An Erlang primer
Johan Montelius

June 13, 2012

Introduction

This is not a crash course in Erlang since there are plenty of tutorials avail-
able on the web. I will however describe the tools that you need so that you
can get a programming environment up and running. I will take for granted
that you know some programming languages, have heard of functional pro-
graming and that recursion is not a mystery to you.

1 Getting started

If you run on your own computer you need to install the Erlang development
environment. If you’re running a one of the KTH computers this is probably
already done.

The first thing you need to do is download the Erlang SDK. This is
found at www.erlang.org and is available both as a Windows binary and as
source that you can make with the usual tools available on a Unix or even
MacOs platform. If your using for example Ubuntu then the Erlang system
is avialable in the repository.

The SDK includes a compiler, all the programming libraries and virtual
machine. It does not include a development environment. You can also
download the Erlang manual in HTML.

1.1 Erlang

When you have installed Erlang you should be able to start an Erlang shell.
You do this either by starting Erlang found in the regular Windows program
listing or by hand from a regular shell. Since you later will need to set
runtime parameters you need to learn how to start erlang by hand. Open a
regular shell and type:

erl
This should start the Erlang shell and you should see someting like this:

Erlang (BEAM) emulator version 5.6.1 [source] [smp:4] [async-threads:0] [hipe] [ker:

Eshell V5.6.1 (abort with ~G)
1>



Type help(). (note the dot) followed by return to see all the shell com-
mands and halt (). to exit the shell.

1.2 Emacs

As an development environment you need a text editor and what is better
than Emacs. Download it from www.gnu.org/software/emacs/, available
both for Unix, Mac and Windows. Ubuntu users will find it in the repository.

You need to add the code below to your .emacs file (provided that you
have Erlang installed under C:/Program Files/). This will make sure that
the Erlang mode is loaded as soon as you open a .erl file and that you can
start an Erlang shell under Emacs etc. Change the <Ver> and <ToolsVer>
to what is right in your system. On Linux it will look similar but the install
directory is something like /usr/local/lib/erlang/.

Note! If you cut and past this text the ’-character will not be a ’-
character, if you see what I mean. When you load the file in emacs you will
have errors. If you do cut and paste then write in by hand “’erlang-start”.
This is true for all cut and paste from pfd documents, things might not be
what they appear to be so be careful.

(setq load-path
(cons
"C:/Program Files/erl<Ver>/1ib/tools-<ToolsVer>/emacs"
load-path))
(setq erlang-root-dir
"C:/Program Files/erl<Ver>")
(setq exec-path
(cons
"C:/Program Files/erl<Ver>/bin"
exec-path))
(require ’erlang-start)

You will have to find your emacs home directory where the file should be
placed. If you’re on the KTH student computers then the home area is “h:”
but you then need to set the “HOME” environment variable so that emacs
finds its way.

If everything works you should be able to start an Erlang shell inside
Emacs by M-x run-erlang (M-xis < escape > followed by x). A shell inside
Emacs will allow you to quickly compile and run programs but when we
experiment with distributed applications you need to run these in separate
shells so make sure that you also know how start an Erlang shell manually.



1.3 Eclipse

If you prefer to use Eclipse you can install a Erlang plugin and do your
development inside Eclipse. Fell free to use whatever environment you want.

2 Hello World

Open a file hello.erl and write the following:
-module (hello) .
-export ([world/0]) .

world()->
"Hello world!".

Now open a Erlang shell, compile and load the file with the command
c(hello). and, call the function hello:world() .. Remember to end com-
mands in th shell with a dot. If things work out you have successfully
written, compiled and executed your first Erlang program.

Find the Erlang documentation and read the “Getting started” section.

3 Concurrent Programming

Erlang was designed for concurrent programming. You will quickly learn
how to divide your program into communicating processes and thereby give
it far better structure. Try the following;:

-module(wait).
-export ([hello/0]).

hello() ->
receive
X -> io:format("aaa! surprise, a message: “s"n", [x1)
end.

The io:format procedure will output the string to the stdout and replace
the control characters (characters preceded by a tilde) with the elements
in the list. The s means that the next element in the list should be a
string, n simply outputs a newline. Load the above module and execute
the command:

P = spawn(wait, hello, []).



The variable P is now bound to the process identifier of spawned process.
The process was created and called the procedure hello/0 (this is how we
name a function with zero arguments). It is now suspended waiting for
incoming messages. In the same Erlang shell execute the command:

P ! "hello".

This will send a message, in this case a string “hello”, to the process that
now wakes up and continues the execution.

