OPTIMAL FILTERING

LECTURE 4

1. The innovations process

2. Derivation of the Kalman filter, innovations approach

Reading instructions: Kailath, Sect. 9.1-9.4
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THE INNOVATIONS PROCESS

Let {yi}, be a sequence of Gaussian random variables. The
innovations process {¥x—1} can be regarded as the new information

brought by y; that cannot be determined from the past.

Uklk—1 = Yk — Uk|k—1 -

Sometimes we denote the innovations

ek = Uklk—1 = Yk — Uk|k—1 -

e Note that e is a linear function of yo,y1,...,yr since gy x—1 is
the l.L.s.e.
e ¢ is orthogonal to yg,y1,...,Yx—1 by the projection principle
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This implies that {e;} is a white process.

To see this:
Yo
= WYy wh =
(& ~— k ere Yyg

1 x (k+ 1) vector n

linear transformation of the observations.

Then, we have
Elere;} = E{exy[w '} =0 if k>1
Elere]} = E{wyre;} =0 if [ >k
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INNOVATIONS PROCESS, OTHER PROPERTIES

e In HW+#2, you showed that {e;} can be obtained by a causal
linear transformation of {y}. This transformation is causally
invertible. Can be obtained, for example, by Gram-Schmidt

orthogonalization.

e The same information is contained in {y;} and {ej}!
—

f~|k = the Lls.e. of = given {yo,...,yx}

= the Lls.e. of = given {eg, ..., ex}

T, = E{z|yo, ..., yx} = E{z|eo, ..., ex} = \ex white\
= F{zxlep} + -+ + E{zlex_1} + E{x|er}
= 2. k-1 + E{z|ex}
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TO SUMMARIZE

Tk = &gk + E{zlex}
k-1

€k =Yk — Yrlk—1 = Yk — ZE{yke;}E{Eje;}_lej
=0

These simple formulas are the key to many results in l.l.s.e. theory.

Bjorn Ottersten, Mats Bengtsson 5 Optimal Filtering

THE KALMAN FILTER,
INNOVATIONS APPROACH

Assumptions:
Tpy1 = Frxp + Grwy, k>0
yr = Hpzp + vy
2| [wz* Uﬂ _ Qr Sk 50l
Vg S; Ry
Exy =0, Fw, =0, FEv, =0
Exgzy = 1, Exgv;, =0, Exowy, =0
Innovations:
ek = Yk — Uk|k—1 (1)
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MAIN RESULTS FROM THE DERIVATIONS

Urjk—1 = HpZpp—1 (2)

Tpi1k—1 = FeZpr—1 (4)

er = Yk — HpZpp—1 k>0

Tk = FrZppp—1 + Kreg k>0 (5)
K = E{:z:k+1e,";}Re_k1
€0 = Yo, Zo—1 =0

Same without innovations:

Tk = (Fr — KpHy)Trpp—1 + Ky (5%)
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FINDING Kj; AND R_'

Note: These quantities are non-random and determined by our

model and assumptions, not on the actual observations.
Notation:
Tplk—1 = Tk — Th|p—1
P, = FE{x z; }
klk—1"k|k—1
Le r1 i

previously called Py ;,_;

Main steps in the derivations:
R., = H,PH; + Ry (6)
Ky = (FyPuH; + GpSk)R.! (7
Discrete-time Riccati equation:

Py = FkPkFg + GkaGZ — KkRekK]: k>0 (8)
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RESULTING KALMAN FILTER EQUATIONS

ek = Yk — HpZp 1 k>0
Trppipe = FrZpp—1 + Kreg k>0
R., = H.P Hf + Ry,
Ky = (FpPyHy + GpSk)R,!
Pyt = Fp P Fy; + GrQrGr, — K Re, K, k>0
Py =TI,
Xoj_1 =0

So-called predicted estimates form.
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KALMAN GAIN

Ky, is called the Kalman gain.

It tells us how much we should adjust our estimate %, based on

the measurements y;.
K}, small = trust the model

K}, large = trust the measurements
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