
1
Distributed Systems and Algorithms

Distributed Systems 

Consensus
Johan Montelius



2
Distributed Systems and Algorithms

Consensus

• Nodes in a system sometimes need to 
make a decision as a group. 
– Agreement: no two nodes should decide 

differently
– Termination: all (correct) nodes should 

eventually decide
– Integrity: a node is not allowed to 

change decision
– Validity: a decided value must be a 

value proposed by someone



3
Distributed Systems and Algorithms

Why consensus

• Nodes need to take coordinated 
decisions
– bank transactions
– air traffic control
– mobile handover

• often called something else
– atomic broadcast
– leader election
– mutual exclusion



4
Distributed Systems and Algorithms

How do we reach consensus



5
Distributed Systems and Algorithms

How do we reach consensus

• Synchronous systems
– not a problem

• Asynchronous systems
– takes time but not a problem (if that is 

not a problem)

• Asynchronous systems with crashing 
nodes
– not that easy



6
Distributed Systems and Algorithms

Fisher, Lynch and Patterson 

• There is no algorithm that will guarantee 
to always reach consensus in an 
asynchronous system even if only one  
node can crash.

• But ... we are working in asynchronous 
systems and nodes can crash! 
– if it's impossible then let's ignore it.



7
Distributed Systems and Algorithms

Is there a way around this

• crashing nodes
– fail stop

• idea
– detect crashing nodes

• If we know which nodes 
that have crashed then 
we can reach a 
consensus among the 
non-crashed. 



8
Distributed Systems and Algorithms

Failure detectors

• Assume we have a asynchronous  
system where each node has an  
oracle  that can determine if nodes 
have crashed.

• The oracles are called failure 
detectors.

• Oracles are very expensive and you 
can probably not buy them but more 
on this later....

• What oracles do we have?



9
Distributed Systems and Algorithms

Completeness

• Completeness (strong)

– Every crashed node is eventually suspected 
by all correct nodes



10
Distributed Systems and Algorithms

Accuracy
• strong

– no correct node is ever suspected by any node

• weak
– there exists a correct node that is never...

• eventually strong/weak: 
– there is a time after which...



11
Distributed Systems and Algorithms

Failure detectors

• perfect  (P)
– complete and strong accuracy

• strong  (S)
– complete and weak accuracy

• eventual perfect (◊P)
– complete  and eventual strong accuracy

• eventual strong (◊S)
– complete and eventual weak accuracy



12
Distributed Systems and Algorithms

Failure detectors and consensus

• Given a eventual strong, (◊S), failure 
detector (uniform) consensus can be solved 
in a asynchronous network of n nodes even 
if (n-1)/2 nodes fail by crashing.

• Can we implement a eventual strong failure 
detector in a asynchronous network?



13
Distributed Systems and Algorithms

How hard can it be?

• Every now and then send a message 
to the node, if no reply within 10 
seconds, it's dead.

• How to choose:
– now and then
– 10 seconds

• Failure detectors
– suspect nodes to have failed



14
Distributed Systems and Algorithms

... but we could 

• .. implement one that might work in 
practice 
– hopefully there will be a time after which 

there exists a correct node that is not 
suspected by any correct node for 
sufficiently long time for the consensus to  
be formed



15
Distributed Systems and Algorithms

In round r from 0...
leader is (r mod n)+1
phase 1

send estimate and when you 
adopted this to leader

phase 2
leader collects (n+1)/2 estimates
estimate is set to latest estimate
received, send new estimate to all

phase 3
adopt new estimate and send ack, or 
if leader suspected to have crashed 
send nack

phase 4
leader waits for (n+1)/2 messages, 
if all ack then reliably broadcast 
decided



16
Distributed Systems and Algorithms

This is too much....

• That's too complicated
– we don't have time for this
– too many messages
– no guarantee that it will ever terminate

• Not that bad if there are no failures!
– leader sends estimate to all
– all reply with ack
– leader reliably broadcast decide
– ... or even simpler



17
Distributed Systems and Algorithms

Why have we survived so far

• non-distributed systems
• client/server systems where consensus is 

not an issue
• people are used to inconsistent systems
• small systems where failures do not happen 
• vital systems do use these techniques



18
Distributed Systems and Algorithms

What will change

• If you have several hundred nodes 
connected into one service, crashes 
will be part of the weekly procedure.

• More and more systems are vital need 
to be fault tolerant.



19
Distributed Systems and Algorithms

Summary

• Consensus 
– in general unsolvable if we have a dead-

line
– in practice solvable using non-perfect 

failure detectors

• Failure detectors
– not perfect
– we need to handle this
– we can


	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

