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The problem

• Even if we have a distributed system that 
provides atomic operations we sometimes 
want to group a sequence of operations in a 
transaction where:
– either all are executed or
– none is executed
– even if a node crashes



3
Distributed Systems ID2201

Surviving a crash

• Recoverable objects: a server can store 
information in persistent memory (the 
file system) and can recover objects 
when restarted.
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Failure model

• Permanent storage: 
– omission failures
– writing the wrong value
– but writing to the right location

• Servers crash:
– restarted using persistent storage only

• Network:
– asynchronous
– omission failures
– duplicate messages
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Requirements  - ACID

• Atomic
– either all or nothing

• Consistent
– this is an application concern

• Isolation
– intermediate effects of a transaction are not 

visible to other transactions 

• Durability
– persistent once acknowledged
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The solution - not

• All requirements can be achieved by only 
allowing sequential access to the  
transaction server. 
– severe restriction

• Our goal is to provide as much concurrency 
as possible while preserving the behavior of 
sequential access.
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The solution - not

• Only have one server with persistent 
storage, if it crashes we only have to 
wait for it to restart.
– for how long must we wait

• Our goal is to replicate the server to 
provide resilience.
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Transaction API

• openTransaction() : 
– returns a transaction identifier

• closeTransaction(tid) : 
– returns success or failure of transaction

• abortTransaction(tid) : 
– client explicitly aborts transaction

• operation(tid, arg) : 
– operations that belong to a transaction
– read, write, append, deposit, ...
– we will write operations with implicit tid
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Bank transaction examples

• Operations
– getBalance(account)
– setBalance(account)
– withdraw(account, amount)
– deposit(account, amount)
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Lost update

bal = getBalance(b);

setBalance(b, bal*1.1);

withdraw(a, bal*0.1);

bal = getBalance(b);
setBalance(b, bal*1.1);

withdraw(c, bal*0.1);
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Inconsistent retrievals

withdraw(a,100);

deposit(b,100);

ta = getBalance(a);
tb = getBalance(b);

Total = ta + tb;
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Conflicting operations

• Which operations are order sensitive?
– read – read 
– read - write
– write – write

• Two transactions are serially equivalent 
iff all pair of conflicting operations of the 
transactions are executed in the same 
order.
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Lost update revisited

bal = getBalance(b);

setBalance(b, bal*1.1);

withdraw(a, bal*0.1);

bal = getBalance(b);

setBalance(b, bal*1.1);

withdraw(c, bal*0.1);
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Lost update revisited

bal = getBalance(b);

setBalance(b, bal*1.1);

withdraw(a, bal*0.1);

bal = getBalance(b);

setBalance(b, bal*1.1);

withdraw(c, bal*0.1);
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Inconsistent retrievals revisited

withdraw(a,100);

deposit(b,100);

ta = getBalance(a);
tb = getBalance(b);

Total = ta + tb;
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Inconsistent retrievals revisited

withdraw(a,100);

deposit(b,100);
ta = getBalance(a);

tb = getBalance(b);

Total = ta + tb;
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Problems with abort

• Even if our operations are done in a serial 
equivalent order the isolation 
requirement can be violated. 

bal = getBalance(a);
setBalance(a, bal +10);

abortTransaction();

bal = getBalance(a);
setBalance(a, bal +10);

commitTransaction();
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Dirty read

• To be recoverable a transaction must 
suspend its commit operation if it has 
performed a dirty read.

• If a transaction abort, any suspended 
transaction must be aborted.

• To prevent cascading aborts, a transaction 
could be prevented from performing a 
read operation of a non-committed value.
– This might be a bit too strong.
– How dangerous is cascading abort? 
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Premature writes

• Similar problem with write operations. 
How do we recover? 

• Write operations must be delayed.

setBalance(a,105);

abortTransaction();

setBalance(a,110);

commitTransaction();
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Strict execution

• In general, both read and write operations 
must be delayed until all previous 
transactions containing write operations 
have been aborted or committed.

• Strict execution enforces isolation, no 
visible effects until commit.

• How do we implement strict execution 
efficiently?
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How do we...

• ..increase concurrency while 
preserving serial equivalence?
– locking: simple but dangerous
– optimistic: large overhead if many 

conflicts
– timestamp: ok, if time would be 

simple
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Locks

• To guarantee serial equivalence a we 
require two phase locking: 
– lock objects in any order, 
– release locks in any order, 
– commit

• We are not allowed to take a lock if a lock 
has been released.

