Analysis assuming Fictitious Filters

Figure 8-13 Inverter with "fictitious" filters.

• Small fictitious filters eliminate the switchingfrequency related ripple

Figure 8-14 The dc-side current in a single-phase inverter with PWM bipolar voltage switching.

• Bi-Polar Voltage switching

Output Waveforms: Uni-polar Voltage Switching

Figure 8-15 PWM with unipolar voltage switching (single phase).

Harmonic
components around
the switching
frequency are absent

Sinusoidal Synthesis by Voltage Shift

Figure 8-17 Full-bridge, single-phase inverter control by voltage cancellation: (a) power circuit; (b) waveforms; (c) normalized fundamental and harmonic voltage output and total harmonic distortion as a function of α .

• Phase shift allows voltage cancellation to synthesize a <u>1-Phase</u> sinusoidal output

Single-Phase Inverter

Figure 8-18 Single-phase inverter: (a) circuit; (b) fundamental-frequency components; (c) ripple frequency components; (d) fundamental-frequency phasor diagram.

Analysis at the fundamental frequency

Square-Wave and PWM Operation

Figure 8-19 Ripple in the inverter output: (a) square-wave switching; (b) PWM bipolar voltage switching.

• PWM results in much smaller ripple current

Three-Phase Inverter

Figure 8-21 Three-phase inverter.

• Three inverter legs; capacitor mid-point is fictitious

Three-Phase **PWM** Waveforms

Figure 8-22 Three-phase PWM waveforms and harmonic spectrum.

0.8

0.6

0.2

Three-Phase Inverter: Square-Wave Mode

Figure 8-24 Square-wave inverter (three phase).

• Harmonics are of the fundamental frequency

Programmed Harmonic Elimination

• Angles based on the desired output

Three-Phase Inverter: Fundamental Frequency

Figure 8-25 Three-phase inverter: (a) circuit diagram; (b) phasor diagram (fundamental frequency).

• Analysis at the fundamental frequency can be done using phasors

Square-Wave and PWM Operation

Figure 8-26 Phase-to-load-neutral variables of a three-phase inverter: (a) square wave; (b) PWM.

• PWM results in much smaller ripple current

Effect of Blanking Time

 Results in nonlinearity

Figure 8-31 Effect of blanking time t_{Δ} .

Effect of Blanking Time

Figure 8-32 Effect of t_{Δ} on V_o , where ΔV_o is defined as a voltage drop if positive.

• Voltage jump when the current reverses direction

Effect of Blanking Time

Figure 8-33 Effect of t_{Δ} on the sinusoidal output.

• Effect on the output voltage

Tolerance-Band Current Control

(a)

Figure 8-35 Tolerance band current control.

• Results in a variable frequency operation

Transition from Inverter to Rectifier Mode

Figure 8-37 Operation modes: (a) circuit; (b) inverter mode; (c) rectifier mode; (d) constant I_A .

• Can analyze based on the fundamentalfrequency components