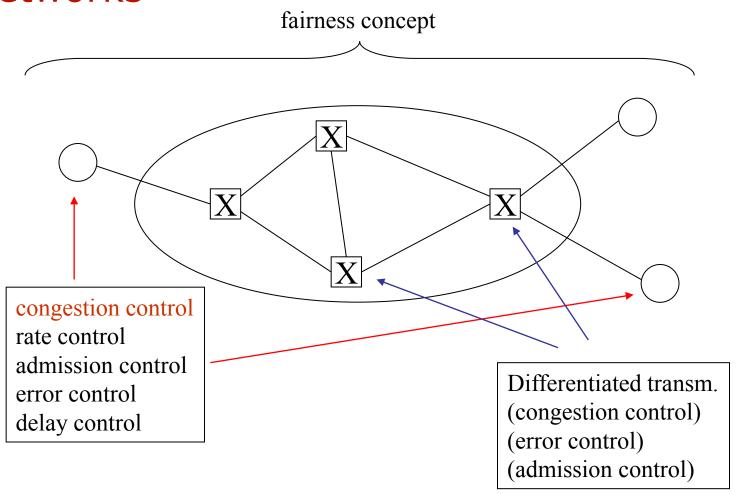
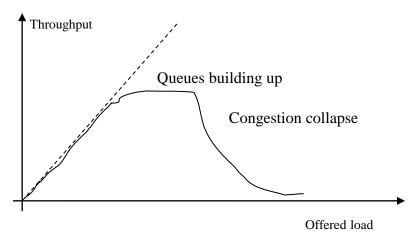
EP2200
Performance analysis of
Communication networks


Topic 3
Congestion and rate control

Congestion, rate and error control

Lecture material:

- Bertsekas, Gallager, *Data networks*, 6.1-2
- I. Kay, Stochastic modeling, 3.3.4
- J-Y Le Boudec, "Rate adaptation, congestion control and fairness: a tutorial," Nov. 2005


Control functions in communication networks

Congestion control

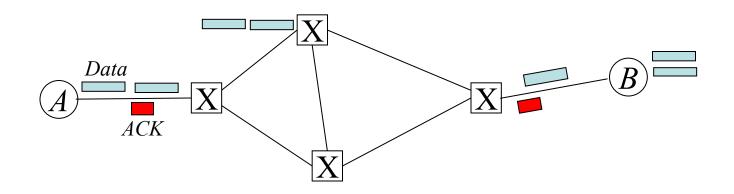
- To regulate the packet population in the network
- To share resources (link bandwidth, buffer space)
- Flow control: between two users for speed matching, sometimes means congestion control in the literature
- The main objectives of congestion control
 - Efficiency
 - high utilization (from the network provider's perspective)
 - high per flow throughput, low delay (from users' perspective)
 - Fairness: fair allocation of resources

Congestion control

- What happens if the incoming traffic is not restricted?
 - Bottleneck links: the offered traffic is higher than the link transmission capacity: temporarily (bursts arriving) or permanently
- What happens at bottleneck links?
 - queue sizes grow, end-to-end delays increase
 - queue space fills up, packets get dropped
 - packets are retransmitted by the applications, further increasing the load
- Congestion collapse: the network throughput decreases and delays become excessive

Congestion control techniques

- Should depend on the service requirements of the application
 - voice, video: minimum bandwidth requirement, delay sensitive
 - data: lossless end-to-end transmission required
- Call blocking at the network edge + rate control
 - calls blocked if resources are not available
 - the rate of accepted calls is controlled
- Packet discarding at a network node
 - at buffer overflow or earlier
 - discarding policy fairness, service differentiation
- Packet blocking at the network edge
 - packet waits in a queue outside the network


Group work:

- select solutions for streaming and for elastic flows
- find examples for the techniques above.

