FLUID MECHANICS/STRÖMNINGSMEKANIK SG2214, 7.5 hp., 2012

Course information

Course requirements

• INL 1 (3 hp.)

- 3 sets of home work problems
 - Homework 1, due Sept. 10 (for max 3p. bonus on first exam)
 - Homework 2, due Sept. 27 (for max 4p. bonus on first exam)
 - Homework 3, due Oct 10 (for max 3p. bonus on first exam)
- 1 laboration, week 41
- **TEN1 (4.5 hp.)** Oct. 19, 2012/ (Re-exam Jan 8, 2013)
 - 1 written exam (max 50+10 p. including bonus from homework 1, 2 and 3)
 - The grade FX is given at 19 p. including homework problems. The grade

FX can be supplemented to E within six weeks after the grading is ready. Grades are given according to the table, which may be slightly adjusted for each exam:

Exam result R	ECTS Grade
$40 \leq R$	Α
$35 \leq \mathbf{R} < 40$	В
$30 \le \mathbf{R} < 35$	С
$25 \leq \mathbf{R} < 30$	D
$20 \leq \mathbf{R} < 25$	Ε
R = 19	FX
R < 19	F

Literature:

Book: Kundu & Cohen, Fluid Mechanics, (5:th ed.)

- useful also in SG2218 Turbulence, 7.5 hp.
- and in SG2221 Wave motions and hydrodynamic stability, 7.5 hp.
- E-book via: http://www.knovel.com/web/portal/basic_search/display?_EXT_KNOVEL_DISPLAY_bookid=4380

Lecture notes via course home page Recitation notes via course home page Old exams via course home page

Laboration:

Experimental lab scheduled during course (week 41) Investigation of laminar boundary layers with and without pressure gradients Address: Teknikringen 8

Teachers:

Lecturer: Anders Dahlkild, 790 9174, ad@mech.kth.se *Instructor:* Luca Brandt, 790 7671, luca@mech.kth.se

Course home page: <u>http://www2.mech.kth.se/~luca/5C1214.html</u>

Detailed course plan

Day	Time	Room	Teacher	Description		
1. Introduction, tensors, kinematics						
Tue Aug 28	08:15-10:00	E3	Anders	Lecture 1: Introduction and		
			Dahlkild	motivation of Navier-Stokes eq.		
				Kinematics: Lagrange/Euler		
				coord., material derivative.		
Wed Aug 29	13:15-15:00	E3	Luca	Recitation 1: Tensors.		
			Brandt			
Thu Aug 30	13:15-15:00	B1	AD	Lecture 2: Kinematics: relative		
				motion.		
Fri Aug 31	08:15-10:00	Q2	LB	Recitation 2: Euler/Lagrange		
				coordinates and relative motion.		
Weekend 35						
	1	2. Conserv	ation laws			
Mon Sep 3	13:15-15:00	B3	AD	Lecture 3: Stress tensor,		
				Reynolds transport theorem,		
				Conservation of momentum and		
				mass.		
Wed Sep 5	12:15-15:00	D3	LB	Recitation 3: Conservation		
				equations, stress tensor.		
		50	4.5	Tutorial homework 1.		
Thu Sep 6	13:15-15:00	E3	AD	Lecture 4: Conservation of		
				energy, Navier-Stokes equations.		
Fri Sep 7	08:15-10:00	D3	LB	Recitation 4: Stress tensor and		
				Rankine vortex.		
Weekend 36						
		3. Laminar	viscous flow			
Mon Sep 10	10:15-12:00	H1	AD	Lecture 5: Exact solutions to		
				Navier-Stokes equations.		
				Due Homework 1		
Mon Sep 10	13:15-15:00	B3	Iman	Recitation 5: Exact solutions to		
			Lashgari	Navier-Stokes equations.		
Tue Sep 11	13:15-15:00	M3	AD	Lecture 6: Rotating cylinders		
				and Stokes' problem.		
Wed Sep 12	12:15-15:00	D3	IL	Recitation 6: Exact solutions to		
				Navier-Stokes equations.		
				Tutorial Homework 2.		
Fri Sep 14	13:15-15:00	B1	AD	Lecture 7: Vorticity equation		
				and Hiemenz problem.		
Weekend 37						
4. Vorticity dynamics						
Mon Sep 17	13:15-15:00	B1	LB	Recitation 7: Exact solution of		
				energy equation.		
Tue Sep 18	15:15-17:00	B1	AD	Lecture 8: Vorticity and		
				circulation, streamfunction,		
				velocity potential, Bernoulli's		
W. 10 40	10.15.15.00		L D	equation.		
wed Sep 19	13:12-12:00	כע	LB	Kecitation 8: Natural convection		
				in channel, Kelvins theorem,		
1	1	1	1	vorucity.		

5. 2D irrotational flow							
Fri Sep 21	10:15-13:00	D3	AD	Lecture 9: 2D inviscid flow and			
				the complex potential.			
				Tutorial Homework 2.			
Weekend 38							
Mon Sep 24	08:15-10:00	E3	LB	Recitation 9: Bernoulli's equation, pressure in solid body rotation/irrotational vortex, stream function.			
Tue Sep 25	13:15-15:00	B1	AD	Lecture 10: Flow past a circular cylinder with circulation, lift and drag.			
Wed Sep 26	10:15-12:00	M2	IL	Recitation 10: Potential flow problems.			
6. Laminar boundary layers							
Thu Sep 27	08:15-10:00	E3	AD	Lecture 11: Boundary layer equations and Blausius flow. Due Homework 2			
Thu Sep 27	10:15-12:00	E3	IL	Recitation 11: Boundary layers: Similarity and wake flow.			
Fri Sep 28	10:15-12:00	D3	AD	Lecture 12: Boundary layers with pressure gradient, separation of the boundary layer.			
Weekend 39				· · · · ·			
Tue Oct 2	13:15-16:00	B1	LB	Recitation 12: More boundary layers. Tutorial Homework 3			
		7. Introduction t	o turbulent f	flow			
Wed Oct 3	13:15-15:00	E2	AD	Lecture 13: Averaged equations for turbulent flow, Reynolds stresses, turbulent kinetic energy.			
Thu Oct 4	10:15-12:00	M3	LB	Recitation 13: Turbulent flows.			
Fri Oct 5	15:15-17:00	E2	AD	Lecture 14: Turbulent channel flow, Summary.			
Weekend 40							
Wed Oct 10	10:15-12:00	D3	LB	Recitation 14: Problems from old exams. Due Homework 3			
Mon Oct 8 – Fri Oct 12		Mech. lab, Teknikringen 8		Laboration			
Weekend 41							
Fri Oct 19	09:00-13:00	E1		Written Exam			
New year 2013							
Tue Jan 8	09:00-13:00	L52		Written Re-exam			