EP2200 Queuing theory and teletraffic systems

2nd lecture

Poisson process Markov process

Viktoria Fodor KTH Laboratory for Communication networks, School of Electrical Engineering

Course outline

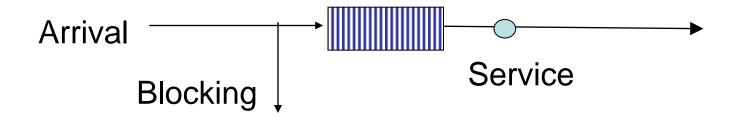
- Stochastic processes behind queuing theory (L2-L3)
 - Poisson process
 - Markov Chains
 - Continuous time
 - Discrete time
 - Continuous time Markov Chains and queuing Systems
- Markovian queuing systems (L4-L7)
- Non-Markovian queuing systems (L8-L10)
- Queuing networks (L11)

Outline for today

- Recall: queuing systems, stochastic process
- Poisson process to describe arrivals and services
 –properties of Poisson process
- Markov processes to describe queuing systems
 –continuous-time Markov-chains
- Graph and matrix representation
- Transient and stationary state of the process

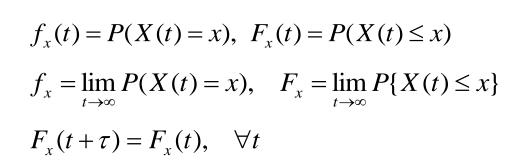
Recall from previous lecture

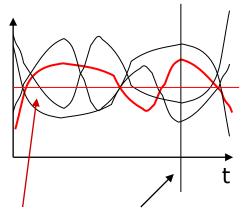
- Queuing theory: performance evaluation of resource sharing systems
- Specifically, for teletraffic systems
- Definition of queuing systems
- Performance triangle: service demand, server capacity and performance
- Service demand is random in time → theory of stochastic processes



Stochastic process

- Stochastic process
 - A system that evolves changes its state in time in a random way
 - Random variables indexed by a time parameter
 - Continuous or discrete time
 - Continuous or discrete space
 - State probabilities:
 - limiting state probabilities
 - stationary process
 - ensemble and time average
 - ergodic process





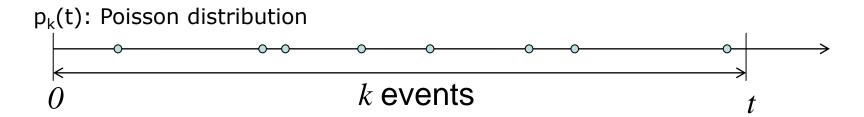
time average ensemble average

Poisson process

- Poisson process: to model arrivals and services in a queuing system
- Definition:
 - -Stochastic process discrete state, continuous time
 - -X(t): number of events (arrivals) in interval (0-t] (counting process)
 - -X(t) is Poisson distributed with parameter λt

$$P(X(t) = k) = p_k(t) = \frac{(\lambda t)^k}{k!} e^{-\lambda t}, \quad E[X(t)] = \lambda t$$

- $-\lambda$ is called as the intensity of the Poisson process
- -note, limiting state probabilities $p_k = \lim_{t\to\infty} p_k(t)$ do not exist



Poisson process

• Def: The number of arrivals in period (0,t] has Poisson distribution with parameter λt , that is:

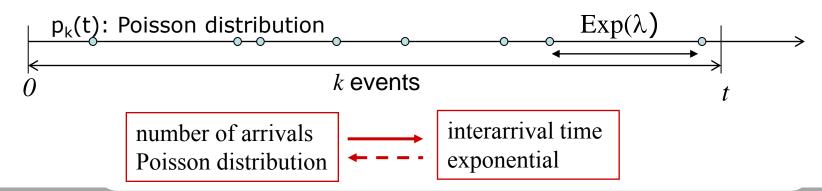
$$P(X(t) = k) = p_k(t) = \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$

- Theorem: For a Poisson process, the time between arrivals (interarrival time) is exponentially distributed with parameter λ:
 - Recall exponential distribution:

$$f(t) = \lambda e^{-\lambda t}$$
, $F(t) = P(\tau \le t) = 1 - e^{-\lambda t}$, $E[\tau] = 1/\lambda$

Proof:

 $P(\tau < t) = P(\text{at least one arrival until } t) = 1 - P(\text{no arrival until } t) = 1 - e^{-\lambda t}$



Exponential distribution and memoryless property

Def: a distribution is memoryless if:

$$P(\tau > t + s \mid \tau > s) = P(\tau > t)$$

Exponential distribution:

$$f(t) = \lambda e^{-\lambda t}, \quad F(t) = P(\tau \le t) = 1 - e^{-\lambda t}, \quad \overline{F}(t) = P(\tau > t) = e^{-\lambda t}$$

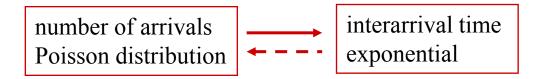
The Exponential distribution is memoryless:

$$P(\tau > t + s \mid \tau > s) = \frac{P(\tau > t + s, \tau > s)}{P(\tau > s)} = \frac{P(\tau > t + s)}{P(\tau > s)} = \frac{P(\tau > t + s)}{P(\tau > s)}$$

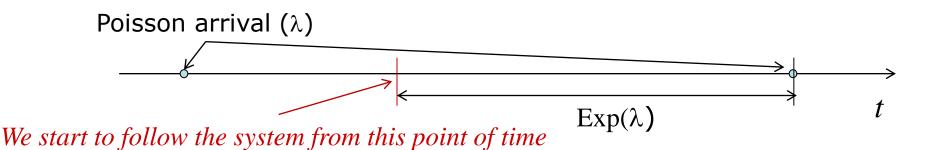
$$\frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = e^{-\lambda t} = P(\tau > t)$$

Poisson process and exponential distribution

- Poisson arrival process implies exponential interarrival times
- Exponential distribution is memoryless



 For Poisson arrival process: the time until the next arrival does not depend on the time spent after the previous arrival



Group work

Waiting for the subway:

- Subway arrivals can be modeled as stochastic process
- The mean time between subway arrivals is 10 minutes. Each day you arrive to the station at a random point of time. How long do you have to wait in average?

