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Open and closed queuing networks 
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• Queuing network: network of queuing systems 

– E.g., data packets traversing the network from router to router 

• Open and closed networks 

– Open queuing network: customers arrive and leave the network 
(typical application: data communication) 

– Closed queueing networks: in and out flows are missing – 
constant number of customers circulate in the network 
(application: computer systems) 
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Open queuing networks- A tandem 
system 

• The most simple open queuing network  

• Assume  a Poisson arrival process and independent, exponentially distributed 
service times  

• What is the departure process from queue 1? 

– Interdeparture time: 

• Customer leaves queue behind: time of service of next customer 

• Customer leaves empty system behind: time to next arrival + time of service 

 

 

 

 

 

– Departure process: Poisson ()! 

• Same for M/M/m, but not for systems with losses and not for M/G/m systems 
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A tandem system 

• The tandem system: 

– Queue 1 is an M/M/1 queue 

– The departure process from queue 1 is a Poisson process  
with intensity  

– Thus, queue 2 is also a M/M/1-queue, the two queues are independent. 

 

– State of the tandem queue:  
(n1,n2)=(customers in system 1, customers in system 2)  

– Then state probability p(n1,n2)=p1(n1)p2(n2) – product form solution  

•  M/M/1 queues: 𝑝(𝑛1, 𝑛2) = (1 − 𝜌1)𝜌1
𝑛1 ∙ (1 − 𝜌2)𝜌2

𝑛2 

• prove also with a two dimensional chain (Virtamo notes) 

– Product form valid for M/M/m-system (Burke’s theorem )  
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• For two transmission links in series, queue 2 is not a M/M/1-queue   

– Correlation between service times of a customer in the two queues – 
determined by the packet length and the link transmission rate 

– Correlation between arrival and service times 

• interarrival time of arrivals i, i+1  service time of customer i 

• There will not be any queuing in queue 2 if the transmission rate at queue 2 
is larger 

– Product form solution does not apply 

 

• Kleinrock’s assumption on independence 

– Traffic to a queue comes from several upstream queues 

• Superposition of Poisson processes give a Poisson process 

– Traffic from a queue is spread randomly to several downstream queues 

• Partial processes are Poisson with intensity pi   (S pi=1) 

– It is assumed to create independence  

– Product form solution applies 

– E.g., network of large routers 

 

Modeling communication networks 
- note on the indepdence assumption 
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Jackson’s queuing networks 

• Open queuing network 

– arrivals to the network 

– from all arrival point a departure point is reachable 

• M queues with infinite storage and m exponential servers 

– Even finite storage if “last queue” in the networks 

• Customers from outside of the network arrive to node i as a Poisson process with 
intensity i0 

• The service times are independent of the arrival process (and service times in other 
queues) 

• A customer comes from node i to node  j after service with the probability pij or leaves 
the network with the probability pi0=1-∑pij. Allows feedback. 
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• Flow conservation: arrival intensity to node j is 

 

 

• Jacksons theorem: The distribution of number of customers in the 
network has product form – queues behave as independent M/M/m 
queues! (we do not prove – see the Virtamo notes) 
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• Flow conservation: arrival intensity to node j: 

 

 

• Example 1: single feedback queue 

 

 

 

 

 

– Performance measures as if it would be M/M/1 

– Though the arrival process is not  Poisson 

– Stability:  
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• Arrival intensity and state probability 

 

 

 

 

• For the M/M/1 case: 

 

 

• Example 2 

– calculate arrival intensities 

– calculate the probability that the network is empty 

– calculate the probability that there is one customer in the network 
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• Little’s theorem applies to the entire network! 

• The mean number of customers in the network and the average time 
spent in the network are (e.g., M/M/1 case) 

 

 

 

 

 

• The mean number of nodes a customer visits before leaving: 

– {Sum arrival intensity to the queues} / {arrival intensity to the network} 














M

j j

M

j
j

jM

j j

NT

NN

1

11

/

1







 
+

M

i ijijj

M

j j

M

j j pV
111

,/ 

Jackson’s queuing networks 
Mean performance measures 



11 KTH EES/LCN 

Closed Jackson’s queuing networks 

• Not exam material this year 

• Closed queuing network 

• M queues with infinite storage and m exponential servers 

• K customers circulating in the network, no arrivals and departures 

• The service times are independent of the arrival process (and service 
times in other queues) 

• A customer comes from node i to node  j after service with the 
probability pij  

• Queues can not be independent, since there is a fixed number of 
customers 
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• Flow conservation: arrival intensity to node j: 

 

 

• Limited set of states, since the sum of the customers is constant K: 

 

 

• MC based solution: state: vector of number of customers per queue - complex 

• Algorithmic solution – e.g., M/M/1  

– (*) gives a set of dependent equations, with solution of e.g.: 

 

 

– we have to select the one that gives sum of network state probabilities equal to one 

– Gordon-Newell: state probabilities, without calculating arrival intensities (without proof) 
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• Queuing networks:  

– set of queuing systems 

– customers move from queue to queue 

• Applied to networking problems: independence of queues have to 
be ensured 

• Open queuing networks 

– Burke: Output process of an M/M/m queue is Poissonian 

– Jackson theorem: network state probability has product form if 
M/M/m queues 

• Closed queuing networks – not exam material 

– Number of customers constant 

– State of queues is dependent – Gordon-Newell normalization 

Summary 


