Lecture Notes

Heat Sinks and Component Temperature Control

Need for Component Temperature Control

- All components, capacitors, inductors and transformers, and semiconductor devices and circuits have maximum operating temperatures specified by manufacturer.
 - Component reliability decreases with increasing temperature.Semiconductor failure rate doubles for every 10 15 °C increase in temperature above 50 °C (approx. rule-of-thumb).
- High component operating temperatures have undesirable effects on components.

Capacitors

Electrolyte evaporation rate increases significantly with temperature increases and thus shortens lifetime.

Magnetic Components

- Losses (at constant power input) increase above 100 °C
- Winding insulation (lacquer or varnish) degrades above 100 °C

Semiconductors

- Unequal power sharing in paralleled or series-connected devices.
- Reduction in breakdown voltage in some devices.
- Increase in leakage currents.
- Increase in switching times.

Temperature Control Methods

- Control voltages across and current through components via good design practices.
 - Snubbers may be required for semiconductor devices.
 - Free-wheeling diodes may be needed with magnetic components.
- Use components designed to maximize heat transfer via convection and radiation from component to ambient.
 - Short heat flow paths from interior to component surface and large component surface area.
- Component user has responsibility to properly mount temperature-critical components on heat sinks.
 - Apply recommended torque on mounting bolts and nuts and use thermal grease between component and heat sink.
 - Properly design system layout and enclosure for adequate air flow such that heat sinks can operate properly to dissipate heat to the ambient.

Heat Conduction Thermal Resistance

• Heat flow $P_{cond} [W/m^2] = \lambda A (T_2 - T_1) / d = (T_2 - T_1) / R_{\theta cond}$

- Thermal resistance $R_{\theta cond} = d / [\lambda A]$
 - Cross-sectional area A = hb
 - $\lambda =$ Thermal conductivity has units of W-m⁻¹-°C⁻¹ ($\lambda_{A1} = 220$ W-m⁻¹-°C⁻¹).
 - Units of thermal resistance are °C/W

Thermal Equivalent Circuits

• Heat flow through a structure composed of layers of different materials.

• Thermal equivalent circuit simplifies calculation of temperatures in various parts of structure.

- $T_i = P_d (R_{\theta jc} + R_{\theta cs} + R_{\theta sa}) + T_a$
- If there parallel heat flow paths, then thermal resistances of the parallel paths combine as do electrical resistors in parallel.

Transient Thermal Impedance

- Heat capacity per unit volume Cv = dQ/dT [Joules /°C] prevents short duration high power dissipation surges from raising component temperature beyond operating limits.
 - Transient thermal equivalent circuit. $C_s = C_v V$ where V is the volume of the component.

P(t)
$$T_{j}(t)$$

 R_{θ}
 C_{s}
 $T_{a} =$

• Transient thermal impedance $Z_{\theta}(t) = [T_j(t) - T_a]/P(t)$

• $\tau_{\theta} = \pi R_{\theta} C_s / 4$ = thermal time constant

•
$$T_j(t = \tau_\theta) = 0.833 P_o R_\theta$$

Heat Sinks

- Aluminum heat sinks of various shapes and sizes widely available for cooling components.
 - Often anodized with black oxide coating to reduce thermal resistance by up to 25%.
 - Sinks cooled by natural convection have thermal time constants of 4 15 minutes.
 - Forced-air cooled sinks have substantially smaller thermal time constants, typically less than one minute.
- Choice of heat sink depends on required thermal resistance, $R_{\theta sa}$, which is determined by several factors.
 - Maximum power, P_{diss} , dissipated in the component mounted on the heat sink.
 - Component's maximum internal temperature, T_{i,max}
 - Component's junction-to-case thermal resistance, $R_{\theta jc}$.
 - Maximum ambient temperature, $T_{a,max}$.

•
$$R_{\theta sa} = \{T_{j,max} - T_{a,max}\}P_{diss} - R_{\theta jc}$$

- P_{diss} and $T_{a,max}$ determined by particular application.
- $T_{j,max}$ and $R_{\theta jc}$ set by component manufacturer.

Radiative Thermal Resistance

- Stefan-Boltzmann law describes radiative heat transfer.
 - $P_{rad} = 5.7 \times 10^{-8} \text{ EA} [(T_s)^4 (T_a)^4] ; [P_{rad}] = [watts]$
 - E = emissivity; black anodized aluminum E = 0.9; polished aluminum E = 0.05
 - A = surface area [m²] through which heat radiation emerges.
 - $T_s = \text{surface temperature } [°K] \text{ of component. } T_a = \text{ambient temperature } [°K].$
- $(T_s T_a)/Prad = R_{\theta,rad} = [T_s T_a][5.7EA {(T_s/100)^4 (T_a/100)^4 }]^{-1}$
- Example black anodized cube of aluminum 10 cm on a side. $T_s = 120$ °C and $T_a = 20$ °C
 - $R_{\theta,rad} = [393 293][(5.7) (0.9)(6x10-2){(393/100)^4 (293/100)^4}]^{-1}$
 - $R_{\theta,rad} = 2.2 \text{ °C/W}$