Consider the same problem, given that

- a) Subways arrive with fixed time intervals of 10 minutes.
- b) Subways arrive according to a Poisson process.

Properties of the Poisson process (Problem set 2)

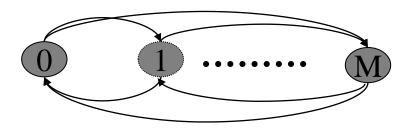
- 1. The sum of Poisson processes is a Poisson process
 - The intensity is equal to the sum of the intensities of the summed (multiplexed, aggregated) processes
- 2. A random split of a Poisson process result in Poisson subprocesses
 - The intensity of subprocess i is λp_i , where p_i is the probability that an event becomes part of subprocess i
- 3. Poisson arrivals see time average (PASTA) we prove later
 - Sampling a stochastic process according to Poisson arrivals gives the state probability distribution of the process (even if the arrival changes the state)
 - Also known as ROP (Random Observer Property)
- 4. Superposition of arbitrary renewal processes tends to a Poisson process (Palm theorem) we do not prove
 - Renewal process: independent, identically distributed (iid) inter-arrival times

Markov processes

- Stochastic process
- The process is a Markov process if the future of the process depends on the current state only - Markov property
 - $P(X(t_{n+1})=j \mid X(t_n)=i, X(t_{n-1})=l, ..., X(t_0)=m) = P(X(t_{n+1})=j \mid X(t_n)=i)$
 - Homogeneous Markov process: the probability of state change is unchanged by time shift, depends only on the time interval

$$P(X(t_{n+1})=j \mid X(t_n)=i) = p_{ij}(t_{n+1}-t_n)$$

- Markov chain: if the state space is discrete
 - A homogeneous Markov chain can be represented by a graph:
 - States: nodes
 - State changes: edges



Continuous-time Markov chains (homogeneous case)

 Continuous time, discrete space stochastic process, with Markov property, that is:

$$P(X(t_{n+1}) = j \mid X(t_n) = i, X(t_{n-1}) = l, ... X(t_0) = m) = P(X(t_{n+1}) = j \mid X(t_n) = i), \quad t_0 < t_1 < ... < t_n < t_{n+1}$$

- State transition can happen in any point of time
- Example:
 - number of packets waiting at the output buffer of a router
 - number of customers waiting in a bank
- The time spent in a state has to be exponential to ensure Markov property:
 - the probability of moving from state i to state j sometime between t_n and t_{n+1} does not depend on the time the process already spent in state i before t_n .

Continuous-time Markov chains (homogeneous case)

- State change probability: $P(X(t_{n+1})=j \mid X(t_n)=i) = p_{ij}(t_{n+1}-t_n)$
- Characterize the Markov chain with the state transition rates instead:

$$q_{ij} = \lim_{\Delta t \to 0} \frac{P(X(t + \Delta t) = j | X(t) = i)}{\Delta t}, \quad i \neq j \quad \text{- rate (intensity) of state change}$$

$$q_{ii} = -\sum_{j \neq i} q_{ij} \quad \text{- defined to easy calculation later on}$$

Transition rate matrix Q:

$$\mathbf{Q} = \begin{bmatrix} q_{00} & q_{01} & \cdots & q_{0M} \\ \vdots & \ddots & & & \\ & & q_{(M-1)M} \\ q_{M0} & \cdots & q_{M(M-1)} & q_{MM} \end{bmatrix} \qquad \mathbf{Q} = \begin{bmatrix} q_{01} = 4 & & \\ & & &$$

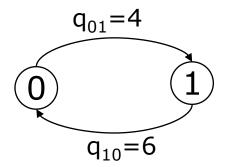
Stationary solution (steady state)

- Def: stationary state probability distribution (stationary solution)
 - $p = \lim_{t \to \infty} p(t)$ exists
 - \underline{p} is independent from $\underline{p}(0)$
- The stationary solution <u>p</u> has to satisfy:

$$p(t)\mathbf{Q} = \frac{dp(t)}{dt} = 0, \quad \sum p_i(t) = 1$$

Note: the rank of Q_{MM} is M-1!

$$\mathbf{Q} = \begin{bmatrix} q_{00} & q_{01} & \cdots & q_{0M} \\ \vdots & \ddots & & & \\ & & q_{(M-1)M} \\ q_{M0} & \cdots & q_{M(M-1)} & q_{MM} \end{bmatrix}$$



$$\begin{bmatrix} p_0, p_1 \end{bmatrix} \begin{bmatrix} -4 & 4 \\ 6 & -6 \end{bmatrix} = \begin{bmatrix} 0, 0 \end{bmatrix}, \quad p_0 + p_1 = 1 \\
\hline p_0 = 0.6, \quad p_1 = 0.4$$

Summary

- Poisson process:
 - number of events in a time interval has Poisson distribution
 - time intervals between events has exponential distribution
 - The exponential distribution is memoryless
- Markov process:
 - stochastic process
 - future depends on the present state only
- Continuous-time Markov-chains (CTMC)
 - state transition intensity matrix
- Next lecture
 - CTMC transient and stationary solution
 - global and local balance equations
 - birth-death process and revisit Poisson process
 - Markov chains and queuing systems
 - discrete time Markov chains