EP2200 Queuing theory and teletraffic systems

3rd lecture

Markov chains cont Birth-death process

Poisson process
 Discrete time Markov chains

Viktoria Fodor KTH EES

Outline for today

Continuous time Markov-chains

- Recall: continuous time Markov chains
- Balance equations local and global
- Birth-death process as special case
- Poisson process as special case

Discrete time Markov-chains

Continuous-time Markov chains (homogeneous case)

 Continuous time, discrete space stochastic process, with Markov property, that is:

$$P(X(t_{n+1}) = j \mid X(t_n) = i, X(t_{n-1}) = l, \dots X(t_0) = m) = P(X(t_{n+1}) = j \mid X(t_n) = i), \quad t_0 < t_1 < \dots < t_n < t_{n+1}$$

- State transition can happen in any point of time
- Determined by the transition intensity matrix

$$q_{ij} = \lim_{\Delta t \to 0} \frac{P(X(t + \Delta t) = j \mid X(t) = i)}{\Delta t}, \quad i \neq j$$

$$q_{ii} = -\sum_{i \neq j} q_{ij}$$

$$Q = \begin{bmatrix} q_{00} & q_{01} & \cdots & q_{0M} \\ \vdots & \ddots & & & \\ & & q_{(M-1)M} \\ q_{M0} & \cdots & q_{M(M-1)} & q_{MM} \end{bmatrix}$$

Transient solution

- The transient time dependent state probability distribution
- $\underline{p}(t) = \{p_0(t), p_1(t), p_2(t), ...\}$ probability of being in state *i* at time t, given p(0).

$$q_{ij} = \lim_{\Delta t \to 0} \frac{P(X(t + \Delta t) = j \mid X(t) = i)}{\Delta t}$$

$$p_{i}(t + \Delta t) = p_{i}(t) - \underbrace{p_{i}(t) \sum_{j \neq i} q_{ij} \Delta t} + \underbrace{\sum_{j \neq i} p_{j}(t) q_{ji} \Delta t} + o(\Delta t), \quad \lim_{\Delta t \to 0} \frac{o(\Delta t)}{\Delta t} = 0$$

leaves the state arrives to the state

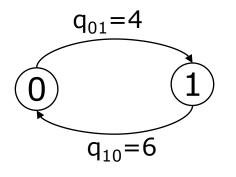
$$p_i(t + \Delta t) - p_i(t) = \sum_j p_j(t) q_{ji} \Delta t + o(\Delta t) \qquad \text{(note def : } -\sum_{j \neq i} q_{ij} = q_{ii}\text{)}$$

$$\frac{p_{i}(t + \Delta t) - p_{i}(t)}{\Delta t} = \sum_{j} p_{j}(t)q_{ji} + \frac{o(\Delta t)}{\Delta t}$$

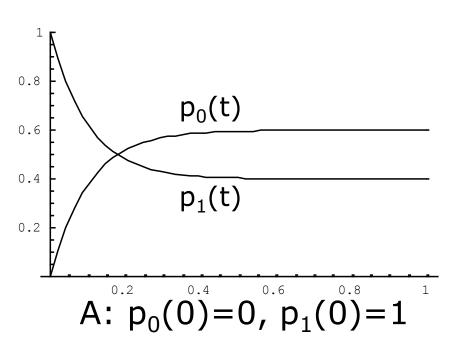
$$\frac{dp(t)}{dt} = p(t)\mathbf{Q}, \quad p(t) = p(0) \cdot e^{\mathbf{Q}t} \quad \text{Transient solution}$$

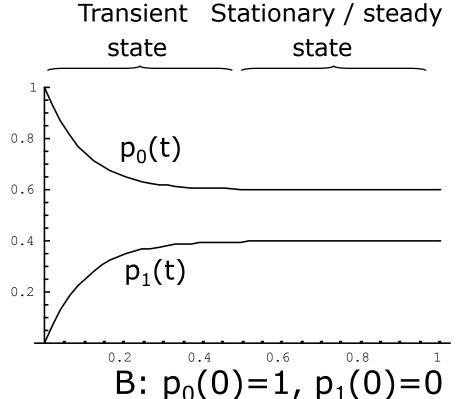
$$\frac{dp(t)}{dt} = p(t)\mathbf{Q}, \quad p(t) = p(0) \cdot e^{\mathbf{Q}t}$$

