
1
Distributed Systems ID2201

Distributed Systems
ID2201

transactions
Johan Montelius

2
Distributed Systems ID2201

The problem

• Even if we have a distributed system that
provides atomic operations we sometimes
want to group a sequence of operations in a
transaction where:
– either all are executed or
– none is executed
– even if a node crashes

3
Distributed Systems ID2201

Surviving a crash

• Recoverable objects: a server can store
information in persistent memory (the
file system) and can recover objects
when restarted.

4
Distributed Systems ID2201

Failure model

• Permanent storage:
– omission failures
– writing the wrong value
– but writing to the right location

• Servers crash:
– restarted using persistent storage only

• Network:
– asynchronous
– omission failures
– duplicate messages

5
Distributed Systems ID2201

Requirements - ACID

• Atomic
– either all or nothing

• Consistent
– this is an application concern

• Isolation
– intermediate effects of a transaction are not

visible to other transactions

• Durability
– persistent once acknowledged

6
Distributed Systems ID2201

The solution - not

• All requirements can be achieved by only
allowing sequential access to the
transaction server.
– severe restriction

• Our goal is to provide as much concurrency
as possible while preserving the behavior of
sequential access.

7
Distributed Systems ID2201

The solution - not

• Only have one server with persistent
storage, if it crashes we only have to
wait for it to restart.
– for how long must we wait

• Our goal is to replicate the server to
provide resilience.

8
Distributed Systems ID2201

Transaction API

• openTransaction() :
– returns a transaction identifier

• closeTransaction(tid) :
– returns success or failure of transaction

• abortTransaction(tid) :
– client explicitly aborts transaction

• operation(tid, arg) :
– operations that belong to a transaction
– read, write, append, deposit, ...
– we will write operations with implicit tid

9
Distributed Systems ID2201

Bank transaction examples

• Operations
– getBalance(account)
– setBalance(account)
– withdraw(account, amount)
– deposit(account, amount)

10
Distributed Systems ID2201

Lost update

bal = getBalance(b);

setBalance(b, bal*1.1);

withdraw(a, bal*0.1);

bal = getBalance(b);
setBalance(b, bal*1.1);

withdraw(c, bal*0.1);

11
Distributed Systems ID2201

Inconsistent retrievals

withdraw(a,100);

deposit(b,100);

ta = getBalance(a);
tb = getBalance(b);

Total = ta + tb;

12
Distributed Systems ID2201

Conflicting operations

• Which operations are order sensitive?
– read – read
– read - write
– write – write

• Two transactions are serially equivalent
iff all pair of conflicting operations of the
transactions are executed in the same
order.

13
Distributed Systems ID2201

Lost update revisited

bal = getBalance(b);

setBalance(b, bal*1.1);

withdraw(a, bal*0.1);

bal = getBalance(b);

setBalance(b, bal*1.1);

withdraw(c, bal*0.1);

14
Distributed Systems ID2201

Lost update revisited

bal = getBalance(b);

setBalance(b, bal*1.1);

withdraw(a, bal*0.1);

bal = getBalance(b);

setBalance(b, bal*1.1);

withdraw(c, bal*0.1);

15
Distributed Systems ID2201

Inconsistent retrievals revisited

withdraw(a,100);

deposit(b,100);

ta = getBalance(a);
tb = getBalance(b);

Total = ta + tb;

16
Distributed Systems ID2201

Inconsistent retrievals revisited

withdraw(a,100);

deposit(b,100);
ta = getBalance(a);

tb = getBalance(b);

Total = ta + tb;

17
Distributed Systems ID2201

Problems with abort

• Even if our operations are done in a serial
equivalent order the isolation
requirement can be violated.

bal = getBalance(a);
setBalance(a, bal +10);

abortTransaction();

bal = getBalance(a);
setBalance(a, bal +10);

commitTransaction();

18
Distributed Systems ID2201

Dirty read

• To be recoverable a transaction must
suspend its commit operation if it has
performed a dirty read.

• If a transaction abort, any suspended
transaction must be aborted.

• To prevent cascading aborts, a transaction
could be prevented from performing a
read operation of a non-committed value.
– This might be a bit too strong.
– How dangerous is cascading abort?

19
Distributed Systems ID2201

Premature writes

• Similar problem with write operations.
How do we recover?

• Write operations must be delayed.

setBalance(a,105);

abortTransaction();

setBalance(a,110);

commitTransaction();

20
Distributed Systems ID2201

Strict execution

• In general, both read and write operations
must be delayed until all previous
transactions containing write operations
have been aborted or committed.

• Strict execution enforces isolation, no
visible effects until commit.

• How do we implement strict execution
efficiently?

21
Distributed Systems ID2201

How do we...

• ..increase concurrency while
preserving serial equivalence?
– locking: simple but dangerous
– optimistic: large overhead if many

conflicts
– timestamp: ok, if time would be

simple

22
Distributed Systems ID2201

Locks

• To guarantee serial equivalence a we
require two phase locking:
– lock objects in any order,
– release locks in any order,
– commit

• We are not allowed to take a lock if a lock
has been released.

