
Java EE Introduction, Content

– Component Architecture: Why and How
– Java EE: Enterprise Java

22

The Three-Tier Model
• The three -tier architecture allows to maintain state information,

to improve performance, scalability and availability
– Client in the first tier - presentation layer

– Business logic in 2nd tier - security and personalization of the client

– System services (and databases) in 3rd tier – services and storage

Business
logic

2nd tier

Data

DBMS

3rd tier

1st tier

Client

GUI

Services

33

Why Component Architecture

• Rapid application development

• Reusability and portability of parts of the software

system

• Decrease of the need for in-house expertise

4

Why Container-Managed
Components

 Avoid writing infrastructure code for non-

functional requirements like navigation,

validation, transactions, security and O/R-

mapping.

• Frameworks are thoroughly tested and proven to

work well.

• Lots of documentation, easy to get help.

5

Why Container-Managed
Components, Cont'd

• Non-functional requirements are difficult to code.

• Not using a framework means writing new code

which means introducing new bugs.

• Callback style makes sure all calls to non-

functional requirements code are made at the right

time.

– Handled by the framework.

66

How Component Architecture
• Component

– a reusable program building block for an application;
– presents a manageable, discrete chunk of logic (functionality);
– implements a set of well-defined interfaces.
– Examples: pricing component, billing component

• Container
– an application program or a subsystem in which the component

lives;
– Component’s context;
– creates, manages and “glues” components;
– provides life cycle management, security, deployment, and

runtime services for components it contains (component contract).
– Examples: Web container (for JSF pages and Servlets), EJB

container (for EJBs)

77

How Component Architecture

(cont’d)
• Specifications

– For components, containers (hosts), and tools (development,
deployment)

– Set of conventions (standards) for
• Container (Context) Services
• APIs (classes, interfaces, methods, constructors)

– Names
– Semantics

• A well-defined component architecture is a set of
standards (specifications) necessary for different vendors
to write the components, containers and tools

88

Development and Deployment
• Development tools

– for developing components
• NetBeans (Oracle)
• Eclipse (eclipse.org)

• Deployment tools
– for configuring (customizing, naming) and packaging

components
• NetBeans
• Admin console

99

Application Servers
• An application server

– Run time environment for component-based applications
• Applications are deployed and run on an application server

– Provides containers and services for applications made of
components.

• Services: naming, connectivity, persistence, transactions, etc.
– Provides services for clients

• Downloadable clients (HTML)
– Some examples:

• GlassFish (Oracle)
• Tomcat (Apache)

10

Java Platform, Enterprise Edition

(Java EE)
http://www.oracle.com/technetwork/java/javaee/overview/index.html

11

Some Useful Links
 Java Platform, Enterprise Edition (Java EE)

– http://www.oracle.com/technetwork/java/javaee/overview/inde
x.html

 Java EE Training & Tutorials
– http://www.oracle.com/technetwork/java/javaee/documentation

/index.html

 The Java EE 6 Tutorial:
– http://download.oracle.com/javaee/6/tutorial/doc/

 Java developer connection at
– http://www.oracle.com/technetwork/index.html

12

Multi-Tiered Java EE Applications

ApplicationApplication
ServerServer
MachineMachine

Application
Client

Application
Client

Dynamic
HTML pages

Dynamic
HTML pages

 Servlets
JSF

 Servlets
JSF

 Enterprise
Beans

 Enterprise
Beans

 Enterprise
Beans

 Enterprise
Beans

 Database(s) Database(s) Database(s) Database(s)

Client tierClient tier

Web tierWeb tier

Business tierBusiness tier

Resource tierResource tier

ClientClient
MachineMachine

DBMSDBMS
MachineMachine

Java EEJava EE
ApplicationApplication

Java EEJava EE
ApplicationApplication

JPA EntitiesJPA Entities JPA Entities JPA Entities
Integration tierIntegration tier

13

The Java EE Technologies

• Four groups:
– Enterprise Application Technologies

– Web Application Technologies
– Management and Security Technologies
– Web Services Technologies

14

Enterprise Application Technologies
• Enterprise JavaBeans (EJB)

– EJBs are the standard building blocks for corporate server applications.
• J2EE Connector Architecture

– An architecture for connecting the J2EE platform to heterogeneous
Enterprise Information Systems.

• Java Message Service API (JMS)
– A specification of an API for enterprise messaging services. To create,

send, receive, and read messages.
• Java Persistence API (JPA)

– Provides a POJO (Plain Old Java Object) persistence model for object-
relational mapping. Developed and use for EJB, but can be used directly.

