Introduction to problem solving in CS

Computer Applications in Power Systems – Advance course EH2750 Dr. Arshad Saleem 10-Sep-12

outline

- Prt I
- KTH VETENSKAP OCH KONST OF

- Lecture objectives
- revisting Architecture
- System development lifecycle
- Problem solving steps in CS
- Part II
 - Introduction to programming languages and OOPs in JAVA

Lecture objectives

- Make you start thinking in terms of CS based problem solving
 - From component to system level approach
 - From signals to actors and functions
 - From block diagram to architecture and design
 - From matLAB to Java

What is Architecture?

- Description of system in terms of its subcompoents, functions, internal interactions and interfaces
 - UML diagrams and Reference architecture are kind of templates
 - Architecture is trasformed into a implementation
 - Enables reusability, changeability, interoperability
 - We are mostly intereste in system and control architecture

System development life cycle

Problem solving steps in CS

- 1. Understand the Problem
- 2. Formulate a Model
- 3. Develop an Algorithm
- 4. Write the Program
- 5. Test the Program and evaluate the solution

Understand the Problem

- Understand the objectives
- Understand and identify entities and functions
- Understand inputs and outputs
- Do i have everyting i need
- What is missing
- What do I want the result to look like ... text, a picture, a graph, control signal, setpoint ... ?

What it will be in case of overcurrent relay operation?

Formulate a Model

- Understand the processing/computation part of the problem
- break down into smaller problems if possible
- Formulate the problem into mathematial formulation
 - Use some existing or design new one

Develop an Al

- come up with a precise want the computer to c
 - Sequence of instructic for solving the probler
- KTH VETENSKAP OCH KONST
- Two commonly used re algorithm is by using (1 (2) *flow charts*

 Sequence, condition and repition

Write the Pro

- Transform the algor written in a program
- Follow the language
- Implement hardwar
 connections etc

 This is much easier and clean if previous steps are done properly

Testing and result evaluation

- make sure that it solves the problem that it was intended to solve
- All possible conditions have been tested
- Results are presneted properly
- Joy of 'It Works'

Problem solving steps in CS

- 1. Understand the Problem
- 2. Formulate a Model
- 3. Develop an Algorithm
- 4. Write the Program
- 5. Test the Program and evaluate the solution

System development life cycle