Example - transient solution



$$\mathbf{Q} = \begin{bmatrix} -4 & 4 \\ 6 & -6 \end{bmatrix}$$





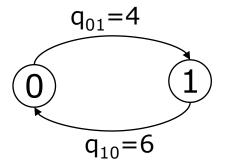
Stationary solution (steady state)

- Def: stationary state probability distribution (stationary solution)
 - $p = \lim_{t \to \infty} p(t)$ exists
 - \underline{p} is independent from $\underline{p}(0)$
- The stationary solution <u>p</u> has to satisfy:

$$p(t)\mathbf{Q} = \frac{dp(t)}{dt} = 0, \quad \sum p_i(t) = 1$$

Note: the rank of Q_{MM} is M-1!

$$\mathbf{Q} = \begin{bmatrix} q_{00} & q_{01} & \cdots & q_{0M} \\ \vdots & \ddots & & & \\ & & q_{(M-1)M} \\ q_{M0} & \cdots & q_{M(M-1)} & q_{MM} \end{bmatrix}$$



$$\begin{bmatrix} p_0, p_1 \end{bmatrix} \begin{bmatrix} -4 & 4 \\ 6 & -6 \end{bmatrix} = \begin{bmatrix} 0, 0 \end{bmatrix}, \quad p_0 + p_1 = 1$$

$$\frac{p_0 = 0.6, \quad p_1 = 0.4}{p_0 = 0.6, \quad p_1 = 0.4}$$

Stationary solution (steady state)

Important theorems – without the proof

- Stationary solution exists, if
 - The Markov chain is irreducible (there is a path between any two states) and
 - $p\mathbf{Q} = 0$, $p \times \mathbf{1} = 1$ has positive solution
- Equivalently, stationary solution exists, if
 - The Markov chain is irreducible
 - For all states: the mean time to return to the state is finite
- Finite state, irreducible Markov chains always have stationary solution.
- Markov chains with stationary solution are also ergodic:
 - p_i gives the portion of time a single realization spends in state i, and
 - the probability that one out of many realizations are in state i at arbitrary point of time

Balance equations

• How can we find the stationary solution? $\underline{p}\mathbf{Q} = \underline{0}$

$$0 = p\mathbf{Q} \implies$$
State 1:

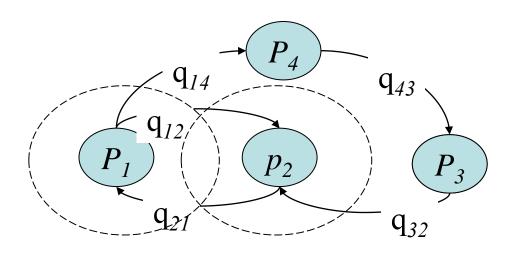
$$0 = -(q_{12} + q_{14})p_1 + q_{21}p_2$$

$$q_{21}p_2 = (q_{12} + q_{14})p_1$$
State 2:

$$0 = q_{12}p_1 - q_{21}p_2 + q_{32}p_3$$

$$q_{12}p_1 + q_{32}p_3 = q_{21}p_2$$

flow in



Global balance conditions

flow out

- In equilibrium (for the stationary solution)
- the transition rate out of a state or a group of states must equal the transition rate into the state (or states)
 - flow in = flow out
- defines a global balance equation

Group work

Global balance equation for state 1 and 2:

