EP2200 Queueing theory and teletraffic systems

Lectures 5-7

Summary of M/M/*/* systems

Viktoria Fodor KTH EES/LCN

M/M/1

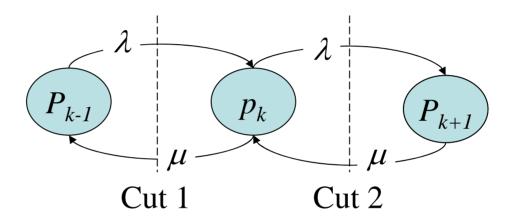
- Single server, infinite waiting room
- Service times are exponentially distributed

$$P(X < x) = B(x) = 1 - e^{-\mu x}$$

- Arrival process Poisson
 - Models a population of independent customers
 - Each customer arrives to the system at a low rate
 - The total arrival process tends towards a Poisson process for a large population
- The queueing system can be modelled by a homogeneous birthdeath process

Local balance equations

 Total transition rates from one part of the chain must balance the transition rates from the other part in stationarity



Cut 1:
$$\lambda p_{k-1} = \mu p_k \Rightarrow p_k = \frac{\lambda}{\mu} p_{k-1}$$

Cut 2:
$$\lambda p_k = \mu p_{k+1} \Rightarrow p_{k+1} = \frac{\lambda}{\mu} p_k = \left(\frac{\lambda}{\mu}\right)^2 p_{k-1}$$

Performance results

- The system is in state k with probability $p_k = (1-\rho)\rho^k$
- An arriving customer finds k customers in the system with probability ρ_k
 - -PASTA: Poisson Arrivals See Time Averages
- Expected number of customers in the system is $N=\rho/(1-\rho)$
 - -Time measures by Little's law
- Waiting time distribution
 - In transform domain and in time domain

$$L(f_w(t)) = \sum_{k=0}^{\infty} \left(\frac{\mu}{s+\mu}\right)^k (1-\rho)\rho^k$$
$$P(W < t) = W(t) = 1-\rho e^{-(\mu-\lambda)t}, t \ge 0$$

M/M/1/K systems

- Poisson arrival, exponential service time, 1 servers, finite buffer capacity
- State transition diagram:
 - K+1 states
 - λ_i = λ, for i ≤ K
 - $-\mu_{i}=\mu$, for i > 0
- State probabilities in equilibrium and blocking probability from the local balance equations

$$p_{k} = \frac{\rho^{k} (1 - \rho)}{1 - \rho^{K+1}}, \quad P(block) = p_{K}$$

$$\lambda_{eff} = \lambda (1 - p_{K})$$

$$\overline{N} = \sum_{k=0}^{K} k p_{k} = \frac{\rho}{1 - \rho} (1 - (K+1)p_{K}), \quad \overline{T} = \overline{N} / \lambda_{eff}$$

M/M/m/m - loss systems (Erlang loss systems)

- Poisson arrival, exponential service time, m identical servers, no buffer,
- Offered load: a=λ/μ
- State transition diagram:
 - m+1 states
 - $-\lambda_i = \lambda$
 - $-\mu_i=i\mu$
- State probabilities and performance measures

$$p_k = \frac{a^k/k!}{\sum_{i=0}^m a^i/i!}$$
, $P(block) = E_m(a) = B(m,a) = p_m$ (Erlang-B form)

$$N = \sum_{k=0}^{m} k p_k = a(1 - p_m)$$

M/M/m systems

- Poisson arrival, exponential service time, m identical and independent servers, infinite buffer capacity
- Offered load $a=\lambda/\mu$ [Erlang], a<m for stability
- State transition diagram:
 - infinite states
 - $-\lambda_i = \lambda$
 - μ_i =i μ , for 0 < i ≤ m
 - $-\mu_i=m\mu$, for i>m
- Probability of waiting and waiting time distribution

$$P(wait) = D_{m}(a) = C(m, a) = \sum_{k=m}^{\infty} p_{k}$$

$$D_{m}(a) = \frac{mE_{m}(a)}{m - a(1 - E_{m}(a))}$$
 (Erlang-C form)
$$P(W < t) = W(t) = 1 - D_{m}(a)e^{-(m\mu - \lambda)t}, t \ge 0$$

M/M/m/C – finite population Engset loss system

- Exponential service time, m identical servers, infinite buffer capacity
- BUT: finite population can not be modeled with state independent arrivals
- Modeling a single user:
 - thinking time Exp(λ)
 - holding time (or service time) Exp(μ)
 - after blocked call new thinking time
- Markov-chain model:

$$-\lambda_i = (C-i)\lambda$$

$$-\mu_i = i\mu$$

-p_i from the balance equations

M/M/m/C – finite population

- Time blocking: the proportion of time in blocking state = p_m
- Call blocking: the probability that an arriving call gets blocked = a_m
- Call blocking ≠ time blocking

$$a_k = \frac{\lambda_k p_k}{\sum_{i=0}^m \lambda_i p_i}$$

Effective load and average number of active users

$$egin{aligned} \lambda_{e\!f\!f} &= \sum_{i=0}^{m-1} (C\!-\!i) \lambda p_i \ \overline{N} &= \lambda_{e\!f\!f} ig/\mu \end{aligned}$$