Congestion control techniques

- Should depend on the service requirements of the application
 - voice, video: minimum bandwidth requirement, delay sensitive
 - data: requires strict error control
- Call blocking at the network edge + rate control
 - calls blocked if resources are not available
 - the rate of accepted calls is controlled
- Packet discarding at a network node
 - buffer overflow or active queue management
 - discarding policy fairness, service differentiation
- Packet blocking at the network edge
 - packet waits in a queue outside the network

End-to-end window congestion control

- Basic idea:
- Window: Upper bound on the number of packets transmitted by A and not acknowledged by B.
- Input rate reduced if acknowledgements arrive slowly achieves congestion control

Fixed window based congestion control

- Congestion is indicated by increased RTT
- Simple case:
 - ACK after each packet reception
 - Window size W is
 - * decremented after each transmission
 - * incremented if ACK arrives
 - Transmission, if W > 0
 - No lost Data packet or ACK
 - Parameters
 - constant maximum window size (W_m)
 - constant packet transmission time (X: packet size/link rate [sec])
 - round-trip delay (rtt: propagation, transmission and queuing delays)
 - To calculate: maximum packet transmission rate (r: [packet/sec]) $r = \min\left(\frac{1}{X}, \frac{W_m}{rtt}\right)$
- Rate inversely proportional to round-trip delay
- Congestion control: large queuing delays large rtt lower rate
 - Reacts to congestion in W packets transmission time large window means slow reaction to congestion
 - What rtt value means congestion? When should the congestion control "be activated" (rtt= W_mX)?

Window control - packet delay

- Packet delay T ?
 - Delay: propagation, transmission and waiting at the queues in the multihop path
 - Queuing analysis in "steady state", for given network load
 - Model the network as a "black box", apply Little theorem for the entire network $(N = \lambda T)$
 - Assumptions:
 - arrival intensity constant (steady state) – arrival process is arbitrary
 - Infinite buffers no loss

$$N = \sum_{i=1}^{n} const_{i}W_{i}$$

$$T = \frac{N}{\lambda} = \frac{\sum_{i=1}^{n} const_{i}W_{i}}{\lambda}$$

n: active flows

 W_i : max window size for flow i

N: number of packets in the network

 λ : aggregate throughput of all flows

(no loss – infinite buffers!)

- For constant aggregate throughput (λ)
- Delay is proportional to the number of active sessions and to the window sizes

Window control

- How to select the window size?
 - Small window: OK packet delay, but low throughput (congestion control starts with low rtt)
 - Large window: OK throughput, but high packet delay and long reaction time

$$r = \min\left\{\frac{1}{X}, \frac{W}{rtt}\right\}$$

$$T = \frac{\sum_{i=1}^{n} const_{i}W_{i}}{\lambda}$$

- Dynamic window sizes are necessary to follow the network load
 - small window if the network is congested
 - large window if the network is low loaded
 - congestion is controlled by the window size not by the rtt
 - But what indicates the congestion: packet drop, increased rtt, ...

Congestion control-dynamic window size

- How to select the window size?
 - Small window: OK packet delay, but low throughput
 - Large window: OK throughput, but high packet delay
- Dynamic window sizes are necessary to follow the network load
 - Congestion is controlled by the window size not by the rtt
- TCP
 - Performance with dynamic window sizes comes now
 - More realistic models for TCP performance reading assignment

TCP congestion control

- Window based congestion control
- Dynamic window size:
 - decrease window size if congestion is detected (e.g., by packet loss)
 - increase window size if current rate does not cause congestion (e.g., no loss)
- How to increase and decrease the window sizes?
 - Additive-increase, multiplicative decrease (AIMD)
 - Efficient and fair (if all users get the same immediate indication of congestion): Chiu and Jain, 1989
 - Probing increase phase $w_{i+1} = w_i + b, 0 < b << w_{\max}$ in each rtt:
 - Congestion decrease phase: $W_{i+1} = aW_i, 0 < a < 1$
 - TCP: a=0.5, b=1
 - TCP additional phases: slow start, fast recovery – not considered now

Analysis – AIDM model

- Question: How does the throughput depend on the loss rate?
- Assumptions for a very simplified case
 - saturated source (always has packet to send)
 - constant background traffic (all other traffic), loss at the same window size
 - loss due to congestion only
 - loss is the only congestion indicator
 - transients negligible (long flows)
 - ⇒ we model a static congestion avoidance phase
 - constant round trip time (rtt)
 - rtt >> transmission time
 - constant packet size L
 - low loss probability (to simplify calculations)

