
1
Distributed Systems ID2201

Distributed Systems
ID2201

coordination
Johan Montelius

2
Distributed Systems ID2201

Coordination

• Coordinating several threads in one node is
a problem, coordination in a network is of
course worse:
– failure of nodes and networks
– no fixed coordinator
– no shared memory

• Coordination is often the problem of:
– deciding who is to decide
– knowing who is alive.

3
Distributed Systems ID2201

Fundamental models

• Interaction model:
– Is the system asynchronous or

synchronous?
– Can we assume a node has crashed if it

does not reply?
• Failure model:

– Will nodes crash?
– Will crash nodes return to life?
– Is crashing the only failure?

4
Distributed Systems ID2201

Failure detectors

• How do we detect that a process has
crashed and how reliable can the
result be?
– unreliable: result in unsuspected or

suspected failure
– reliable: result in unsuspected or

failed
• Reliable detectors are only possible in

synchronous systems.

5
Distributed Systems ID2201

Distributed algorithms

• We will look at some distributed
algorithms and consider:
– reliable systems: if nothing goes

wrong
– unreliable systems: but nodes fail by

crashing and this can be detected by
reliable failure detectors

6
Distributed Systems ID2201

Three sides of the same coin

• Mutual exclusion
– Decide who is to enter a critical

section.
• Leader election

– Decide who is to be the new leader.
• Atomic multicast

Which messages, and in which
order, should be deliverd.

7
Distributed Systems ID2201

Distributed mutual exclusion

• Requirements
– Safety: at most one process may be in

critical section at a time
– Liveness: starvation free, deadlock free
– Ordering: allowed to enter in request

happened-before order

8
Distributed Systems ID2201

Evaluation

• Number of messages needed.
• Client delay:

– worst,
– mean or, average time to enter critical

section
• Synchronization delay: how long time

between exit and enter.

9
Distributed Systems ID2201

Central service algorithm

• Requirements?
– safety
– liveness
– ordering

req

release

grant

queue

10
Distributed Systems ID2201

Ordering - what is a request

A

B

Server

11
Distributed Systems ID2201

Performance

• messages
– enter: request, grant
– exit: release

• client delay
– enter: message round trip plus waiting

in queue
– exit: constant (asynchronous message)

• synchronization delay
– round trip: release - grant

12
Distributed Systems ID2201

Failure

• What can happens if we allow nodes to
fail?
– a client
– a client holding the token
– the server

• What if we have reliable failure
detectors?

• Can we do with unreliable failure
detectors?

13
Distributed Systems ID2201

Ring-based algorithm

• Requirements
– safety
– liveness
– ordering

14
Distributed Systems ID2201

Ring-based algorithm

• Performance
– messages
– client delay
– synchronization delay

• Failure
– the lost token

15
Distributed Systems ID2201

Distributed algorithm

• Send request to all
peers.

• When all peers have
acknowledged the
request, enter the critical
section.

• What could go wrong?

16
Distributed Systems ID2201

Distributed algorithm

• Break deadlock
– introduce priority

• Fairness
– Ricart and Agrawala

17
Distributed Systems ID2201

Ricart and Agrawala
• Enter:

– enter state waiting and broadcast a request {T,i}
containing a Lamport time stamp T and process id
I to all peers

– wait for replies from all peers
– enter state held

• Receiving a request {R,j}:
– if held or (waiting and {T,i} < {R,j}) then queue

request, else reply ok

• Exit:
– reply to all queued requests

18
Distributed Systems ID2201

Ricart and Agrawala
• Requirements

– safety, liveness, ordering
• Efficiency

– messages
– client delay
– synchronization delay

• Failure
– not so good

19
Distributed Systems ID2201

Maekawa's voting

• Why have permission from all peers, it's
sufficient to have votes from a subset S if
no one can enter with the votes from the
complement of S.

• The subset S is called a quorum.

20
Distributed Systems ID2201

Maekawa's voting

• Requirements
– safety
– liveness
– ordering

21
Distributed Systems ID2201

Maekawa's voting

• Efficiency
– messages: twice sqrt(N)
– client delay: round trip
– synchronization delay: one

message
• Failure

– not that bad?

22
Distributed Systems ID2201

Election

• Many algorithms require a server but if no
node is assigned to be the server or if the
server crashes we need to find a new
server.

