Since Zf is equal to zero and also Z 1 (positive) and Z 2 (negative) have the same values of impedances. So multiplying the positive sequence impedance i.e $Z_{-} t h p u$ calculated in S 2 with 2 and Ia is the same as calculated above i.e $I_{-} __{-} s b c t p u$, the formula becomes
Z_othpu=(3*V_t/I_o_shctpu)-(2*Z_thpu)

Since, terminal voltage $=1 \mathrm{p} . \mathrm{u}$
So, Z_othpu $=0.0025+0.0121 \mathrm{i}$
Transformer T1 is zero grounded shown by subscript 0 but there is no change in its impedence. From 'assignment S2' denoted by Z_T1pu and also the value of shunt capacitance remains the same.

In positive sequence (S 2) we did consider the sixth node because we had a voltage source there but in case of zero sequence there is no voltage source so node 7 will be eliminated and the Y-bus matrix will be of order $6^{*} 6$. Following the same procedure for the calculation of the Y-bus matrix i.e