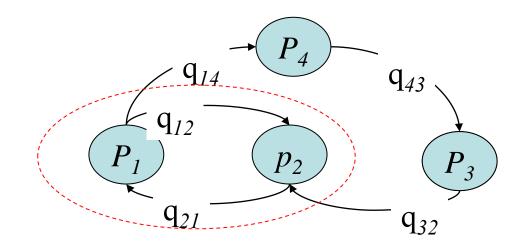
$$0 = p\mathbf{Q} \implies$$
State 1:

$$0 = -(q_{12} + q_{14})p_1 + q_{21}p_2$$

$$q_{21}p_2 = (q_{12} + q_{14})p_1$$
State 2:

$$0 = q_{12}p_1 - q_{21}p_2 + q_{32}p_3$$

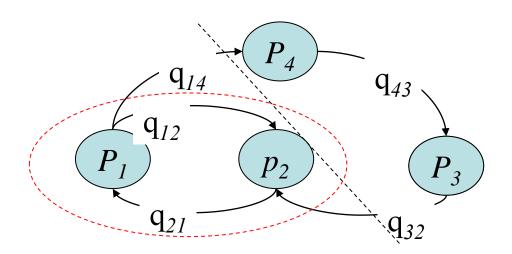
$$q_{12}p_1 + q_{32}p_3 = q_{21}p_2$$



 Is there a global balance equation for the circle around states 1 and 2?

Balance equations

- Local balance conditions in equilibrium
 - the local balance means that the total flow from one part of the chain must be equal to the flow back from the other part
 - for all possible cuts
 - defines a local balance equation
- The local balance equation is the same as a global balance equation around a set of states!



Balance equations

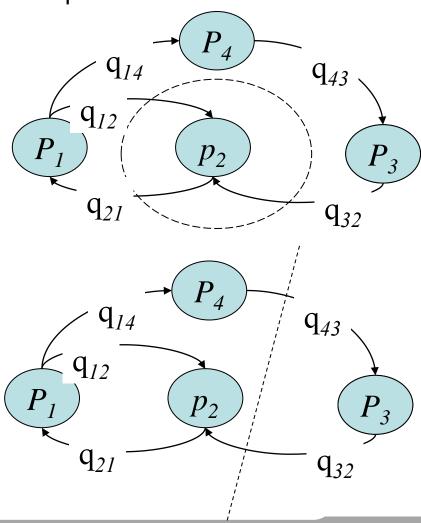
Set of linear equations instead of a matrix equation

$$\begin{array}{l} \mathbf{0} = pQ \quad \Rightarrow \\ 0 = q_{12}p_1 - q_{21}p_2 + q_{32}p_3 \\ \underline{q_{12}p_1 + q_{32}p_3} = \underline{q_{21}p_2} \\ \text{flow in} \qquad \text{flow out} \end{array}$$

- Global balance :
 - flow in = flow out around a state
 - or around many states
- Local balance equation:
 - flow in = flow out across a cut

$$q_{43}p_4 = q_{32}p_3$$

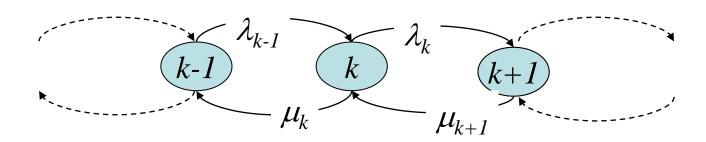
- M states
 - M-1 independent equations
 - $-\Sigma p_i = 1$



Birth-death process

- Continuous time Markov-chain
- Transitions occur only between neighboring states

$$i{\to}i{+}1 \text{ birth with intensity } \lambda_i \\ i{\to}i{-}1 \text{ death with intensity } \mu_i \quad \text{(for } i{>}0\text{)} \\$$



$$\mathbf{Q} = \begin{bmatrix} -\sum q_{0j} & q_{01} & q_{02} & \dots \\ q_{10} & -\sum q_{1j} & q_{12} & \dots \\ q_{20} & q_{21} & -\sum q_{2j} & \dots \\ \vdots & & \ddots \end{bmatrix} = \begin{bmatrix} -\lambda_0 & \lambda_0 & 0 & \dots \\ \mu_1 & -(\lambda_1 + \mu_1) & \lambda_1 & 0 \\ 0 & \mu_2 & -(\lambda_2 + \mu_2) & \lambda_2 \\ & \ddots \end{bmatrix}$$

B-D process - stationary solution

- Local balance equations, like for general Markov-chains
- Stability: positive solution for <u>p</u> (since the MC is irreducible)