 $W_{\rm m}/2$

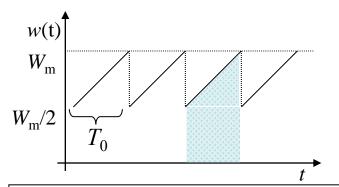
One packet loss here

- W increased to W+1 after rtt if there was no loss
- W decreased to W/2 after rtt if there was a loss

TCP throughput vs. packet loss

Th as a function of p and rtt

$$Th = \frac{(N-1)L}{T_0}$$


$$p = \frac{1}{N}, \quad N = \frac{1}{p}$$

$$T_0 = \frac{W_m}{2} rtt$$

$$N = \left(\frac{W_m}{2}\right)^2 + \frac{1}{2}\left(\frac{W_m}{2}\right)^2 = \frac{3}{8}W_m^2$$

$$W_m = \sqrt{\frac{8}{3}}\sqrt{N} = 2\sqrt{\frac{2}{3}}\frac{1}{\sqrt{p}}$$

$$Th = \frac{(N-1)L}{T_0} = \frac{\left(\frac{1}{p} - 1\right)L}{\sqrt{\frac{2}{3}} \frac{1}{\sqrt{p}} rtt} = \sqrt{\frac{3}{2}} \frac{L}{rtt} \left(\frac{1-p}{p}\right) \sqrt{p} \approx \sqrt{\frac{3}{2}} \frac{L}{rtt} \frac{1}{\sqrt{p}}$$

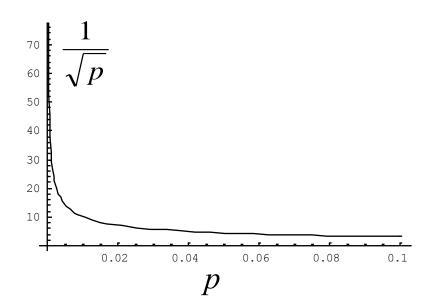
rtt: round trip time (s)

p: packet loss probability

L: packet length (bit)

Th: throughput (bit/s)

 $W_{\rm m}$: max window (packets)


 T_0 : cycle (s)

N: packets transmitted in one cycle

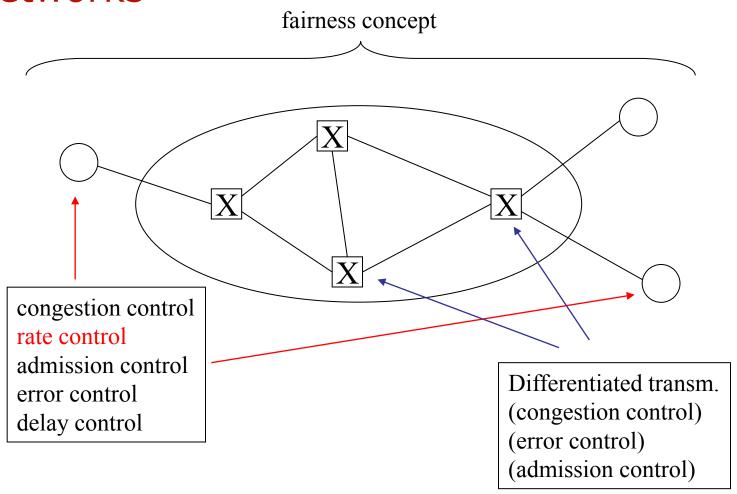
TCP throughput vs. packet loss

- Statement: throughput in steady state
 - varies as the inverse-square-root of the loss rate, and
 - is inversely proportional to the round trip time.

$$Th \approx \sqrt{\frac{3}{2}} \frac{L}{rtt} \frac{1}{\sqrt{p}}$$

Summary - Reading for next lecture

- Today:
 - Congestion control definition and possible solutions
 - End-to-end congestion control based on packet blocking at the network edge
 - Fixed window size schemes throughput, delay conflict
 - Dynamic window congestion control
 - Simple AIMD scheme and throughput analysis first steps towards evaluating TCP
- Home reading: TCP throughput random loss due to congestion
- J. Padhye, F. Firoiu, D. Towsley, J. Kurose, "Modeling TCP throughput: a simple model and its empirical validation," Sigcomm, 1998
 - Read sections 1, 2-2.1, 3, 4, 5
 - After reading the text you should be able to answer questions like:
 - What is the difference between the modeling assumptions presented on the lecture and in this paper?
 - What is captured in the paper that is not captured in the simple model from the lecture?
 - What are the factors that affect the throughput of a TCP flow?
 - What is missed in the main paper that is corrected in the "Comments"? Are the main results affected?