Convective Thermal Resistance

- P_{conv} = convective heat loss to surrounding air from a vertical surface at sea level having a height d_{vert} [in meters] less than one meter.
 - $P_{conv} = 1.34 \text{ A} [\text{Ts} \text{Ta}]^{1.25} d_{vert}^{-0.25}$
 - A = total surface area in [m²]
 - $T_s = \text{surface temperature } [°K] \text{ of component. } T_a = \text{ambient temperature } [°K].$
- $[T_s T_a]/P_{conv} = R_{\theta,conv} = [T_s T_a] [d_{vert}]^{0.25} [1.34 \text{ A} (T_s T_a)^{1.25}]^{-1}$
 - $R_{\theta,conv} = [d_{vert}]^{0.25} \{1.34 \text{ A} [T_s T_a]^{0.25}\}^{-1}$
- Example black anodized cube of aluminum 10 cm on a side. $T_s = 120 \text{ °C}$ and $T_a = 20 \text{ °C}$.
 - $R_{\theta,conv} = [10^{-1}]0.25([1.34]] [6x10^{-2}] [120 20]^{0.25})^{-1}$
 - $R_{\theta,conv} = 2.2 \text{ °C/W}$

Combined Effects of Convection and Radiation

- Heat loss via convection and radiation occur in parallel.
 - Steady-state thermal equivalent circuit

- $R_{\theta,sink} = R_{\theta,rad} R_{\theta,conv} / [R_{\theta,rad} + R_{\theta,conv}]$
- Example black anodized aluminum cube 10 cm per side
 - $R_{\theta,rad} = 2.2 \text{ °C/W}$ and $R_{\theta,conv} = 2.2 \text{ °C/W}$
 - $R_{\theta,sink} = (2.2) (2.2) / (2.2 + 2.2) = 1.1 \text{ °C/W}$

Switch-Mode DC-AC Inverter

Figure 8-1 Switch-mode inverter in ac motor drive.

• Block diagram of a motor drive where the power flow is unidirectional

One Leg of a Switch-Mode DC-AC Inverter

Figure 8-4 One-leg switchmode inverter.

• The mid-point shown is fictitious

Synthesis of a Sinusoidal Output by PWM

Figure 8-5 Pulse-width modulation.

Copyright © 2003 by John Wiley & Sons, Inc.

1-13

Details of a Switching Time Period

Figure 8-6 Sinusoidal PWM.

• Control voltage can be assumed constant during a switching time-period

Harmonics in the DC-AC Inverter Output Voltage

h m _a	0.2	0.4	0.6	0.8	1.0
1	0.2	0.4	0.6	0.8	1.0
Fundamental					
m _f	1.242	1.15	1.006	0.818	0.601
$m_f \pm 2$	0.016	0.061	0.131	0.220	0.318
$m_f \pm 4$					0.018
$2m_f \pm 1$	0.190	0.326	0.370	0.314	0.181
$2m_f \pm 3$		0.024	0.071	0.139	0.212
$2m_f \pm 5$				0.013	0.033
$3m_f$	0.335	0.123	0.083	0.171	0.113
$3m_{f} \pm 2$	0.044	0.139	0.203	0.176	0.062
$3m_f \pm 4$		0.012	0.047	0.104	0.157
$3m_f \pm 6$				0.016	0.044
$4m_f \pm 1$	0.163	0.157	0.008	0.105	0.068
$4m_{f} \pm 3$	0.012	0.070	0.132	0.115	0.009
$4m_{f} \pm 5$			0.034	0.084	0.119
$4m_{f} \pm 7$				0.017	0.050

Table 8-1 Generalized Harmonics of v_{Ao} for a Large m_{f} .

Note: $(\hat{V}_{Ao})_h / \frac{1}{2} V_d$ [= $(\hat{V}_{AN})_h / \frac{1}{2} V_d$] is tabulated as a function of m_a .

• Harmonics appear around the carrier frequency and its multiples

Output voltage Fundamental as a Function $\frac{\hat{V}_{A\omega_1}}{\begin{pmatrix} V_{d} \\ 2 \end{pmatrix}}$ of the Modulation Index $\frac{4}{r}$

• Shows the linear and the over-modulation regions; square-wave operation in the limit

Square-Wave Mode of Operation

Figure 8-9 Square-wave switching.

• Harmonics are of the fundamental frequency

Harmonics due to Over-modulation

Figure 8-7 Harmonics due to overmodulation; drawn for $m_a = 2.5$ and $m_f = 15$.

• These are harmonics of the fundamental frequency

Half-Bridge Inverter

• Capacitors provide the mid-point

Single-Phase Full-Bridge DC-AC Inverter

Figure 8-11 Single-phase full-bridge inverter.

• Consists of two inverter legs

Figure 8-12 PWM with bipolar voltage switching.

• The dotted curve is the desired output; also the fundamental frequency