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Outline for today and for next
lecture

e (Queuing systems
— Categories, Kendall notation
— Markovian queuing systems

e Little's result

e M/M/1 queuing systems




Queuing system: Kendall’s notation
A/S/m/c/p/O

Arrival

v

e

Service

Blocking

A: arrival process (distribution of interarrival times)

S: distribution of the service times

m: number of servers

c: system capacity - buffer positions and servers included (omitted if infinite)
p: population generating requests (omitted if infinite)

O: order of service (omitted if FCFS)

Inter arrival or service time:
- M: Markovian (exponentially distributed)
— D: Deterministic (same known value)
- E,: Erlang with r stages (sum of r exponentials)
- H,: Hyper exponential with k branches (mix of k exponentials)
- G: General (but known), some times GI for general, independent




Markovian queuing systems

e State of the queuing system: number of customers in the system
e Markovian queuing system: if the Markovian property holds
- the next state of the system depends on the present state only

e Interarrival and service times have to be exponential: M/M/*/*
— arrival: pure birth process (intensity: 1)
— service: death process (intensity: u)

— B-D process to model the queuing system
e State: number of customers in the system

e E.g. M/M/1, A=A, M=}
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Group-work

e Can we model these queuing systems with a B-D process?

1. Packets of exponential length are multiplexed from a high
number of input ports. The arrival processes at the input
ports are Poisson.

2. Packets of fixed length are multiplexed at the same router
as in 1. The input process in Poisson.

3. Packets of exponential length are multiplexed and the
transmission bandwidth is increased as the queue length
increases (dedicated bandwidth for this service). The input
process is Poisson.




System variables

p.(t): probability of k customers in the system at time t, stationary p,
A: arrival intensity, average interarrival time 1/4 (offered traffic)
X,. service time requirement of customer n, average x (or X)
u: service intensity, x=1/u
T, time customer n spends in the system (system time), average T
W.: waiting time of customer n, average W
Relation: T=W + x

N(t): number of customers in system at time t, average N
N,(t); number of customers waiting at time t, average N,

N,(t): number of customers in service at time t, average N,
Relation: N = N,+ N,




Offered load and utilization

e Offered load: a=AX=A4/u, (arrival intensity * length of service)
— is expressed in Erlang (E) [no unit]

— sometimes denoted by p.

e Server utilization in systems with infinite buffer capacity, m servers
timeserver occupied AT X/m 4 a

p= _ = = Stability requires p<1
total time T mg m
- - #
e For systems with blocking: A e -
—Effective traffic: A 2 l
b

—Blocked traffic: Ay, At Ap=17 Group work: 2 dentists

—Effective load: Ag X = Ay /,U - 4 arrivals per hour in average

- 20 minutes “service” in average
—Server utilization: A )‘(/m = A /(my) Offered load?

Part of time the dentist is busy (utilization)?




Little’s result

e First for systems without blocking

e The average number of customers in the systems is equal to
the arrival rate times the average time spent in the system

N=AT
e Likewise Nq =AW
N, = AX

e General result for G/G/m systems
— applies for all queuing systems we will consider
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Little’s result - justification

A®), D(©)

A(7) . .

A(7): num. of arrived requests until t

D(7): num. of served requests until t

N(1): num. of requests in the system at 1

T,: system time of customer 1

A

t.: arrival time of customer 1

N,: number of customers in the system
averaged until time t

i A arrival rate until time t
] ‘ : T,: system time averaged until time t




Little’s result for loss systems

e Some of the requests get blocked

e Little’s result holds

1. for the effective traffic (considering the accepted costumers) (N=A.T)
e Since Little’s result holds for the arrival process “after” the blocking
2. for the offered traffic (considering both the accepted and the blocked costumers) (N=AT")

e Proof below
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Queuing systems - summary

e Kendall notation A/S/m/c/p/O
e Markovian (M/M/*/*) systems and B-D processes

e Offered load and utilization

e Little's result: N=AT




Markovian queuing systems (M/M/*/*)

e Markovian property holds:
—interarrival times are exponential (Poisson process)
—-service times are exponential

—-system state: usually the number of customers in the queuing
system

—arrival and service intensity may depend on the state of the
system

e Poisson arrival process - motivation
—Models a population of independent customers
—Each customer access the system at a low rate

-The total arrival process tends towards a Poisson process for a
large population

e Queuing system described with a Markov chain (often B-D)




Markovian queuing systems
State probability

* p(t)=P(N(t)=k)= _ _ _
P(number of customers in the system is k at time t)

e Stationary state probabilities p,
— fraction of processes in state k
— fraction of time the system is in state k (due to ergodicity)
— P(a random observer finds the system in state k)

e PASTA (Poisson Arrivals See Time Average)
- define a,=P(arriving customer finds the system in state k)

— for Poisson arrivals a,= p,
(The arrival rate has to be state independent!)

- not true for all arrival processes! E.g., deterministic arrivals




M/M/1 queuing systems

e Single server, infinite waiting room
e Service times are exponentially distributed (n)

e Arrival process Poisson (1)

e The queuing system can be modeled by a homogeneous
(time-independent) birth-death process

e Here basic case: state independent arrival and service

e On the recitation: M/M/1 with state dependent arrival and
service (A, W)




—
M/M/1 queuing systems

e State transition diagram: BD process
e What is the lifetime of a state?
— Also called holding time

— Process leaves a state if there is an arrival or a service
— Exponential interarrival and service time
— Lifetime: minimum of two independent exponential random

variables:
—(A+p)t 1
P(r<t)=1-e , T=
A+ U
— For state 0: only arrival, no service
At - 1
P(TO <t):1—e . T:z




M/M/1 queuing systems - performance

1. Stationary state probabilities
— Condition of stability
. Average number of customers in the system
. Other average measures
. Scheduling discipline?
. Distribution of system time (and waiting time)

o W N

e The derivation of these expressions *is* exam material. See
your lecture notes, or parts of the Virtamo notes.




Performance results

e The system is in state k with probability p,=(1-p)/*

e An arriving customer finds k customers in the system with
probability p, (PASTA)

e Expected number of customers in the system is N=p/(1-p)
-Time measures by Little’s law

e Service discipline: state probability and average performance
measures do not depend on the service discipline

e System time and waiting time distribution under FIFO
P(T <t)=T(t)=1-e** t>0
PW <t)=W(t) =1- pe »* t>0

e Terminology in the Virtamo notes:
- System time = sojourn time (M/M/* p7-10)




Summary

e (Queuing systems
— Categories, Kendall notation
e Little’s result, without and with blocking

e M/M/1 queuing systems and performance results

e Continuation: Markovian queuing systems
- With blocking

— With more servers




