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Course outline

e Stochastic processes behind queuing theory (L2-L3)
— Poisson process

— Markov Chains
e Continuous time

e Discrete time

— Continuous time Markov Chains and queuing Systems
e Markovian queuing systems (L4-L7)
e Non-Markovian queuing systems (L8-L10)
e Queuing networks (L11)




Outline for today

e Recall: queuing systems, stochastic process
e Poisson process - to describe arrivals and services
—properties of Poisson process

e Markov processes — to describe queuing systems

—continuous-time Markov-chains
e Graph and matrix representation

e Transient and stationary state of the process




Recall from previous lecture

e Queuing theory: performance evaluation of resource sharing
systems

o Specifically, for teletraffic systems

e Definition of queuing systems

e Performance triangle: service demand, server capacity and
performance

e Service demand is random in time — theory of stochastic
processes
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Stochastic process

e Stochastic process

— A system that evolves — changes its state - in time in a random
way

— Random variables indexed by a time parameter
e Continuous or discrete time N

e Continuous or discrete space

— State probabilities: W
¢ limiting state probabilities Y
e stationary process

e ensemble and time average / /

e ergodic process
time average €nsemble average

NI

f . (t) =P(X()=Xx), F(t)=P(X(t) <x)
f,=limP(X(t)=x), F,=limP{X()<x}
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Poisson process

e Poisson process: to model arrivals and services in a queuing system
o Definition:
—Stochastic process - discrete state, continuous time
-X(t) : number of events (arrivals) in interval (0-t] (counting process)
—-X(t) is Poisson distributed with parameter At
k
PX® =K) = ()= e, EIX@]= At

- is called as the intensity of the Poisson process
—-note, limiting state probabilities p,=lim,_ . p.(t) do not exist

p«(t): Poisson distribution
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Poisson process

Def: The number of arrivals in period (0,t] has Poisson distribution with
paramteter At, that is: )
(A"
kl

P(X(t) =k) = p,(t) =

Theorem: For a Poisson process, the time between arrivals (interarrival time) is
exponentially distributed with parameter A:
— Recall exponential distribution:

f(t)=2e"", F(t)=P(r<t)=1-e™, E[r]=12
- Proof:

P(r <t) = P(at least one arrival until t)=1—P(noarrival until )=1—e™*

Pi(t): Poisson distribution _ Exp(L)
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number of arrivals | ——, | interarrival time
Poisson distribution | = = — - | exponential




Exponential distribution and
memoryless property

o Def: a distribution is memoryless if:
P(z>t+s|z>5s)=P(r >1)

e Exponential distribution:
f(t)=2e", F(t)=P(r<t)=1-e”, F{t)=P(z>t)=e"

e The Exponential distribution is memoryless:
P(c>t+s,z>s) P(zr>t+s)

P(r>t+s|z>5s) =
P(r>5) P(z > 9)

e—/l(t+s)

——=e " =P(r>t)
€




Poisson process and exponential
distribution

e Poisson arrival process implies exponential interarrival times
e Exponential distribution is memoryless

number of arrivals | —_, | interarrival time
Poisson distribution | < = = - | exponential

e For Poisson arrival process:
the time until the next arrival does not depend on the time

spent after the previous arrival

Poisson arrival (1)
£ S
/ N EXp(}M) t

We start to follow the system from this point of time
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Group work

Waiting for the subway:
e Subway arrivals can be modeled as stochastic process

e The mean time between subway arrivals is 10 minutes. Each
day you arrive to the station at a random point of time. How
long do you have to wait in average?

Consider the same problem, given that
a) Subways arrive with fixed time intervals of 10 minutes.
b) Subways arrive according to a Poisson process.




Properties of the Poisson process
(Problem set 2)

1. The sum of Poisson processes is a Poisson process
— The intensity is equal to the sum of the intensities of the summed
(multiplexed, aggregated) processes
2. A random split of a Poisson process result in Poisson subprocesses
- The intensity of subprocess i is Ap,, where p; is the probability that
an event becomes part of subprocess i
3. Poisson arrivals see time average (PASTA) — we prove later

— Sampling a stochastic process according to Poisson arrivals gives
the state probability distribution of the process (even if the arrival

changes the state)
— Also known as ROP (Random Observer Property)
4. Superposition of arbitrary renewal processes tends to a Poisson
process (Palm theorem) — we do not prove
— Renewal process: independent, identically distributed (iid)
inter-arrival times
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Markov processes

e Stochastic process

e The process is a Markov process if the future of the process depends on the
current state only - Markov property

- P(X(tn+1)=j | X(tn)=i/ X(tn-1)=ll LV X(t0)=m) = P(X(tn+1)=j | X(tn)=l)
- Homogeneous Markov process: the probability of state change is unchanged

by time shift, depends only on the time interval
P(X(tn+1)=j | X(tn)=i) = pij(tn+1-tn)
e Markov chain: if the state space is discrete

- A homogeneous Markov chain can be represented by a graph:

e States: nodes

e State changes: edges




Continuous-time Markov chains
(homogeneous case)

e Continuous time, discrete space stochastic process, with Markov
property, that is:

I:)(X(tn+1)= J | X(tn)=i’X(tn—1)=|!“°x(t0)=m):
P(X(tn+1)= J | X(tn):l)’ 1:0 <1:1<‘°'<tn <tn+1

e State transition can happen in any point of time

o Example:
— number of packets waiting at the output buffer of a router
— number of customers waiting in a bank

e The time spent in a state has to be exponential to ensure Markov
property:
— the probability of moving from state j to state j sometime between

t, and t,,; does not depend on the time the process already spent
in state / before ¢t,.




Continuous-time Markov chains
(homogeneous case)

e State change probability: P(X(t,,;)=] | X(t,)=I) = p;(t,+1-t,)
e (Characterize the Markov chain with the state transition rates instead:

P(X(t+42) = j|X(t) =1)

g.= lim i« j - rate (intensity) of state change

Va0 2
G =— X jj - defined to easy calculation later on
JEa

e Transition rate matrix Q:

_CIoo Qo1 Qom ] C|01=4 14
Q=| . q @‘9 Qz[@ —6]
(M-1)M
_CIMo o Oumoy SIVIY | d,0=06




Stationary solution (steady state)

e Def: stationary state probability distribution (stationary solution)
- p= !I_To p(t) exists
- p is independent from p(0)

e The stationary solution p has to satisfy:

P(t)Q=dZ—§t):0’ D pit)=1 _qf)o T Qov
. Q=| °
Note: the rank of Qyy is M-1! Am-1ym
_qMO qM(M—l) SIVIY |
=4
- [pO’ pl] w4 — [O’O]’ P+ P, =1
© L 6 -6
d10=6 P, =06, p, =04




Summary

e Poisson process:
- number of events in a time interval has Poisson distribution
- time intervals between events has exponential distribution
— The exponential distribution is memoryless
e Markov process:
— stochastic process
— future depends on the present state only
e Continuous-time Markov-chains (CTMQC)
— state transition intensity matrix
e Next lecture
— CTMC transient and stationary solution
- global and local balance equations
— birth-death process and revisit Poisson process
— Markov chains and queuing systems
— discrete time Markov chains