• Assumptions:
– any node can call an election but it can

only call one at a time
– a node is either participant or non-

participant
– nodes have identifiers that are ordered

23
Distributed Systems ID2201

Election

• Requirements
– safety: a participant is either non-decided or

decided with P, a unique non crashed node

– liveness: all nodes eventually participate and
decide on a elected node

• Efficiency
– number of messages
– turnaround time: delay from call to close

24
Distributed Systems ID2201

Ring-based election
12

3

18

9

11

23

14

v-18

12

3

18

9

11

23

14
e-23

12

3

18

9

11

23

14

25
Distributed Systems ID2201

Ring-based election
12

3

18

9

11

23

14

v-18

v-23

12

3

18

9

11

23

14

v-18

v-23

12

3

18

9

11

23

14

v-18

v-23
12

3

18

9

11

23

14

v-23

26
Distributed Systems ID2201

Ring-based election

• Requirements
– safety
– liveness

• Efficiency
– messages: best case, worst case?
– turnaround:

• Failure
– hmm, ...

27
Distributed Systems ID2201

The bully algorithm

• Nodes have identifiers and are ordered.
• Any node can reliably send messages to

any other higher node.
• Nodes can crash (and remain dead) and

this is reliably detected.
• Algorithm starts when a node detects

that the coordinator has crashed.

28
Distributed Systems ID2201

The bully algorithm

29
Distributed Systems ID2201

The bully algorithm

• Requirements
– safety ... hmm
– liveness

• Efficiency
– Messages:

• best case, worst case
– Turnaround:

30
Distributed Systems ID2201

Multicast communication

• Multicast:
– Sending a message to a specified

group of n nodes.
• Reliable multicast:

– All nodes see the same messages.
• Atomic multicast:

– All nodes see the same messages in
the same order.

31
Distributed Systems ID2201

Model

send

deliver

receive

deliver

receive

group

32
Distributed Systems ID2201

Requirements

• Integrity
– a process delivers a message at most

once and only deliver messages that have
been sent

• Validity
– if a process multicast m then it will also

eventually deliver m
• Agreement

– if a process delivers m then all processes
in the group eventually delivers m

33
Distributed Systems ID2201

Basic multicast

• To b-multicast a message m:
– send m to each process p

• If m is received:
– b-deliver m

• What was the problem?

34
Distributed Systems ID2201

Basic multicast

b-multicast m receive m deliver m

crash

35
Distributed Systems ID2201

Reliable multicast
• Can we implement reliable (atomic)

multicast if the only thing we have is
basic multicast?

b-multicast m b-multicast m

r-deliver m

r-deliver m

b-multicast m

36
Distributed Systems ID2201

Ordered multicast

• The problem with the reliable multicast is
that multicast messages might arrive in
different order at different nodes.

• Requirements:
– FIFO order: delivered in order as sent by the

sender
– Causal order: delivered in order as happened

before sent order
– Total order: delivered in same order by all

processes

37
Distributed Systems ID2201

Sequencer

m-cast m

 m

message
queue

38
Distributed Systems ID2201

Distributed - ISIS

• Multicast a message and request a sequence
number.

• When receiving a message, propose a sequence
number (including process id) and place in an
ordered hold-back queue.

• After collecting all proposals, select the highest
and multicast agreement.

• When receiving agreement tag message as
agreed and reorder hold-back queue.

• If first message in queue is decided then deliver.

39
Distributed Systems ID2201

the hold-back queue

{m1, proposed <2,i>}

{m2, agreed <3,e>}

{m3, agreed <3,k>}

{m4, proposed <4,i>}
{m5, proposed <5,i>}

deliver

What happened here?

What will the agreed
sequence number be?

40
Distributed Systems ID2201

Causal ordering

• How can we implement casual ordering?
– multicast vector clock holds number of

multicast operations
– tag each multicast message with multicast

clock
– hold b-delivered messages until clock of

message is less (modulo sender) than own
current message clock

– update own message clock

• Only multicasted messages are counted.

41
Distributed Systems ID2201

Summary

• Coordination in distributed systems is
problematic.

• If we have a fixed set of nodes and can
detect failures there are many solutions.

• Three sides of the same coin:
– mutual exclusion
– leader election
– atomic multicast

	Title
	descr
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