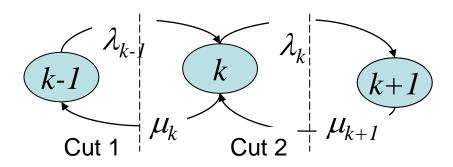
Cut 1:
$$\lambda_{k-1} p_{k-1} = \mu_k p_k \implies p_k = \frac{\lambda_{k-1}}{\mu_k} p_{k-1}$$

Cut 2:
$$\lambda_k p_k = \mu_{k+1} p_{k+1} \implies p_{k+1} = \frac{\lambda_k}{\mu_{k+1}} p_k = \frac{\lambda_k \lambda_{k-1}}{\mu_{k+1} \mu_k} p_{k-1}$$

:

$$\Rightarrow p_k = \frac{\lambda_0 \cdots \lambda_{k-1}}{\mu_1 \cdots \mu_k} p_0 = \prod_{i=0}^{k-1} \frac{\lambda_i}{\mu_{i+1}} p_0,$$

$$p_0 = \frac{1}{1 + \sum_{k=1}^{\infty} \prod_{i=0}^{k-1} \frac{\lambda_i}{\mu_{i+1}}},$$

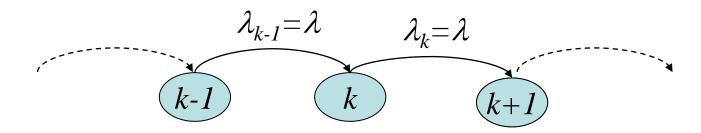


Group work: stationary solution for state independent transition rates:

$$\lambda_i = \lambda, \, \mu_i = \mu.$$

Pure birth process

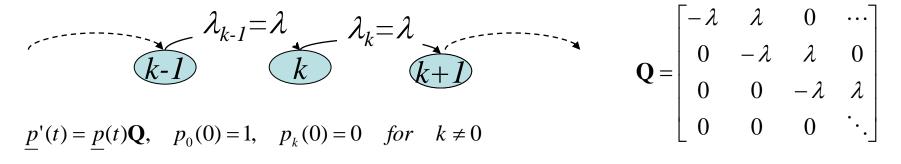
- Further simplify the B-D process
- Pure birth process, infinite state space
 - State independent birth intensity: $\lambda_i = \lambda$, $\forall i$
 - Zero death intensity: $\mu_i = 0, \quad \forall i$



- No stationary solution
- Transient solution number of events (births) in an interval t

Pure birth process

Transient solution – number of events (births) in an interval (0,t]

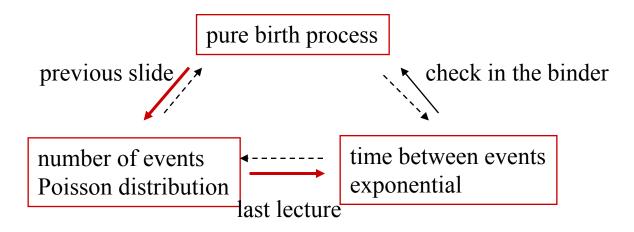


$$\begin{aligned} p'_{0}(t) &= -\lambda p_{0}(t) & \longrightarrow p_{0}(t) = e^{-\lambda t} \\ p'_{1}(t) &= \lambda p_{0}(t) - \lambda p_{1}(t) & \longrightarrow p'_{1}(t) = \lambda e^{-\lambda t} - \lambda p_{1}(t) & \longrightarrow p_{1}(t) = \lambda t e^{-\lambda t} \\ \vdots & & \\ p'_{k}(t) &= \lambda p_{k-1}(t) - \lambda p_{k}(t) & \Longrightarrow p_{k}(t) = \frac{(\lambda t)^{k}}{k!} e^{-\lambda t} \end{aligned}$$

• Pure birth process gives Poisson process! – time between state transitions is $Exp(\lambda)$

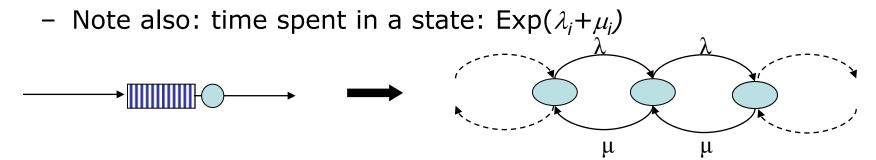
Equivalent definitions of Poisson process