To make life easier one often register the process identifiers under names
that can be access by all processes. If two processes should communicate
they must know the process identifier. Kither a process is given the iden-
tifier to the other process when it is created, in a message or, through the
registered name of the process. Try this in a shell (first type £() to make
the shell forget the previous binding to P):

P = spawn(wait, hello, []1).

Now register the process identifier under the name “foo”.
register(foo, P).

And then send the process a message.
foo ! "hello".

In this example the only thing we sent was a string but we can send arbitrary
complex data structures. The receive statement can have several clauses
that try to match incoming messages. Only if a match is found will a clause
be used. Try this:

-module(tic).
-export ([first/0]).

first() ->
receive
{tic, X} >
io:format("tic: ~w™n", [X1),
second ()
end.

second() ->
receive
{tac, X} ->
io:format("tac: ~w'n", [X]),



last();
{toe, X} —>
io:format("toe: “w™n", [X]),
last()
end.

last() —>
receive
X >
io:format("end: ~w™n", [X])
end.

Then in a shell execute the following commands:

jav)
I

spawn(tic, first, []).
P ! {toe, bar}.
P ! {tac, gurka}.

P ! {tic, fool}.

In what order where they received by the process. Note how messages are
queued and how the process selects in what order to process them.

4 Distributed Programming

Distributed programming is extremely easy in Erlang, the only problem we
will have is finding the name of our node. The Erlang distributed systems
normally work using domain names rather than explicit IP addresses. This
could be a problem since we're working with a set of laptops that are not
regularly given names in the DNS. There is a work around for this that we
will use.

Connect to the WLAN, login and make sure that you have a access to
the Internet. Run ipconfig or ifconfig to find out what IP address you
have been allocated. You will use this IP address explicitly when starting
an Erlang node.

4.1 node name

When you start Erlang you can make it network aware by providing a name.
You also would like to give it a secret cookie. Any node that can prove to



have knowledge of the cookie will be trusted to do just about anything. This
is of course quite dangerous and it’s very easy for a malicious node to close
a whole network down.

Start a new Erlang shell with the following command, replacing the IP
address to whatever you have.

erl -name f00©@130.237.250.69 -setcookie secret

In the Erlang shell you can now find the name of your node with the bif
node (). It should look something like *f00@130.237.250.69"°.

Doing the same if you're running Erlang under Emacs is slightly more
tricky. You have to set a lisp variable that is used when Emacs starts Erlang.
Type M-x eval-expression and evaluate the function.

(set ’inferior-erlang-machine-options
> ("-name" "fo00@130.237.250.69" "-setcookie" "secret"))

You can also set the environment variable ERL_FLAGS to the same string or
include it in your .emacs file. This will however prevent you from running
multiple Erlang shells on the same node. You would also have to change
this every time you get a new IP address.

Start a second Erlang shells now using the name bar on the same or
another machine. Load and start the suspending hello process that we
defined before on the foo-node and register it under the name wait.

Now on the bar-node try the following:

{wait, ’f00@130.237.250.69’} ! "a message from bar".

Note how interprocess communication in Erlang is handled in the same way
regardless if the process is executing in the same shell, another shell or on
another host. The only thing that has to be changes is how the Erlang shell
is started and how to access external registered processes.

If you run on a computer where you can not open ports for communica-
tion you will need to run Erlang in local distribution mode. You then start
Erlang with a short name as follows:

erl -sname foo -setcookie secret
The rest is the same but use foo as the name without the IP address.

4.2 ping-pong

If we could only send messages to registered processes it would not be a
transparent system. We can send messages to any process but the problem
is of course to get hold of the process identifier. There is no way to write



this down and you can not use the cryptic “<0.70.0>" that the Erlang shell
uses when it prints the value of a process identifier.

The only processes that know the process identifier of a process is the
creator of the process and the process itself. The process it self can find out
by the built-in procedure self (). Now we are of course allowed to pass the
process identifiers around and even send them in a message so we can let
other processes know. Once a process knows it can use the identifier and
does not have to know if it is a local or remote process.

Try to define a process on one machine ping, that sends a message to a
registered process on another machine with its own process identifier in the
message. The process should the wait for a reply. The receiver on the other
machine should look at the message and use the process identifier to send a
reply.

A world of warning, the send primitive ! will accept both registered
names, remote names and process identifiers. This can sometime cause a
problem. If you implement a concurrent system that is not distributed and
have a registered processes under the name foo, you could pass the atom
foo around and anyone could treat it as a process identifier. Now if we
distribute this application a remote process will not be able to use it as a
process identifier since the registration process is local to a node. So keep
track of what you pass around, is it a process identifier (that can be used
remotely) or is it a name under which a process is registered.



