
OPTIMAL FILTERING

LECTURE 3

1. Wiener filtering, causal and discrete time

2. Kalman filter, discrete time and state space model

Reading instructions: Kailath, Sect. 7.3-7.8, 1.1-1.2
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WIENER FILTERING, DISCRETE TIME

Given observations {yi, −∞ < i ≤ k}, find the linear least squares
estimate (l.l.s.e.) of xk+λ.

The processes {xk} and {yk} are assumed jointly stationary with
exponentially bounded covariance (and cross covariance) sequences

|r(k)| < Kα|k| for some K > 0 and 0 < α < 1.

Thus find

x̂k+λ =

∞∑
i=0

hk,iyk−i

such that E{|xk+λ − x̂k+λ|2}, −∞ < k < ∞ is minimized.
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Use the orthogonality property.

xk+λ − x̂k+λ ⊥ yj j ≤ k

=⇒ E{(xk+λ − x̂k+λ)y
∗
j } = 0 j ≤ k

=⇒ rxy(k + λ− j) =
∞∑
i=0

hk,iry(k − i− j) j ≤ k

Change of variables k − j → k

rxy(k + λ) =
∞∑
i=0

hk+j,iry(k − i) k ≥ 0

We see that hk+j,i does not depend on j (since rxy(k + λ) and
ry(k − i) do not depend on j) and thus the resulting filter will be
time invariant.
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Now let

gk = rxy(k + λ)−
∞∑
i=0

hiry(k − i) for all k

We know that
gk = 0, k ≥ 0

Z-transform

=⇒ G(z) = Sxy(z)z
λ −H(z)Sy(z)

where Sy(z) = S∗
y(z

−∗) is the Z-spectrum of {yi} with ROC
α < |z| < α−1 (rational polynomial in z). Sy(e

iω) is real and
nonnegative.

G(z) =
∞∑
−∞

gkz
−k

Björn Ottersten, Mats Bengtsson 4 Optimal Filtering



SPECTRAL FACTORIZATION

Spectral Factorization of Sy(z):

Rational spectra in z

Sy(z) = re
Πm

i=1(z − αi)(z
−1 − α∗

i )

Πn
i=1(z − βi)(z−1 − β∗

i )
with |αi| < 1, |βi| < 1, re > 0

with no zeros on the unit circle.

Sy(z) =
√
reL(z)︸ ︷︷ ︸
S+
y (z)

√
reL

∗(z−∗)︸ ︷︷ ︸
S−
y (z)

where the spectral factor is

S+
y (z) =

√
reL(z) =

√
rez

n−mΠm
i=1(z − αi)

Πn
i=1(z − βi)

with |αi| < 1, |βi| < 1

The factor zn−m ensures a canonical factorization with L(∞) = 1.
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SPECTRAL FACTORIZATION

S+
y (z) =

√
reL(z) =

√
rez

n−mΠm
i=1(z − αi)

Πn
i=1(z − βi)

with |αi| < 1, |βi| < 1

S+
y (z) and L(z) has the stable poles and zeros (inside the unit circle)

of Sy(z). S+
y (z) and L(z) are causal and causally invertible.

For real processes L∗(z−∗) = L(z−1).
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ADDITIVE DECOMPOSITION

Let {fk} have a Z-transform that exists in an annulus containing the
unit circle (exponentially bounded which gives a rational
Z-transform).

Define

{F (z)}+ =
∞∑
k=0

fkz
−k

{F (z)}− =

−1∑
k=−∞

fkz
−k

and of course
F (z) = {F (z)}+︸ ︷︷ ︸

causal

+ {F (z)}−︸ ︷︷ ︸
strictly anticausal
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DISCRETE TIME WIENER–HOPF

Back to
G(z) = Sxy(z)z

λ −H(z)Sy(z)

=⇒ G(z)

S−
y (z)

=
Sxy(z)z

λ

S−
y (z)

−H(z)S+
y (z)

Note that G(z) is strictly anticausal since

gk = 0 k ≥ 0

and S−
y (z) is anticausal and anticausally invertible. Hence,{

G(z)
1

S−
y (z)

}
+

=

{( −1∑
k=−∞

gkz
−k

)(
0∑

k=−∞
fkz

−k

)}
+

=

{ −1∑
k=−∞

ckz
−k

}
+

= 0
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Thus
G(z)

S−
y (z)

is strictly anticausal.

We also have
{H(z)S+

y (z)}+ = H(z)S+
y (z)

and thus

H(z) = 1
S+
y (z)

{
Sxy(z)z

λ

S−
y (z)

}
+
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THE KALMAN FILTER

We shall introduce a finite dimensional state space model for a
process. This allows recursive and efficient computation of the linear
least squares estimate.

Discrete Time State Space Model

xk+1 = Fkxk +Gkwk k ≥ 0

yk = Hkxk + vk

xk – (n× 1) state vector x0 – initial state vector

wk – (m× 1) process noise Fk – (n× n) system matrix

vk – (p× 1) measurement noise Gk – (n×m)

yk – (p× 1) observation vector Hk – (p× n)
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THE KALMAN FILTER

xk, wk, and vk are stochastic quantities which we will assume are
Gaussian processes with

E{x0} = E{wk} = E{vk} = 0

E{x0x
∗
0} = P0 E{x0v

∗
k} = 0 E{x0w

∗
k} = 0

E

⎡
⎣wk

vk

⎤
⎦[

w∗
l v∗l

]
=

⎡
⎣Qk Sk

S∗
k Rk

⎤
⎦ δkl

where

δkl =

⎧⎨
⎩ 1 k = l

0 otherwise

Björn Ottersten, Mats Bengtsson 11 Optimal Filtering

THE KALMAN FILTER

Notation:

x̂k|m = l.l.s.e. estimate of xk given the observations
{y0, y1, . . . , ym}.

Pk|m = Covariance of x̂k|m.

The basic Kalman filtering problem:

Determine the estimate

x̂k|k−1 = E{xk|y0, . . . , yk−1}

based on the observations yl, 0 ≤ l ≤ k− 1 and knowledge of the
model {Fk, Gk, Hk, Qk, Sk, Rk, P0}.
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THE KALMAN FILTER

After tedious derivations (assuming Sk = 0)

x̂k|k =x̂k|k−1 + Pk|k−1H
∗
k(HkPk|k−1H

∗
k +Rk)

−1(yk −Hkx̂k|k−1)

x̂k+1|k =Fkx̂k|k

Pk|k =Pk|k−1 − Pk|k−1H
∗
k(HkPk|k−1H

∗
k +Rk)

−1HkPk|k−1

Pk+1|k =FkPk|kF ∗
k +GkQkG

∗
k
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