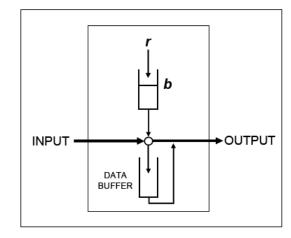

Project topics related to TCP

- Research areas where some of the assumptions are released or discussed:
 - TCP performance in high bandwidth-delay product networks
 - loss does not mean congestion: TCP over wireless links
 - loss distribution among sessions: active queue management for TCP

Recall and outline for today

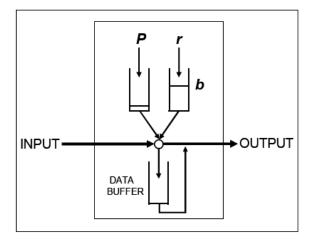
- Last lecture:
 - Congestion control definition and possible solutions
 - End-to-end congestion control based on packet blocking at the network edge
 - Fixed window size schemes throughput, delay conflict
 - Dynamic window congestion control
 - Simple AIMD scheme and throughput analysis first steps towards evaluating TCP
- Home reading: J. Padhye, F. Firoiu, D. Towsley, J. Kurose, "Modeling TCP throughput: a simple model and its empirical validation," Sigcomm, 1998

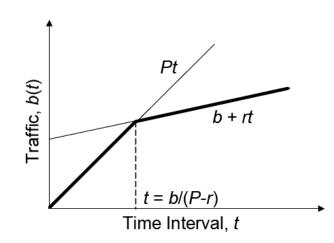
Control functions in communication networks



Rate control and guaranteed service

- Contract between the user and the network
 - If the user satisfies a traffic constraint,
 - Then the network provides delay, delay jitter (and loss) limits
- Rate control during the connection time
 - peak rate
 - average rate
 - burstiness (e.g., max. number of packets transmitted without time gap)
- Window based control (r,T)
 - n maximum number of packets per T: average rate (r=n/T)
 - jumping or sliding window versions
 - Problems
 - small average rate requires large T slow reaction
 - no burstiness control within T max burst size (packets transmitted back to back) is coupled to T and n: (jumping: b=2n=2rT, sliding: b=n=rT)
- Traffic envelope
 - max transmitted data within any time interval is given by a function b(t)
 - how to implement it?


Rate control – Leaky-bucket


- Leaky-bucket scheme
 - Version 1: average rate and max burst size
 - token buffer (b)
 - token generation rate (r)
 - packets from "input" enter data buffer, waiting for service
 - packet transmitted to "output" if there is a token in the token buffer
 - token removed at packet transmission
 - Result:
 - traffic envelope: b(t)=b+rt
 - average rate: (b+rt)/t
 - Note: from "output" the packets enter a transmission buffer (MAC)
 - Note: t is not the time from the system start, but any interval t during the transmission

Rate control – Leaky-bucket

- Leaky-bucket scheme
 - Version 2: peak rate, average rate and max burst size
 - average rate buffer (b)
 - average token generation rate (r)
 - peak rate buffer (1)
 - peak token generation rate (P>r)
 - packets from "input" enter data buffer, waiting for service
 - packet transmitted to "output" if there is at least one token in both token buffers
 - tokens removed at packet transmission
 - Result:
 - traffic envelope b(t)

Summary

- Congestion control
 - window based congestion control
 - AIMD schemes and TCP
- Rate control
 - to control the average rate, burstiness or peak rate of traffic injected to the network
 - with the goal of providing service guarantees
 - Solutions
 - window based problem with rate and burtiness coupling
 - traffic envelope based leaky bucket