Homework \# 3

1. Assume the continuous time signals $x(t)$ and $y(t)$ are jointly wss.
a) If $y(t)$ passes through a filter with transfer function $1 / S_{y}^{+}(s)$, determine the spectrum of the output signal $e(t)$.
b) Show that the non-causal Wiener filter for estimating $x(t+\lambda)$ from $\{e(\tau),-\infty<$ $\tau<\infty\}$, has the transfer function

$$
H_{n c}(s)=\frac{S_{x y}(s) e^{s \lambda}}{S_{y}^{-}(s)}
$$

c) As the name suggests, $H_{n c}(s)$ will in general be non-causal. A seemingly adhoc approach to turn this into a causal filter is to truncate it and only keep the causal part $\left\{H_{n c}(s)\right\}_{+}$. Show that the combination of the two filters $1 / S_{y}^{+}(s)$ and $\left\{H_{n c}(s)\right\}_{+}$is equivalent to the causal Wiener filter for estimating $x(t+\lambda)$ directly from $\{y(\tau),-\infty<\tau \leq t\}$.
d) Try to give an intuitive explanation why the above procedure gives the causal Wiener filter and why it is worse to take the non-causal Wiener filter for estimating $x(t+\lambda)$ from $y(t)$ and truncate that, i.e. to use the filter $\left\{S_{x y}(s) e^{s \lambda} / S_{y}(s)\right\}_{+}$.
2. Consider the discrete time Wiener problem of estimating $x_{k+\lambda}$ from $\left\{y_{i},-\infty<\right.$ $i \leq k\}$.
a) Show that

$$
\begin{aligned}
\min \mathrm{mse} & =\mathrm{E}\left\{x_{k+\lambda}^{2}\right\}-\mathrm{E}\left\{x_{k+\lambda} \hat{x}_{k+\lambda}\right\} \\
& =r_{x}(0)-\mathrm{E}\left\{\hat{x}_{k+\lambda}^{2}\right\} \\
& =r_{x}(0)-\int_{-\pi}^{\pi}\left|\left\{\frac{S_{x y}\left(e^{j \omega}\right) e^{j \omega \lambda}}{S_{y}^{-}\left(e^{j \omega}\right)}\right\}_{+}\right|^{2} \frac{d \omega}{2 \pi} \\
& =r_{x}(0)-\int_{-\pi}^{\pi} \frac{\left|S_{x y}(j \omega)\right|^{2}}{S_{y}\left(e^{j \omega}\right)} \frac{d \omega}{2 \pi}+\int_{-\pi}^{\pi}\left|\left\{\frac{S_{x y}(j \omega) e^{j \omega \lambda}}{S_{y}^{-}\left(e^{j \omega}\right)}\right\}\right|_{-}^{2} \frac{d \omega}{2 \pi} .
\end{aligned}
$$

b) Interpret the results in a).

Note: If you are browsing for hints in the book, there is a typo on page 257, where the hint in 7.19 (f) should say

$$
\int_{-\pi}^{\pi}\left|a\left(e^{j \omega}\right)\right|^{2} d \omega=\int_{-\pi}^{\pi}\left|\left\{a\left(e^{j \omega}\right)\right\}_{+}\right|^{2} d \omega+\int_{-\pi}^{\pi}\left|\left\{a\left(e^{j \omega}\right)\right\}_{-}\right|^{2} d \omega
$$

If you wish to use this result, first prove that it's true.
3. Consider the following system where

$$
\begin{aligned}
\mathrm{E}\{u(t)\} & =\mathrm{E}\{w(t)\}=\mathrm{E}\{u(t) w(\tau)\}=0 \\
\mathrm{E}\{u(t) u(\tau)\} & =\sigma^{2} \delta(t-\tau) \\
\mathrm{E}\{w(t) w(\tau)\} & =\frac{N_{0}}{2} \delta(t-\tau)
\end{aligned}
$$

a) Use the Wiener solution to find the transfer function of the optimal linear filter for the estimation of $a(t)$ from $\{r(\tau),-\infty<\tau<t\}$.
Show that mse $=\sqrt{\frac{N_{0} \sigma^{2}}{2}}$.
b) Same as a) but estimate $\dot{a}(t)=\frac{d a(t)}{d t}$.

Hint: Start by considering the case without a pure integration, i.e., a pole off the imaginary axis. Then take the limit as the pole approaches the imaginary axis.
4. If

$$
S_{y}(z)=\frac{-\beta z^{-1}+1+|\beta|^{2}-\beta^{*} z}{-\alpha z^{-1}+1+|\alpha|^{2}-\alpha^{*} z}, \quad|\alpha|<1, \quad|\beta|>1
$$

show that

$$
\hat{y}(k+\lambda)=\left(\alpha-1 / \beta^{*}\right) \alpha^{\lambda-1} \sum_{i=0}^{\infty}\left(1 / \beta^{*}\right)^{i} y(k-i)
$$

with MSE

$$
|\beta|^{2}+|\alpha \beta-1|^{2} \frac{1-|\alpha|^{2 \lambda-2}}{1-|\alpha|^{2}}
$$

