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Request Reply 

client serverfind the server
encode message

decode message

identify reply
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Find the process

• A process can listen to a port.
– Use the IP address and port number 

to find the process.
• Problems

– What if the process moves or 
should be taken over by another 
process.
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Marshaling

book = {“Pippi”, “Astrid Lindgren”}
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Reply

client server

request (R) 

client server client server

-reply (RR) -acknowledge (RRA) 
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Synchronous / Asynchronous

sender receiver sender receiver
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TCP or UDP

sender receiver

UDP

sender receiver

TCP
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Make it easy

• Hide the problems of distributed 
programming.
– Use a regular construct in the 

language.
– Why not a procedure call?
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Procedure calls

• What is a procedure call:
– find the procedure
– give the procedure access to arguments
– pass control to the procedure
– collect the reply if any
– continue execution

• What are the open issues?
• How do we turn this into a tool for distributed 

programming.
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operational semantics

int x, arr[3];
arr[0] = 5;
proc(arr);
x = arr[0];

int x, n;
n = 5;
proc(n);
x = n;
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operational semantics

int  n, arr[3];
arr[0] = 5;
proc(arr,arr);
n = arr[0];

void proc(int x[], y[]) {
x[0] = x[0]+1;
y[0] = y[0] + 1;

}
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call by value / call by reference 

• call by value
– procedures are given a copy of the datum

• call by reference
– procedures are given a reference to the 

datum
• confusion

– what if the datum is a reference and we  pass a 
copy of the datum

• why is this important?
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Remote procedure call

void inc() {
  g = g+1;
 }

inc()

3
g
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Remote procedure call

void inc(x) {
  g = g+x;
 }

inc(a)

3
g

2
a

2
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remote procedure call

void inc(int[] x) {
  g = g + x[0];
   x[1] = g;
}[...]

inc(a)

3
g

[...]
a
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distributed memory

void inc(int[] x) {
  g = g + x[0];
   x[1] = g;
}

inc(a)

3
g

[...]
a
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remote procedure calls

• Normally implemented using call by value 
since we want to avoid remote 
references.

• Local and remote procedure calls will 
have different operational semantics:
– call by reference (local)
– call by value (remote)

• Anything else?
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operational semantics

inc(5);
 ...what is the value of g
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synchronous call

if everything works fine then we 
know that g is updated

g = ..

3
g
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what if

?

• we send a request and 
then hear nothing

• was the request received
• was it executed
• should we send it again?
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RPC semantics

• hope-for-the-best  (Erlang)
– send the request

• at-most-once (Java RMI)
– send the request and wait for reply

• at-least-once (Sun RPC)
– send the request and wait for reply
– if no reply re-send the request

• exactly-once 
– how would we do this?
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Fill in the table

Result error
hope­for­the­best
at­most­once
at­least­once
exactly­once

ok
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what to do

• How can we live with ...
– at-most-once semantics
– at-least-once semantics

• Should the underlying middleware 
provide exactly-once semantics?

• “making a remote procedure call is 
just like making a local procedure call”
– true or false?
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what more

• How do we find the remote 
procedure?

• How can we describe the interface to 
the procedure?

• How can we represent data structures 
in a sequence of bytes.
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finding the procedure

• How do we find a remote procedure.
• We would need to know what node and 

what port to contact. 
• Solution: a binder

– one known port
– remote procedures register 
– clients can access procedures by name
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describing the procedure

• Before accessing a procedure we need 
to know what the interface looks like.

• Interface Description Language
– describes input and output
– defines possible data structures
– could be independent of programming 

language 
– could be used to produce stub code
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marshaling

• How do we code programming 
language data structures?

• Network layer provides transport of 
sequences of bytes.

• How do we code:
– integers,floats,boolean
– array, structures
– functions, procedures ??



28
Distributed Systems ID2201

same, same but different

system: Sun RPC CORBA Java RMI WS Erlang
binder ORB Registry UDDI
description XDR IDL interface WSDL -
marshaling binary binary/XML binary XML binary
language Java Erlang

rpcbind epmd

indep indep indep
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a closer look at Java RMI

• similar to RPC but
– we now invoke methods of remote object

• Objects can of course be passed as 
arguments, how should this be done?
– by value, a copy of the object
– by reference, a remote reference to the 

object
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Remote method invocation

a
b

r
r.m(a,b)

ba
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Remote method invocation

a
b

r
r.m(a,b)

b
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distributed garbage collection

how do we keep track of 
live objects

how can we determine that no 
one has a reference to an 
external object
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thread of control
a method invocation is within 
one thread of control having multiple threads gives 

us the same problems as usual

methods protected by 
locks; “synchronized”

a thread is allowed to enter the 
same object if it holds the lock
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dead lock

lock taken

?
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RPC and RMI

• RPC nor RMI is access transparent
– semantics
– error behavior
– memory management
– dead lock
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Erlang – copy data

a
b

r  ! {a,b}

ba

r
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Erlang – remote pid

b

r  ! {a,b}

b

r

a
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Erlang – garbage collection

b

b
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Erlang

• The distributed programming model is 
very close to the local programming 
model.
– Data is always local.
– Messages are always copied.
– Processes live independent of external 

references.
• You have to understand asynchronous 

communication.
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