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Course outline 

• Stochastic processes behind queuing theory (L2-L3) 

– Poisson process 

– Markov Chains 

• Continuous time 

• Discrete time 

– Continuous time Markov Chains and queuing Systems 

• Markovian queuing systems (L4-L7) 

• Non-Markovian queuing systems (L8-L10) 

• Queuing networks (L11) 
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Outline for today 

• Recall: queuing systems, stochastic process 

• Poisson process – to describe arrivals and services  

–properties of Poisson process 

• Markov processes – to describe queuing systems 

–continuous-time Markov-chains 

• Graph and matrix representation 

• Transient and stationary state of the process 
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Recall from previous lecture 

• Queuing theory: performance evaluation of resource sharing 
systems 

• Specifically, for teletraffic systems 

 

• Definition of queuing systems  

• Performance triangle: service demand, server capacity and 
performance 

 

• Service demand is random in time  theory of stochastic 
processes 

Service 

Arrival 

Blocking 
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Stochastic process 
• Stochastic process 

– A system that evolves – changes its state - in time in a random 
way 

– Random variables indexed by a time parameter  

• Continuous or discrete time 

• Continuous or discrete space 

– State probabilities:  

• limiting state probabilities  

• stationary process 

• ensemble and time average 

• ergodic process 

ensemble average time average 
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Poisson process 

• Poisson process: to model arrivals and services in a queuing system 

• Definition: 

–Stochastic process – discrete state, continuous time 

–X(t) : number of events (arrivals) in interval (0-t] (counting process) 

–X(t) is Poisson distributed with parameter t 

 

 

 

– is called as the intensity of the Poisson process 

–note, limiting state probabilities pk=limt∞ pk(t) do not exist 

 

 pk(t): Poisson distribution 
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• Def: The number of arrivals in period (0,t] has Poisson distribution with 
paramteter t, that is: 

 

 

• Theorem: For a Poisson process, the time between arrivals (interarrival time) is 
exponentially distributed with parameter : 

– Recall exponential distribution: 

 

 

– Proof: 
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number of arrivals 

Poisson distribution 

interarrival time  

exponential 

pk(t): Poisson distribution 

0 t k events  

Exp() 
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• Def: a distribution is memoryless if: 

 

 

• Exponential distribution: 

 

 

 

• The Exponential distribution is memoryless: 

 

   

 

Exponential distribution and  
memoryless property 
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• Poisson arrival process implies exponential interarrival times 

• Exponential distribution is memoryless 

 

 

 

 

• For Poisson arrival process:  
the time until the next arrival does not depend on the time 
spent after the previous arrival  

Poisson process and exponential 
distribution 

number of arrivals 

Poisson distribution 

interarrival time  

exponential 

We start to follow the system from this point of time  

EP2200 Queuing theory and teletraffic 
systems 

Poisson arrival () 

Exp() t 
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Group work 

Waiting for the subway:  

• Subway arrivals can be modeled as stochastic process 

• The mean time between subway arrivals is 10 minutes. Each 

day you arrive to the station at a random point of time. How 

long do you have to wait in average? 

 

Consider the same problem, given that 

a) Subways arrive with fixed time intervals of 10 minutes. 

b) Subways arrive according to a Poisson process.  
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1. The sum of Poisson processes is a Poisson process 

– The intensity is equal to the sum of the intensities of the summed 
(multiplexed, aggregated) processes 

2. A random split of a Poisson process result in Poisson subprocesses 

– The intensity of subprocess i is pi, where pi is the probability that 
an event becomes part of subprocess i  

3. Poisson arrivals see time average (PASTA) – we prove later 

– Sampling a stochastic process according to Poisson arrivals gives 
the state probability distribution of the process (even if the arrival 
changes the state) 

– Also known as ROP (Random Observer Property) 

4. Superposition of arbitrary renewal processes tends  to a Poisson 
process (Palm theorem) – we do not prove 

– Renewal process: independent, identically distributed (iid)  
inter-arrival times 

Properties of the Poisson process 
(Problem set 2) 
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Markov processes 

• Stochastic process  

• The process is a Markov process if the future of the process depends on the 

current state only - Markov property 

– P(X(tn+1)=j | X(tn)=i, X(tn-1)=l, …, X(t0)=m) = P(X(tn+1)=j | X(tn)=i) 

– Homogeneous Markov process: the probability of state change is unchanged 

by time shift, depends only on the time interval   

P(X(tn+1)=j | X(tn)=i) = pij(tn+1-tn) 

• Markov chain: if the state space is discrete  

– A homogeneous Markov chain can be represented by a graph: 

• States: nodes 

• State changes: edges 1 0 M 
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Continuous-time Markov chains 
(homogeneous case)  

• Continuous time, discrete space stochastic process, with Markov 
property, that is: 

 

 

 

 

• State transition can happen in any point of time 

• Example:  

– number of packets waiting at the output buffer of a router 

– number of customers waiting in a bank 

 

• The time spent in a state has to be exponential to ensure Markov 
property: 

– the probability of moving from state i to state j sometime between 
tn  and tn+1 does not depend on the time the process already spent 
in state i before tn. 
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Continuous-time Markov chains 
(homogeneous case)  

• State change probability: P(X(tn+1)=j | X(tn)=i) = pij(tn+1-tn) 

 

• Characterize the Markov chain with the state  transition rates instead: 
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          - rate (intensity) of state change 

 

- defined to easy calculation later on   
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• Def: stationary state probability distribution (stationary solution)  

–                   exists 

– p is independent from p(0) 

• The stationary solution p has to satisfy: 

 

 

 

Note: the rank of QMM is M-1! 
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Summary 

• Poisson process: 

– number of events in a time interval has Poisson distribution 

– time intervals between events has exponential distribution 

– The exponential distribution is memoryless 

• Markov process: 

– stochastic process 

– future depends on the present state only 

• Continuous-time Markov-chains (CTMC) 

– state transition intensity matrix 

• Next lecture 

– CTMC transient and stationary solution 

– global and local balance equations 

– birth-death process and revisit Poisson process  

– Markov chains and queuing systems 

– discrete time Markov chains 

 

 


