
1
Distributed Systems ID2201

Distributed Systems
ID2201

Remote Invocation
Johan Montelius

2
Distributed Systems ID2201

Request Reply

client serverfind the server
encode message

decode message

identify reply

3
Distributed Systems ID2201

Find the process

• A process can listen to a port.
– Use the IP address and port number

to find the process.
• Problems

– What if the process moves or
should be taken over by another
process.

4
Distributed Systems ID2201

Marshaling

book = {“Pippi”, “Astrid Lindgren”}

P
i
p

A
s
tR 2 5 P i p p i 15 A s t r dS S

5
Distributed Systems ID2201

Reply

client server

request (R)

client server client server

-reply (RR) -acknowledge (RRA)

6
Distributed Systems ID2201

Synchronous / Asynchronous

sender receiver sender receiver

7
Distributed Systems ID2201

TCP or UDP

sender receiver

UDP

sender receiver

TCP

8
Distributed Systems ID2201

Make it easy

• Hide the problems of distributed
programming.
– Use a regular construct in the

language.
– Why not a procedure call?

9
Distributed Systems ID2201

Procedure calls

• What is a procedure call:
– find the procedure
– give the procedure access to arguments
– pass control to the procedure
– collect the reply if any
– continue execution

• What are the open issues?
• How do we turn this into a tool for distributed

programming.

10
Distributed Systems ID2201

operational semantics

int x, arr[3];
arr[0] = 5;
proc(arr);
x = arr[0];

int x, n;
n = 5;
proc(n);
x = n;

11
Distributed Systems ID2201

operational semantics

int n, arr[3];
arr[0] = 5;
proc(arr,arr);
n = arr[0];

void proc(int x[], y[]) {
x[0] = x[0]+1;
y[0] = y[0] + 1;

}

12
Distributed Systems ID2201

call by value / call by reference

• call by value
– procedures are given a copy of the datum

• call by reference
– procedures are given a reference to the

datum
• confusion

– what if the datum is a reference and we pass a
copy of the datum

• why is this important?

13
Distributed Systems ID2201

Remote procedure call

void inc() {
 g = g+1;
 }

inc()

3
g

14
Distributed Systems ID2201

Remote procedure call

void inc(x) {
 g = g+x;
 }

inc(a)

3
g

2
a

2

15
Distributed Systems ID2201

remote procedure call

void inc(int[] x) {
 g = g + x[0];
 x[1] = g;
}[...]

inc(a)

3
g

[...]
a

16
Distributed Systems ID2201

distributed memory

void inc(int[] x) {
 g = g + x[0];
 x[1] = g;
}

inc(a)

3
g

[...]
a

17
Distributed Systems ID2201

remote procedure calls

• Normally implemented using call by value
since we want to avoid remote
references.

• Local and remote procedure calls will
have different operational semantics:
– call by reference (local)
– call by value (remote)

• Anything else?

18
Distributed Systems ID2201

operational semantics

inc(5);
 ...what is the value of g

19
Distributed Systems ID2201

synchronous call

if everything works fine then we
know that g is updated

g = ..

3
g

20
Distributed Systems ID2201

what if

?

• we send a request and
then hear nothing

• was the request received
• was it executed
• should we send it again?

21
Distributed Systems ID2201

RPC semantics

• hope-for-the-best (Erlang)
– send the request

• at-most-once (Java RMI)
– send the request and wait for reply

• at-least-once (Sun RPC)
– send the request and wait for reply
– if no reply re-send the request

• exactly-once
– how would we do this?

22
Distributed Systems ID2201

Fill in the table

Result error
hope­for­the­best
at­most­once
at­least­once
exactly­once

ok

23
Distributed Systems ID2201

what to do

• How can we live with ...
– at-most-once semantics
– at-least-once semantics

• Should the underlying middleware
provide exactly-once semantics?

• “making a remote procedure call is
just like making a local procedure call”
– true or false?

24
Distributed Systems ID2201

what more

• How do we find the remote
procedure?

• How can we describe the interface to
the procedure?

• How can we represent data structures
in a sequence of bytes.

25
Distributed Systems ID2201

finding the procedure

• How do we find a remote procedure.
• We would need to know what node and

what port to contact.
• Solution: a binder

– one known port
– remote procedures register
– clients can access procedures by name

26
Distributed Systems ID2201

describing the procedure

• Before accessing a procedure we need
to know what the interface looks like.

• Interface Description Language
– describes input and output
– defines possible data structures
– could be independent of programming

language
– could be used to produce stub code

27
Distributed Systems ID2201

marshaling

• How do we code programming
language data structures?

• Network layer provides transport of
sequences of bytes.

• How do we code:
– integers,floats,boolean
– array, structures
– functions, procedures ??

28
Distributed Systems ID2201

same, same but different

system: Sun RPC CORBA Java RMI WS Erlang
binder ORB Registry UDDI
description XDR IDL interface WSDL -
marshaling binary binary/XML binary XML binary
language Java Erlang

rpcbind epmd

indep indep indep

29
Distributed Systems ID2201

a closer look at Java RMI

• similar to RPC but
– we now invoke methods of remote object

• Objects can of course be passed as
arguments, how should this be done?
– by value, a copy of the object
– by reference, a remote reference to the

object

30
Distributed Systems ID2201

Remote method invocation

a
b

r
r.m(a,b)

ba

31
Distributed Systems ID2201

Remote method invocation

a
b

r
r.m(a,b)

b

32
Distributed Systems ID2201

distributed garbage collection

how do we keep track of
live objects

how can we determine that no
one has a reference to an
external object

33
Distributed Systems ID2201

thread of control
a method invocation is within
one thread of control having multiple threads gives

us the same problems as usual

methods protected by
locks; “synchronized”

a thread is allowed to enter the
same object if it holds the lock

34
Distributed Systems ID2201

dead lock

lock taken

?

35
Distributed Systems ID2201

RPC and RMI

• RPC nor RMI is access transparent
– semantics
– error behavior
– memory management
– dead lock

36
Distributed Systems ID2201

Erlang – copy data

a
b

r ! {a,b}

ba

r

37
Distributed Systems ID2201

Erlang – remote pid

b

r ! {a,b}

b

r

a

38
Distributed Systems ID2201

Erlang – garbage collection

b

b

r

s

f

g

r
b

r

c

t

39
Distributed Systems ID2201

Erlang

• The distributed programming model is
very close to the local programming
model.
– Data is always local.
– Messages are always copied.
– Processes live independent of external

references.
• You have to understand asynchronous

communication.

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

