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Open and closed queuing networks

e Queuing network: network of queuing systems
- E.g., data packets traversing the network from router to router
e Open and closed networks

— Open queuing network: customers arrive and leave the network
(typical application: data communication)

— Closed queueing networks: in and out flows are missing -
constant number of customers circulate in the network
(application: computer systems)
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e The most simple open queuing network

e Assume a Poisson arrival process and independent, exponentially distributed
service times

e What is the departure process from queue 17
— Interdeparture time:

e Customer leaves queue behind: time of service of next customer
e Customer leaves empty system behind: time to next arrival + time of service
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— Departure process: Poisson (1)!
e Same for M/M/m, but not for systems with losses and not for M/G/m systems




A tandem system
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e The tandem system:

Queue 1 is an M/M/1 queue

The departure process from queue 1 is a Poisson process
with intensity A

Thus, queue 2 is also a M/M/1-queue, the two queues are independent.

State of the tandem queue:
(ny,n,)=(customers in system 1, customers in system 2)

Then state probability p(ny,n,)=p;(n;)p>(n5) — product form solution

e M/M/1 queues: p(ny, ny) = (1 —p)ps™ - (1 — p2)p™
e prove also with a two dimensional chain (Virtamo notes)

Product form valid for M/M/m-system (Burke’s theorem )



qeling communication networks -

- note on the indepdence assumption

e For two transmission links in series, queue 2 is not a M/M/1-queue

— Correlation between service times of a customer in the two queues -
determined by the packet length and the link transmission rate

— Correlation between arrival and service times
e interarrival time of arrivals i, i+1 > service time of customer i

e There will not be any queuing in queue 2 if the transmission rate at queue 2
is larger

— Product form solution does not apply

e Kleinrock’s assumption on independence
- Traffic to a queue comes from several upstream queues
e Superposition of Poisson processes give a Poisson process

- Traffic from a queue is spread randomly to several downstream queues
e Partial processes are Poisson with intensity p; 4 (X p;=1)

- It is assumed to create independence
— Product form solution applies
- E.g., network of large routers




Jackson’s queuing networks

e Open queuing network
— arrivals to the network
- from all arrival point a departure point is reachable
e M queues with infinite storage and m exponential servers
- Even finite storage if “last queue” in the networks

e Customers from outside of the network arrive to node i as a Poisson process with
intensity v,>0

e The service times are independent of the arrival process (and service times in other
queues)

e A customer comes from node / to node j after service with the probability p; or leaves
the network with the probability p,,=1-3p;. Allows feedback.
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Jackson’s queuing networks

e Flow conservation: arrival intensity to node j is

/1 7/J+Z—1 i P

e Jacksons theorem: The distribution of number of customers in the
network has product form - queues behave as independent M/M/m
queues! (we do not prove - see the Virtamo notes)
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Jackson’s queuing networks

e Flow conservation: arrival intensity to node j:

’1 7J+Z—1 i P

e Example 1: single feedback queue

Y1 :ﬁl Py A=rn+4p
7\‘1 7\‘1 ﬂ'l = /1
1-p,
— Performance measures as if it would be M/M/1
— Though the arrival process is not Poisson

- Stability: A /u<1
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Jackson’s queuing networks

e Arrival intensity and state probability
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P(n1’n2v-°1n|\/|): Pl(nl)'”PM (nM)
e For the M/M/1 case:

P(n)=W-p)p" and p, = A/ 14 <1
e Example 2
— calculate arrival intensities
— calculate the probability that the network is empty
— calculate the probability that there is one customer in the network




Jackson’s queuing networks
Mean performance measures

e Little’s theorem applies to the entire network!

e The mean number of customers in the network and the average time
spent in the network are (e.g., M/M/1 case)
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e The mean number of nodes a customer visits before leaving:
— {Sum arrival intensity to the queues} / {arrival intensity to the network}
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Closed Jackson’s queuing networks

e Not exam material this year

e Closed queuing network

e M queues with infinite storage and m exponential servers
e K customers circulating in the network, no arrivals and departures
e The service times are independent of the arrival process (and service

times in other queues)

e A customer comes from node j to node j after service with the

probability p;

e Queues can not be independent, since there is a fixed number of

customers
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Closed Jackson’s queuing networks

e Flow conservation: arrival intensity to node j:

ﬂ“ Z—l Iplj *

e Limited set of states, since the sum of the customers is constant K:

S ={(n,n,,...,n,, ), n =0, ini = K}

e MC based solution: state: vector of niﬁlmber of customers per queue - complex
e Algorithmic solution - e.g., M/M/1
- (*) gives a set of dependent equations, with solution of e.qg.:

{4, A Ay =0l e, ,8,,8,,..6, }

- we have to select the one that gives sum of network state probabilities equal to one
- Gordon-Newell: state probabilities, without calculating arrival intensities (without proof)
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Summary

e Queuing networks:
- set of queuing systems
— customers move from queue to queue

e Applied to networking problems: independence of queues have to
be ensured

e Open queuing networks
— Burke: Output process of an M/M/m queue is Poissonian

— Jackson theorem: network state probability has product form if
M/M/m queues

e C(Closed queuing networks — not exam material
— Number of customers constant
— State of queues is dependent — Gordon-Newell normalization




