Sinusoidal Steady State

Figure 3-2 Sinusoidal steady state.

Three-Phase Circuit

Figure 3-3 Three-phase circuit.

Diode Rectifier

Figure 2-1 Diode: (a) symbol, (b) i-v characteristic, (c) idealized characteristic.

Figure 5-2 Basic rectifier with a load resistance.

• Resistive load

A Simple Circuit (R-L Load)

Figure 5-3 Basic rectifier with an inductive load.

• The current continues to flow for a while even after the input voltage has gone negative

A Simple Circuit (Load has a dc back-emf)

Figure 5-4 Basic rectifier with an internal dc voltage.

- Current begins to flow when the input voltage exceeds the dc back-emf
- Current continues to flows for a while even after the input voltage has gone below the dc back-emf

Single-Phase Diode Rectifier Bridge

Figure 5-5 Single-phase diode bridge rectifier.

Figure 5-6 Idealized diode bridge rectifiers with $L_s = 0$.

Redrawing Diode-Rectifier Bridge

Figure 5-7 Redrawn rectifiers of Fig. 5-6.

• Two groups, each with two diodes

Waveforms with a purely resistive load and a pure direct current at the output

• In both cases, the dc-side voltage waveform is the same

Figure 5-8 Waveforms in the rectifiers of (a) Fig. 5-6a and (b) Fig. 5-6b.

Fourier Analysis

Symmetry	Condition Required	a_h and b_h				
Even	f(-t)=f(t)	$b_h = 0$ $a_h = \frac{2}{\pi} \int_0^{\pi} f(t) \cos(h\omega t) d(\omega t)$				
Odd	f(-t) = -f(t)	$a_h = 0$ $b_h = \frac{2}{\pi} \int_0^{\pi} f(t) \sin(h\omega t) d(\omega t)$				
Half-wave	$f(t) = -f(t + \frac{1}{2}T)$	$a_{h} = b_{h} = 0 \text{ for even } h$ $a_{h} = \frac{2}{\pi} \int_{0}^{\pi} f(t) \cos(h\omega t) d(\omega t) \text{ for odd } h$ $2 \int_{0}^{\pi} f(t) \cos(h\omega t) d(\omega t) \text{ for odd } h$				
Even	Even and half-wave	$b_{h} = -\frac{1}{\pi} \int_{0}^{\infty} f(t) \sin(h\omega t) \ d(\omega t) \text{for odd } h$ $b_{h} = 0 \text{for all } h$				
quarter-wave		$a_h = \begin{cases} \frac{4}{\pi} \int_0^{\pi/2} f(t) \cos(h\omega t) \ d(\omega t) & \text{for odd } h \\ 0 & \text{for even } h \end{cases}$				
Odd quarter-wave	Odd and half-wave	$a_{h} = 0 \text{for all } h$ $\int \frac{4}{\pi} \int \frac{\pi^{2}}{2} f(t) \sin(h\omega t) d(\omega t) \text{for odd } h$				
		$b_h = \begin{cases} \pi J_0 \\ 0 \end{cases} \text{for even } h$				

Table 3	3-1	Use o	of S	Symmetry	in	Fourier	Anal	lysis
					_			

Diode-Rectifier Bridge Input Current

Figure 5-9 Line current i_s in the idealized case.

• Idealized case with a purely dc output current

Diode-Rectifier Bridge Analysis with AC-Side Inductance

Figure 5-10 Single-phase rectifier with L_s .

• Output current is assumed to be purely dc

Understanding Current Commutation

Figure 5-11 Basic circuit to illustrate current commutation. Waveforms assume $L_s = 0$.

Figure 5-12 (a) Circuit during the commutation. (b) Circuit after the current commutation is completed.

Current Commutation Waveforms

Figure 5-13 Waveforms in the basic circuit of Fig. 5-11. Note that a large value of L_s is used to clearly show the commutation interval.

• Shows the volt-seconds needed to commutate current

```
Copyright © 2003
by John Wiley & Sons, Inc.
```

Current Commutation in Full-Bridge Rectifier

Figure 5-14 (a) Single-phase diode rectifier with L_s . (b) Waveforms.

• Shows the necessary volt-seconds