
OPTIMAL FILTERING

LECTURE 5

1. Time Invariance of the Kalman Filter

2. Frequency Domain Expressions

Reading instructions: Kailath, Sect. 1.5, 14.1-14.3, 8.1-8.5, App. D.1, App.

E.1-E.6 (Regarding Extended Kalman Filtering, please read 9.7, as an

introduction to what is coming.)
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ASSUMPTIONS TODAY

• The system described by the state space equations is time invariant, i.e.

Fk = F , Gk = G, Hk = H .

• The random processes associated with the system are stationary, i.e.

a) Qk = Q, Sk = S, Rk = R

b) the system is stable, |λi{F}| < 1

c) Π0 = P̄ , i.e. E{x0x
∗
0} = E{x̃k|k−1x̃

∗
k|k−1} = P̄ .

This implies that the Kalman filter is time invariant!

If cItem.5) is not met, the Kalman filter will, in general, be time varying but will

converge to a time invariant filter.

The process {xk} will be asymptotically stationary.
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TIME INVARIANT SYSTEM

xk+1 = Fxk +Gwk

yk = Hxk + vk

{xk} stationary =⇒

Πk+1 = E{xk+1x
∗
k+1} = FΠkF

∗ +GQG∗

Πk = Πk+1 = Π̄

Lyapunov equation: Π̄ = F Π̄F ∗ +GQG∗

Theorem: If [F,GQ∗/2] is controllable, |λi{F}| < 1 implies that

Π̄ = F Π̄F ∗ +GQG∗ has a unique positive definite solution. The converse is

also true.
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SOME DEFINITIONS

Controllable (completely reachable):

rank
[
G FG · · · Fn−1G]

]
= n

Positive definite (PD): Let A be n× n Hermitian (A = A∗).

A is PD iff x∗Ax > 0, ∀x ∈ Cn×1, x ̸= 0.

This is equivalent to λi(A) > 0, ∀i = 1, . . . , n.

Positive semidefinite (PSD): x∗Ax ≥ 0, ∀x or equivalently, λi(A) ≥ 0.

A covariance matrix must be PSD. Show this!
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Lyapunov equation may be solved in a number of ways:

• linear set of equations

• infinite series

• contractive mappings
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TIME INVARIANT KALMAN FILTER

If the system is time-invariant and stable and the noise process is stationary, the

Kalman filter converges to a time invariant filter.

=⇒ lim
k→∞

Pk|k−1 = P̄

where P̄ satisfies the “discrete-time algebraic Riccati equation” (DARE)

P̄ = FP̄F ∗ +GQG∗ −KReK
∗

= F
(
P̄ − P̄H∗(HP̄H∗ +R)−1HP̄

)
F ∗ +GQG∗

If the filter is initialized with Π0 = P̄ , it is time invariant.
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FREQUENCY DOMAIN EXPRESSIONS

Recall that for a stationary process (zero-mean) {ak}

E{aka∗l } = ra(k − l)

Power spectrum: Φa(z) =

∞∑
k=−∞

ra(k)z
−k, ρ < |z| < ρ−1

Power spectrum of filtered signal: Transfer function H(z) from {ak} to {bk}
=⇒ Φb(z) = H(z)Φa(z)H

∗(z−∗)
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POWER SPECTRUM OF {xk} AND {yk}

Autocorrelation for {xk}:

E{xk+lx
∗
k} =

F lΠ̄ l ≥ 0

Π̄F ∗−l l < 0

Power spectrum of {xk}: xk+1 = Fxk +Gwk gives transfer function

(zI − F )−1G from {wk} to {xk}. Therefore,

Φx(z) = (zI − F )−1GQG∗(z−1I − F ∗)−1

Power spectrum of {yk}: For general S,

Φy(z) = H(zI − F )−1GQG∗(z−1I − F ∗)−1H∗

+H(zI − F )−1GS + S∗G∗(z−1I − F ∗)−1H∗ +R

Björn Ottersten, Mats Bengtsson 7 Optimal Filtering

SPECIAL CASE, S = 0

If S = 0, then

Φy(z) = HΦx(z)H
∗ +R = H(zI − F )−1GQG∗(z−1I − F ∗)−1H∗ +R

= (I +H(zI − F )−1K)(HP̄H∗ +R)(I +K∗(z−1I − F ∗)−1H∗)

Proof 1: The innovations model (ek = ỹk|k−1 = yk − ŷk|k−1)

x̂k+1|k = Fx̂k|k−1 +Kek

yk = Hx̂k|k−1 + ek

gives transfer function (I +H(zI − F )−1K) from {ek} to {yk}.

Also, {ek} is temporally white with covariance Re = (HP̄H∗ +R).

Spectral factorization of Φy(z):

Φ+
y (z) = (I +H(zI − F )−1K)(HP̄H∗ +R)1/2

If the Kalman filter is asymptotically stable, this is minimum phase and stable.
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