
Introduction to Architecture 1

Introduction to Architecture

Introduction to Architecture 2

Content

• What is architecture?
• Motivation for architecture
• Non-functional requirements

Introduction to Architecture 3

What is architecture?

• The system's skeleton.

• What is left when you have removed everything
possible and still are able to tell how the system
works.

• Tells which problems are solved and where they
are solved.

Introduction to Architecture 4

What is architecture? (cont)

• Shall guarantee that all requirements, both
functional and non-functional, can be solved.

• Non-functional requirements are a very important
part of the architecture.

• Involves choosing what hardware and software to
use, which means that the architecture is very
platform dependant.

Introduction to Architecture 5

What is architecture? (cont)

• What is a good architecture depends very much on
the purpose of the application.
– Architecture is not as generic as design.

Introduction to Architecture 6

What is architecture? (cont)

• This course presents good architectures for
distributed applications consisting of view,
business logic and data.
– Focus on web based view.

– Assumes Java EE is used.

– The course does not give you knowledge to chose
between different architectures for other kinds of
applications.

Introduction to Architecture 7

Why Architecture?

• Organization
– Reflect, decide, document

– Do not make decisions by coincidence

• Conflicting requirements from users, customers,
system administrators and developers.

• Balance functionality, cost, quality and time.

Introduction to Architecture 8

Benefits of a Good Architecture

• Understanding of the system's structure and its
limitations.

• Common vocabulary

• Reuse
– Code: objects and components

– Code style: code conventions, patterns, documentation
etc

Introduction to Architecture 9

Benefits of a Good Architecture
(cont)

• Better organization of the project.
– Divide the resources after components, subsystems,

functionality etc

• Makes it easier to divide the application and
maintain low coupling and high cohesion.

Introduction to Architecture 10

Non-Functional Requirements

• All requirements that do not concern what the
program should do, but how it should work.
– performance, reliability, maintainability, security etc

• Very important to specify before development
starts.

• Very important to implement from the start.
– DO NOT try to add them when the program works.

Introduction to Architecture 11

Non-Functional Requirements (cont)

• Be realistic, do not write a wish list.

• It must be possible to verify that they are fulfilled.
– Do not write fast enough, but rather first visible sign of

response within 1 second in 99% of the calls measured
from the outer firewall.

Introduction to Architecture 12

Non-Functional Requirements (cont)

• Availability
– The application can be reached often enough by as

many users as required, for example available 98% of
the time and/or unavailable at most four minutes per
week.

• Reliability
– To what extent the application shall behave as

expected, for example at most 1 of 1000 sessions fails.

Introduction to Architecture 13

Non-Functional Requirements (cont)

• Response time
– for example first visible sign of response within 1

second in 99% of the calls measured from the outer
firewall.

• Capacity
– Measures how much load can be handled concurrently,

for example 10 concurrent transactions while
maintaining other non-functional requirements.

Introduction to Architecture 14

Non-Functional Requirements (cont)

• Scalability
– To what extent the application can maintain its

performance with higher load if additional hardware is
added. Vertical scaling means to add hardware (cpu,
memory) to the servers. Horizontal scaling means to
add more servers. For example Maintain all non-
functional requirements at 90% load increase if the
number of servers are doubled.

Introduction to Architecture 15

Non-Functional Requirements (cont)

• Manageability
– How complex the system administrator's work may be,

for example at most two work hours a month may be
spent to install upgrades.

• Configurability
– For example which changes can be made to the system

without having to recompile anything.

Introduction to Architecture 16

Non-Functional Requirements (cont)

• Packaging
– In what format should the product be delivered.

• Standards
– What standards must the application follow

• Requirement to use certain software and/or
hardware.

Introduction to Architecture 17

Non-Functional Requirements (cont)

• Usability
– The screen should be visible at a distance of one meter

or eight out of ten persons chosen by the customer
should consider the application easy to use.

• Security
– There are lots of different security aspects. Criteria

could be 30 minutes using the best known techniques to
change the balance of an account or three failed log in
attempts in a row should be logged.

Introduction to Architecture 18

Non-Functional Requirements (cont)

• Security Requirements:
– authentication, to prove ones identity.

– authorization, which rights do different users have?

– non-repudiation, users can not deny what they have
done.

– integrity, data can not be modified in any unallowed
manner.

– privacy, data can not be read in any unallowed manner.

– logging, what should be logged and where?

Introduction to Architecture 19

Non-Functional Requirements (cont)

• Design goals
– Non-functional requirements that are not really

observable to the users, but rather to the developers.

– Affects the possibility (and cost) to maintain functional
and non-functional requirements during the
application's life time.

– Hard to measure.

– Can be evaluated with code reviews or by performing
the task that should be made easy (for example to add
or change functionality).

Introduction to Architecture 20

Non-Functional Requirements (cont)

• Some design goals:
– Adaptability or extensibility, how easy it is to extend or

change the application.

– Portability, how much work is required to adapt the
application to other hardware, operating system, user
interface etc.

– Interoperability, how easy it is for other applications to
communicate with this application.

Introduction to Architecture 21

Non-Functional Requirements (cont)

– Testability, to what extent the system facilitates testing,
for example by giving informative error messages or
being able to unit test.

– Reusability, both to use existing components in this
application and to use newly developed components in
other applications.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

