
OPTIMAL FILTERING

LECTURE 4

1. The innovations process

2. Derivation of the Kalman filter, innovations approach

Reading instructions: Kailath, Sect. 9.1-9.4
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THE INNOVATIONS PROCESS

Let {yk}, be a sequence of Gaussian random variables. The

innovations process {ỹk|k−1} can be regarded as the new information

brought by yk that cannot be determined from the past.

ỹk|k−1 = yk − ŷk|k−1 .

Sometimes we denote the innovations

ek = ỹk|k−1 = yk − ŷk|k−1 .

• Note that ek is a linear function of y0, y1, . . . , yk since ŷk|k−1 is

the l.l.s.e.

• ek is orthogonal to y0, y1, . . . , yk−1 by the projection principle
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This implies that {ek} is a white process.

To see this:

ek = w
︸︷︷︸

1× (k + 1) vector

yk where yk =








y0

...

yk








linear transformation of the observations.

Then, we have

E{eke∗l } = E{eky
∗
l w

∗} = 0 if k > l

E{eke∗l } = E{wyke∗l } = 0 if l > k
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Innovations Process, Other Properties

• In HW#2, you showed that {ek} can be obtained by a causal

linear transformation of {yk}. This transformation is causally

invertible. Can be obtained, for example, by Gram-Schmidt

orthogonalization.

• The same information is contained in {yk} and {ek}!

=⇒

x̂·|k = the l.l.s.e. of x given {y0, . . . , yk}

= the l.l.s.e. of x given {e0, . . . , ek}

x̂·|k = E{x|y0, . . . , yk} = E{x|e0, . . . , ek} = \ek white\

= E{x|e0} + · · · + E{x|ek−1} + E{x|ek}

= x̂·|k−1 + E{x|ek}
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To Summarize

x̂·|k = x̂·|k−1 + E{x|ek}

ek = yk − ŷk|k−1 = yk −

k−1∑

j=0

E{yke∗j}E{eje
∗
j}

−1ej

These simple formulas are the key to many results in l.l.s.e. theory.
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The Kalman Filter,

Innovations Approach

Assumptions:

xk+1 = Fkxk + Gkwk k ≥ 0

yk = Hkxk + vk

E




wk

vk





[

w∗
l v∗

l

]

=




Qk Sk

S∗
k Rk



 δk,l

Ex0 = 0, Ewk = 0, Evk = 0

Ex0x
∗
0 = Π0, Ex0v

∗
k = 0, Ex0w

∗
k = 0

Innovations:

ek = yk − ŷk|k−1 (1)
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Main results from the derivations

ŷk|k−1 = Hkx̂k|k−1 (2)

x̂k+1|k−1 = Fkx̂k|k−1 (4)

ek = yk − Hkx̂k|k−1 k > 0

x̂k+1|k = Fkx̂k|k−1 + Kkek k ≥ 0 (5)

Kk = E{xk+1e
∗
k}R

−1
ek

e0 = y0, x̂0|−1 = 0

Same without innovations:

x̂k+1|k = (Fk − KkHk)x̂k|k−1 + Kkyk (5’)
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Finding Kk and R
−1
ek

Note: These quantities are non-random and determined by our

model and assumptions, not on the actual observations.

Notation:

x̃k|k−1 = xk − x̂k|k−1

Pk
︸︷︷︸

previously called Pk|k−1

= E{x̃k|k−1x̃
∗
k|k−1}

Main steps in the derivations:

Rek
= HkPkH∗

k + Rk (6)

Kk = (FkPkH∗
k + GkSk)R−1

ek
(7)

Discrete-time Riccati equation:

Pk+1 = FkPkF ∗
k + GkQkG∗

k − KkRek
K∗

k k ≥ 0 (8)
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Resulting Kalman Filter Equations

ek = yk − Hkx̂k|k−1 k > 0

x̂k+1|k = Fkx̂k|k−1 + Kkek k ≥ 0

Rek
= HkPkH∗

k + Rk

Kk = (FkPkH∗
k + GkSk)R−1

ek

Pk+1 = FkPkF ∗
k + GkQkG∗

k − KkRek
K∗

k k ≥ 0

P0 = Π0

X0|−1 = 0

So-called predicted estimates form.
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Kalman Gain

Kk is called the Kalman gain.

It tells us how much we should adjust our estimate x̂k+1|k based on

the measurements yk.

Kk small =⇒ trust the model

Kk large =⇒ trust the measurements
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