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Coordination

• Coordinating several threads in one node is 
a problem, coordination in a network is of 
course worse:
– failure of nodes and networks
– no fixed coordinator
– no shared memory

• Coordination is often the problem of:
– deciding who is to decide 
– knowing who is alive.
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Fundamental models

• Interaction model:
– Is the system asynchronous or 

synchronous?
– Can we assume a node has crashed if it 

does not reply?
• Failure model:

– Will nodes crash?
– Will crash nodes return to life?
– Is crashing the only failure?
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Failure detectors

• How do we detect that a process has 
crashed and how reliable can the 
result be?
– unreliable: result in unsuspected or 

suspected failure
– reliable: result in unsuspected or 

failed 
• Reliable detectors are only possible in 

synchronous systems.
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Distributed algorithms

• We will look at some distributed 
algorithms and consider: 
– reliable systems: if nothing goes 

wrong
– unreliable systems: but nodes fail by 

crashing and this can be detected by 
reliable failure detectors
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Three sides of the same coin

• Mutual exclusion
– Decide who is to enter a critical 

section.
• Leader election

– Decide who is to be the new leader.
• Atomic multicast

Which messages, and in which 
order, should be deliverd.
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Distributed mutual exclusion

• Requirements
– Safety: at most one process may be in 

critical section at a time
– Liveness: starvation free, deadlock free
– Ordering: allowed to enter in request 

happened-before order
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Evaluation

• Number of messages needed.
• Client delay: 

– worst, 
– mean or, average time to enter critical 

section
• Synchronization delay: how long time 

between exit and enter.
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Central service algorithm

• Requirements?
– safety
– liveness 
– ordering

req

release

grant

queue
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Ordering - what is a request 

A

B

Server
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Performance

• messages
– enter: request, grant
– exit: release

• client delay 
– enter: message round trip plus waiting 

in queue
– exit: constant (asynchronous message)

•  synchronization delay
– round trip: release - grant
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Failure

• What can happens if we allow nodes to 
fail?
– a client
– a client holding the token
– the server

• What if we have reliable failure 
detectors?

• Can we do with unreliable failure 
detectors?
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Ring-based algorithm

• Requirements
– safety
– liveness
– ordering
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Ring-based algorithm

• Performance
– messages 
– client delay
– synchronization delay

• Failure
– the lost token



15
Distributed Systems ID2201

Distributed algorithm

• Send request to all 
peers.

• When all peers have 
acknowledged the 
request, enter the critical 
section.

• What could go wrong?
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Distributed algorithm

• Break deadlock
– introduce priority

• Fairness
– Ricart and Agrawala
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Ricart and Agrawala
• Enter:

– enter state waiting and broadcast a request {T,i} 
containing a Lamport time stamp T and process id 
I to all peers

– wait for replies from all peers
– enter state held

• Receiving a request {R,j}:
– if held or (waiting and {T,i} < {R,j}) then queue 

request, else reply ok 

• Exit: 
– reply to all queued requests
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Ricart and Agrawala
• Requirements

– safety, liveness, ordering
• Efficiency

– messages
– client delay
– synchronization delay

• Failure
– not so good
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Maekawa's voting

• Why have permission from all peers, it's 
sufficient to have votes from a subset S if 
no one can enter with the votes from the 
complement of S.

• The subset S is called a quorum.



20
Distributed Systems ID2201

Maekawa's voting

• Requirements
– safety
– liveness
– ordering
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Maekawa's voting

• Efficiency
– messages: twice sqrt(N)
– client delay: round trip
– synchronization delay: one 

message 
• Failure

– not that bad?
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Election

• Many algorithms require a server but if no 
node is assigned to be the server or if the 
server crashes we need to find a new 
server. 

• Assumptions:
– any node can call an election but it can 

only call one at a time
– a node is either participant or non-

participant
– nodes have identifiers that are ordered
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Election

• Requirements
– safety: a participant is either non-decided or 

decided with P, a unique non crashed node

– liveness: all nodes eventually participate and 
decide on a elected node

• Efficiency
– number of messages
– turnaround time: delay from call to close



24
Distributed Systems ID2201

Ring-based election
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Ring-based election
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Ring-based election

• Requirements
– safety
– liveness

• Efficiency
– messages: best case, worst case?
– turnaround: 

• Failure
– hmm, ...
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The bully algorithm

• Nodes have identifiers and are ordered.
• Any node can reliably send messages to 

any other higher node.
• Nodes can crash (and remain dead) and 

this is reliably detected.
• Algorithm starts when a node detects 

that the coordinator has crashed.
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The bully algorithm
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The bully algorithm

• Requirements
– safety ... hmm
– liveness 

• Efficiency
– Messages: 

• best case, worst case
– Turnaround: 
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Multicast communication

• Multicast: 
– Sending a message to a specified 

group of n nodes.
• Reliable multicast:

– All nodes see the same messages.
• Atomic multicast:

– All nodes see the same messages in 
the same order.
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Model

send

deliver

receive

deliver

receive

group
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Requirements 

• Integrity
– a process delivers a message at most 

once and only deliver messages that have 
been sent

• Validity
– if a process multicast m then it will also  

eventually deliver m
• Agreement

– if a process delivers m then all processes 
in the group eventually delivers m
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Basic multicast

• To b-multicast a message m: 
– send m to each process p

• If m is received:
– b-deliver m

• What was the problem?
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Basic multicast

b-multicast m receive m deliver m

crash
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Reliable multicast
• Can we implement reliable (atomic) 

multicast if the only thing we have is 
basic multicast?

b-multicast m b-multicast m

r-deliver m

r-deliver m

b-multicast m
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Ordered multicast

• The problem with the reliable multicast is 
that multicast messages might arrive in 
different order at different nodes.

• Requirements:
– FIFO order: delivered in order as sent by the 

sender
– Causal order: delivered in order as happened 

before sent order
– Total order: delivered in same order by all 

processes
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Sequencer

m-cast m

 m

message 
queue 
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Distributed - ISIS

• Multicast a message and request a sequence 
number.

• When receiving a message, propose a sequence 
number (including process id) and place in an 
ordered hold-back queue.

• After collecting all proposals, select the highest 
and multicast agreement.

• When receiving agreement tag message as 
agreed and reorder hold-back queue.

• If first message in queue is decided then deliver.
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the hold-back queue

{m1, proposed <2,i>}

{m2, agreed <3,e>}

{m3, agreed <3,k>}

{m4, proposed <4,i>}
{m5, proposed <5,i>}

deliver

What happened here?

What will the agreed 
sequence number be?
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Causal ordering

• How can we implement casual ordering?
– multicast vector clock holds number of 

multicast operations
– tag each multicast message with multicast 

clock
– hold b-delivered messages until clock of 

message is less (modulo sender) than own 
current message clock

– update own message clock

• Only multicasted messages are counted.
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Summary

• Coordination in distributed systems is 
problematic.

• If we have a fixed set of nodes and can 
detect failures there are many solutions.

• Three sides of the same coin:
– mutual exclusion
– leader election
– atomic multicast
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