• Does not handle the problem with dirty 
read and premature write. 



23
Distributed Systems ID2201

Strict two-phase locking

• To handle dirty read and premature 
write:
– lock in any order
– commit or abort
– unlock

• Can we increase concurrency?
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Increase concurrency

• Two-version locking
– read, write and commit locks

• Hierarchical locks
– smaller locks increase concurrency 

but increase overhead
– structure locks in a hierarchy, 

taking a higher lock prevents 
someone from taking any lock in 
the group
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Read and write locks

• Read operations do not have to be 
serialized.

• Use different locks for read and write 
access

• Multiple transactions can take read locks 
but only if the write lock is not taken.

• Only one transaction can take a write lock 
but only if the read lock is not taken.

• Read locks can be promoted to write locks
– why not release and take? 
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Deadlock

• The obvious danger when using locks 
is to land in a deadlock situation.

deposit(a, 100);

withdraw(b, 100);

commit;

deposit(b, 200);

withdraw(a, 100);
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Handle deadlock

• Prevention
– take locks all at once in advance or 
– in predefined order
– reduces concurrency!

• Detection
– check for cyclic dependencies as a 

lock is taken
– large overhead
– which lock should be removed?
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Handle deadlock

• Timeout
– A taken lock is made vulnerable 

after a timeout.
– If other transactions are waiting the 

lock must be released, this normally 
results in a aborted transaction.

– Timeout can be a result of overload, 
aborted transactions will increase 
load.
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Why locking s*ks

• Locking is an overhead not present in 
a non-concurrent system. You're 
paying even if there is no conflict.

• There is always the risk of deadlock or 
the locking scheme is so restricted 
that it prevents concurrency.

• To avoid cascading aborts, locks must 
be held to the end of the transaction.
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Optimistic control

• Perform transaction in a copy of objects 
without locks hoping that no other 
transaction will interfere. 

• When performing a commit operation the 
validity is controlled

• If transaction is valid the objects are 
updated and (if write operations where 
involved) values written to permanent 
storage.
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Working phase

• Keeps a tentative version of each 
object.

• Read operations performed only if a 
committed value exists or if a value 
exists in the tentative version.

• Write operations are only visible in 
tentative version.
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Validation phase

• A transaction will check overlapping 
transactions for conflicting operations.
– transactions not yet committed at the 

start of the transaction
• A transaction is given a sequence number 

when entering the validation phase.
• Tv is serializable with respect to Ti  if 

– Tv does not read what Ti wrote

– Ti does not read what Tv wrote

– Tv and Ti do not write the same object
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Let's be optimistic

• If we are lucky, and we are, many 
transactions do not have any conflicts 
with overlapping transaction.

• Test will be quick and successful
• If successful move on to the update-

phase.



34
Distributed Systems ID2201

Backward validation

• Tstart is sequence number when 
transaction enters the working phase.

• Tend is sequence number when entering 
the validation phase.

• Validate a transaction by comparing all 
read operations with write operations of 
(commited) transactions with sequence 
number: 
– Tstart  <  Ti  <  Tend 

• if conflicting 
– abort
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Forward validation

• Validate a transaction by comparing all 
write operations with read operations of 
overlapping active (uncommitted) 
transactions.

• Why does this work?
• if conflict

– abort the transaction
– abort the other transaction
– try later... let the conflicting transaction 

commit, hope for the best
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Optimistic pros and cons

• Works well if no conflicts.
• Backward validation

– need to save all write operations
• Forward validation

– flexible if not successful
– transactions active while we do 

validation
• How do we guarantee liveness? 
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Timestamp ordering

• Each transaction is given a time stamp 
when started.

• There is a total order of active 
transactions.

• Operations are validated when performed:
– writing only if no later transaction has 

read or written
– reading only if no later transaction has 

written
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Timestamp implementation

• Objects keep a list of tentative, not 
committed, versions of the value. 

• Write operations can be inserted in the 
right order.

• No fear for deadlocks
– read only waits for tentative writes

• If a operation arrives too late the 
transaction is aborted.
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Timestamp implementation

t3
t1

write:t2

t3
t2

t3
t1

read:t5

t3
t2

t3
(t5)

t1

suspend record that it was read at t5

insert in list

read:t5
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Summary

• Transactions group sequences of operations 
into a ACID operation.

• Problem is how to increase concurrency. 
• Need to preserve serial equivalence.
• Aborting transactions is a problem.
• Implementations:

– locking
– optimistic concurrency control
– timestamps
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