• Does not handle the problem with dirty
read and premature write.

23
Distributed Systems ID2201

Strict two-phase locking

• To handle dirty read and premature
write:
– lock in any order
– commit or abort
– unlock

• Can we increase concurrency?

24
Distributed Systems ID2201

Increase concurrency

• Two-version locking
– read, write and commit locks

• Hierarchical locks
– smaller locks increase concurrency

but increase overhead
– structure locks in a hierarchy,

taking a higher lock prevents
someone from taking any lock in
the group

25
Distributed Systems ID2201

Read and write locks

• Read operations do not have to be
serialized.

• Use different locks for read and write
access

• Multiple transactions can take read locks
but only if the write lock is not taken.

• Only one transaction can take a write lock
but only if the read lock is not taken.

• Read locks can be promoted to write locks
– why not release and take?

26
Distributed Systems ID2201

Deadlock

• The obvious danger when using locks
is to land in a deadlock situation.

deposit(a, 100);

withdraw(b, 100);

commit;

deposit(b, 200);

withdraw(a, 100);

27
Distributed Systems ID2201

Handle deadlock

• Prevention
– take locks all at once in advance or
– in predefined order
– reduces concurrency!

• Detection
– check for cyclic dependencies as a

lock is taken
– large overhead
– which lock should be removed?

28
Distributed Systems ID2201

Handle deadlock

• Timeout
– A taken lock is made vulnerable

after a timeout.
– If other transactions are waiting the

lock must be released, this normally
results in a aborted transaction.

– Timeout can be a result of overload,
aborted transactions will increase
load.

29
Distributed Systems ID2201

Why locking s*ks

• Locking is an overhead not present in
a non-concurrent system. You're
paying even if there is no conflict.

• There is always the risk of deadlock or
the locking scheme is so restricted
that it prevents concurrency.

• To avoid cascading aborts, locks must
be held to the end of the transaction.

30
Distributed Systems ID2201

Optimistic control

• Perform transaction in a copy of objects
without locks hoping that no other
transaction will interfere.

• When performing a commit operation the
validity is controlled

• If transaction is valid the objects are
updated and (if write operations where
involved) values written to permanent
storage.

31
Distributed Systems ID2201

Working phase

• Keeps a tentative version of each
object.

• Read operations performed only if a
committed value exists or if a value
exists in the tentative version.

• Write operations are only visible in
tentative version.

32
Distributed Systems ID2201

Validation phase

• A transaction will check overlapping
transactions for conflicting operations.
– transactions not yet committed at the

start of the transaction
• A transaction is given a sequence number

when entering the validation phase.
• Tv is serializable with respect to Ti if

– Tv does not read what Ti wrote

– Ti does not read what Tv wrote

– Tv and Ti do not write the same object

33
Distributed Systems ID2201

Let's be optimistic

• If we are lucky, and we are, many
transactions do not have any conflicts
with overlapping transaction.

• Test will be quick and successful
• If successful move on to the update-

phase.

34
Distributed Systems ID2201

Backward validation

• Tstart is sequence number when
transaction enters the working phase.

• Tend is sequence number when entering
the validation phase.

• Validate a transaction by comparing all
read operations with write operations of
(commited) transactions with sequence
number:
– Tstart < Ti < Tend

• if conflicting
– abort

35
Distributed Systems ID2201

Forward validation

• Validate a transaction by comparing all
write operations with read operations of
overlapping active (uncommitted)
transactions.

• Why does this work?
• if conflict

– abort the transaction
– abort the other transaction
– try later... let the conflicting transaction

commit, hope for the best

36
Distributed Systems ID2201

Optimistic pros and cons

• Works well if no conflicts.
• Backward validation

– need to save all write operations
• Forward validation

– flexible if not successful
– transactions active while we do

validation
• How do we guarantee liveness?

37
Distributed Systems ID2201

Timestamp ordering

• Each transaction is given a time stamp
when started.

• There is a total order of active
transactions.

• Operations are validated when performed:
– writing only if no later transaction has

read or written
– reading only if no later transaction has

written

38
Distributed Systems ID2201

Timestamp implementation

• Objects keep a list of tentative, not
committed, versions of the value.

• Write operations can be inserted in the
right order.

• No fear for deadlocks
– read only waits for tentative writes

• If a operation arrives too late the
transaction is aborted.

39
Distributed Systems ID2201

Timestamp implementation

t3
t1

write:t2

t3
t2

t3
t1

read:t5

t3
t2

t3
(t5)

t1

suspend record that it was read at t5

insert in list

read:t5

40
Distributed Systems ID2201

Summary

• Transactions group sequences of operations
into a ACID operation.

• Problem is how to increase concurrency.
• Need to preserve serial equivalence.
• Aborting transactions is a problem.
• Implementations:

– locking
– optimistic concurrency control
– timestamps

	Title
	descr
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

