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EP2200 Queueing theory and teletraffic
systems

Lectures 5-7

Summary of M/M/*/* systems

Viktoria Fodor
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M/M/1
• Single server, infinite waiting room
• Service times are exponentially distributed

• Arrival process Poisson
– Models a population of independent customers
– Each customer arrives to the system at a low rate
– The total arrival process tends towards a Poisson process for a large

population 

• The queueing system can be modelled by a homogeneous birth-
death process
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• Total transition rates from one part of the chain must balance the 
transition rates from the other part in stationarity
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Performance results
• The system is in state k with probability pk=(1-ρ)ρk

• An arriving customer finds k customers in the system with 
probability pk

–PASTA: Poisson Arrivals See Time Averages

• Expected number of customers in the system is N=ρ/(1-ρ)
–Time measures by Little’s law

• Waiting time distribution
– In transform domain and in time domain 
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M/M/1/K systems
• Poisson arrival, exponential service time, 1 servers, finite buffer 

capacity
• State transition diagram:

– K+1 states
– λi=λ, for i ≤ K 
– μi=μ, for i > 0 

• State probabilities in equilibrium and blocking probability from
the local balance equations
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M/M/m/m - loss systems
(Erlang loss systems)

• Poisson arrival, exponential service time, m identical servers, 
no buffer, 

• Offered load: a=λ/μ
• State transition diagram:

– m+1 states
– λi=λ
– μi=iμ

• State probabilities and performance measures
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M/M/m systems
• Poisson arrival, exponential service time, m identical and 

independent servers, infinite buffer capacity
• Offered load a=λ/μ [Erlang], a<m for stability
• State transition diagram:

– infinite states
– λi=λ
– μi=iμ, for 0 < i ≤ m
– μi=mμ, for i > m

• Probability of waiting and waiting time distribution
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M/M/m/m/C – finite population
Engset loss system

• Exponential service time, m identical servers, infinite buffer 
capacity

• BUT: finite population – can not be modeled with state 
independent arrivals

• Modeling a single user:
– thinking time Exp(λ) 
– holding time (or service time) Exp(μ)
– after blocked call new thinking time

• Markov-chain model:
–λi=(C-i)λ
–μi=iμ
–pi from the balance equations



9KTH EES/LCN

M/M/m/m/C – finite population

• Time blocking: the proportion of time in blocking state = pm

• Call blocking: the probability that an arriving call gets blocked =am

• Call blocking ≠ time blocking
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