- 1. Pure birth process with intensity λ
- 2. The number of events in period (0,t] has Poisson distribution with parameter λ
- 3. The time between events is exponentially distributed with parameter λ $P(X < t) = 1 e^{-\lambda t}$



Markov-chains and queuing systems

- Why do we like Poisson and B-D processes?
 How are they related to queuing systems?
 - If arrivals in a queuing system can be modeled as Poisson process → also as a pure birth process
 - If services in a queuing systems can be modeled with exponential service times \rightarrow also as a (pure) death process $(\lambda_i=0,(pure: \mu_i=\mu))$
 - Then the queuing system can be modeled as a birth-death process

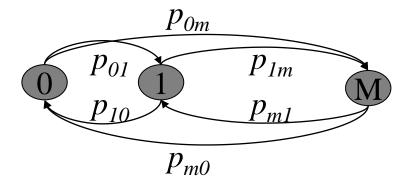


Summary – Continuous time Markov-chains

- Markovian property: next state depends on the present state only
- State lifetime: exponential
- State transition intensity matrix Q
- Stationary solution: $\underline{p}Q = \underline{0}$, or balance equations
- Birth-death process: transition between neighboring states
- Poisson process
 - pure birth process (λ)
 - number of events has Poisson distribution, $E[X] = \lambda t$
 - interarrival times are exponential $E(\tau)=1/\lambda$
- B-D process may model queuing systems!

Discrete-time Markov-chains (detour)

- Discrete-time Markov-chain: the time is discrete as well
 - X(0), X(1), ... X(n), ...
 - Single step state transition probability for homogeneous MC: $P(X(n+1)=j \mid X(n)=i) = p_{ii}, \forall n$
- Example
 - Packet size from packet to packet
 - Number of correctly received bits in a packet
 - Queue length at packet departure instants ...
 (get back to it at non-Markovian queues)



Discrete-Time Markov-chains

- Transition probability matrix:
 - The transitions probabilities can be represented in a matrix
 - Row i contains the probabilities to go from i to state j=0, 1, ...M
 - P_{ii} is the probability of staying in the same state

Discrete-Time Markov-chains

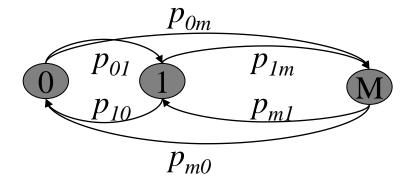
- The probability of finding the process in state j at time n is denoted by:
 - $p_j^{(n)} = P(X(n) = j)$
 - for all states and time points, we have:

$$p^{(n)} = [p_0^{(n)} \quad p_1^{(n)} \quad \cdots \quad p_M^{(n)}]$$

The time-dependent (transient) solution is given by:

$$p_i^{(n+1)} = p_i p_{ii} + \sum_{j \neq i} p_j^{(n)} p_{ji}$$

$$p^{(n+1)} = p^{(n)} \mathbf{P} = p^{(n-1)} \mathbf{P} \mathbf{P} = \dots = p^{(0)} \mathbf{P}^{n+1}$$



Discrete-Time Markov-chains

- Steady (or stationary) state exists if
 - The limiting probability vector exists
 - And is independent from the initial probability vector

$$\lim_{n\to\infty} p^{(n)} = p = [p_0 \quad p_1 \quad \cdots \quad p_M]$$

Stationary state probability distribution is give by:

$$p = p \mathbf{P}, \quad \sum_{j=0}^{M} p_j = 1 \qquad \left(p^{(n+1)} = p^{(n)}\mathbf{P}\right)$$

- Note also:
 - The probability to remain in a state j for m time units has geometric distribution

$$p_{jj}^{m-1} (1-p_{jj})$$

 The geometric distribution is a memoryless discrete probability distribution (the only one)

Summary

- Continuous-time Markov chains
- Balance equations (global, local)
- Birth-death process
- Poisson process
- Discrete time Markov chains