

server = m	System capacity		
(m=1 spec. case)	infinite	S	= servers
Infinite population	n M/M/m •MC, p _k •P(wait) -Erlang-C —Erlang table •L(f _w (t)) - derive •F _w (t) - apply	M/M/m/S (M/M/1/S) •MC, p _k •P(blocking)	M/M/m/m •MC, p _k •P(block) -Erlang-B -Erlang table -general result!
Finite population	Not covered, you have to be able to do it on your own.	Not covered, you have to be able to do it on your own.	M/M/m/m/C Engset loss system •MC, p _k
	Time blocking	≠ call blocking	time blocking and call blockingeffective load

Markovian queuing systems – M/M/*/*/*

- Time blocking: fraction of time the system spends in blocking state = P(the system is in blocking state)
- Call blocking: ratio of calls arriving when the system is in blocking state
 - Equal to time blocking for Poisson arrivals with state independent intensity – due to the PASTA property
 - Not equal to time blocking in other cases e.g., in the case of finite population, when the arrival intensity is state dependent.

Semi-Markovian queuing systems M/Er/1, M/Hr/1, M/G/1, vacation, priority

Markovian queuing networks

- Tandem queues
 - output process of M/M/1 proof
 - product form solution reasoning
- Open queuing networks
 - independence of queues reasoning
 - application

Announcements

- Liping and John will have consultation:
 - Tuesday, Dec. 13, 10-12am in his office
 - Osquldas väg 10, B-230 (Lab 2), floor 2
- Final exam
 - Allowed aids are the Beta mathematical handbook and a calculator
 - Formula sheet enclosed with the exam, also Erlang tables and Laplace forms if needed
 - Five problems of 10 points each
 - Fx: Complementing by end of February
- Project
 - With questions: Liping
 - Deadline: January 13
- Home assignments
 - some where missing... contact me if you have not submitted home assignment
- Course evaluation
 - Available on the web
 - Initiative: exam results will be registered once 15 course evaluations have arrived