Due, 2012-09-24
Mats Bengtsson/Björn Ottersten

Homework \# 4

1. We have the following measurement equation $y_{k}=H_{k} x_{k}+v_{k}$, where v_{k} is zero-mean Gaussian with covariance R_{k}. Show that if R_{k} is singular, some linear functional of x_{k} is determined by y_{k} with zero error, i.e., there exists a vector a_{k} such that y_{k} determines $a_{k}^{T} x_{k}$.
2. Consider the standard state-space model with $S_{k}=0$ and assume $\Pi_{0}>0$.
a) Show that the covariance of a two-step predictor is given by

$$
P_{k+1 \mid k-1}=F_{k} P_{k} F_{k}^{*}+G_{k} Q_{k} G_{k}^{*}
$$

b) Find a relationship between $\tilde{x}_{k+1 \mid k-1}$ and \tilde{x}_{k+1} and use it to show that

$$
P_{k+1 \mid k-1}=P_{k+1}+F_{k} P_{k} H_{k}^{*}\left(R_{k}+H_{k} P_{k} H_{k}^{*}\right)^{-1} H_{k} P_{k} F_{k}^{*}
$$

3. Your task is to derive a Kalman based solution to estimate the initial state value x_{0} given measurements $\left\{y_{0}, y_{1}, \ldots, y_{k}\right\}$. Assume the standard state-space model with $S_{k}=0$.
Hint: Introduce an extended state vector $\left[\begin{array}{l}x_{k} \\ x_{k}^{0}\end{array}\right]$, where $x_{k+1}^{0}=x_{k}^{0}$ for all $k \geq 0$, in addition to the standard state-space model. Show that the resulting estimate is given by the standard Kalman filter for x_{k}, extended with the following equations,

$$
\begin{aligned}
& K_{k}^{0}=P_{k}^{0} H_{k}^{*}\left(H_{k} P_{k \mid k-1} H_{k}^{*}+R_{k}\right)^{-1} \\
& \hat{x}_{0 \mid k}=\hat{x}_{k}^{0}=\hat{x}_{k-1}^{0}+K_{k}^{0}\left(y_{k}-H_{k} \hat{x}_{k \mid k-1}\right) \\
& P_{k+1}^{0}=P_{k}^{0} F_{k}^{*}-K_{k}^{0} H_{k} P_{k \mid k-1} F_{k}^{*} \\
& P_{k+1}^{00}=P_{k}^{00}-K_{k}^{0} H_{k} P_{k}^{0}
\end{aligned}
$$

which are initialized by

$$
\begin{aligned}
& \hat{x}_{-1}^{0}=\hat{x}_{0 \mid-1} \\
& P_{0}^{00}=P_{0}^{0}=P_{0 \mid-1}
\end{aligned}
$$

Explain also what P_{k}^{0} and P_{k}^{00} denote.
4. Filtered residuals μ_{k} are defined as

$$
\begin{aligned}
y_{k} & =H_{k} x_{k}+v_{k} \\
\mu_{k} & =y_{k}-H_{k} \hat{x}_{k \mid k}
\end{aligned}
$$

Show that
a) $\mu_{k}=R_{k} R_{e_{k}}^{-1} e_{k}$
b) $\left\{\mu_{k}\right\}$ is a white sequence with covariance matrix

$$
R_{k}^{\mu}=R_{k}-H_{k} P_{k \mid k} H_{k}^{*}
$$