• Java Transaction API (JTA)
– An abstract API for resource managers and transactional applications.

Also used in writing JDBC drivers, EJB containers and hosts.
• JavaMail

– A set of abstract classes that models a mail system.

15

Web Application Technologies
• Java Servlets

– An API for extending the functionality of a web server.
– Java classes that process requests and construct responses, usually for HTML pages
– Replaces CGI
– Provides a gateway between Web clients and EJBs

• JavaServer Faces (JSF)
– An API for representing UI components (dynamic HTML) and managing their

state; handling events from components; server-side data validation and conversion.
• JavaServer Pages (JSP)

– Text-based documents that are compiled into servlets and define how dynamic
content can be added to static content in HTML or other markups.

• JavaServer Pages Standard Tag Library (JSTL)
– Encapsulates core functionality common to many JSP applications, e.g. iterator and

conditional tags for handling flow control, tags for manipulating XML documents,
internationalization tags, tags for accessing databases using SQL, and commonly
used functions.

16

Web Services Technologies
 Java API for RESTful Web Services (JAX-RS)
• Java API for XML-Based Web Services (JAX-WS)

– Replaces JAX-RPC
• Java Architecture for XML Binding (JAXB)

– Provides a convenient way to bind an XML schema to a representation in
Java code.

• SOAP with Attachments API for Java (SAAJ)
– Provides a standard way to send XML documents over the Internet from

the Java platform.
• Streaming API for XML

– Streaming Java-based, event-driven, pull-parsing API for reading and
writing XML documents.

• Web Service Metadata for the Java Platform

17

Java Servlet

javax.servlet

Servlet Home page:
http://www.oracle.com/technetwork/java/index-jsp-135475.html

18

Java Servlet, Content
• Introduction
• Life Cycle
• Request Handling
• Thread Safety
• Our First Servlet
• Request
• Response
• Sessions
• Filters
• Listeners
• Servlet Context

19

Introduction

• A Servlet is program running on a web server.

• Used mainly as controller in web applications

– Receives HTTP requests and directs the request to the
model component that can handle it.

– The controller Servlet is part of a framework (e.g. JSF,
Struts) and normally not written by application
developer.

• Can also be used to generate HTTP response.

– Mainly pages without text, e.g. images.

20

Introduction, Cont'd

• Servlets live inside a framework, the servlet
container.

– Have no main method, only called by the container.

21

Life Cycle

1. The class is loaded into the Java VM.

2. An object is instantiated.

3. The servlet's init() method is called.

4. Each HTTP call is directed to the service

 method, who's default implementation will call the

 doGet or doPost method (depending on the

 HTTP method).

5. If the servlet is garbage collected, its destroy

 method is called before garbage collection.

22

Request Handling

• What happens when a HTTP request is received?

1.The container creates new objects of the class

HttpServletRequest representing the HTTP

request and HttpServletResponse representing

the HTTP response.

2.The container interprets the URL and decides which
servlet to call.

23

Request Handling (cont)

3.The container creates a new thread and use it to call the

servlet's service method, passing the objects created

above.

4.The service method decides if doGet or doPost shall

be called, and calls that method.

5.That method uses the request object to get information
about the HTTP request and the response object to
create the HTTP response.

24

Request Handling (cont)

6.The container sends the HTTP response and discards
the request and response objects.

25

Thread Safety
• Each request to the same servlet is executed in a

separate thread but uses the same servlet instance.

• Instance variables in the servlet, and objects called
by the servlet, are not thread safe.

– Avoid such fields that are not final!

– Try not to use synchronized since it will reduce

performance.

26

Our First Servlet

package helloworld;

import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

@WebServlet("/helloworld")

public class HelloServlet extends HttpServlet {

27

Our First Servlet, Cont'd
 @Override

 protected void doGet(HttpServletRequest request,

 HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html;charset=UTF-8");

 PrintWriter out = response.getWriter();

 try {

 out.println("<html>");

 out.println("<head>");

 out.println("<title>HelloServlet</title>");

 out.println("</head>");

 out.println("<body>");

 out.println("<h1>NEVER EVER WRITE HTML IN A SERVLET</h1>");

 out.println("</body>");

 out.println("</html>");

 } finally {

 out.close();

 }

 }

}

28

Our First Servlet (cont)

• The WebServlet annotation specifies the servlet's
URL.

• All servlets should inherit

javax.servlet.http.HttpServlet.

• An HTTP get request will result in a call to the

doGet method.

• All that is written to the stream returned by

response.getWriter() will be sent to the

browser by the container.

29

Never write HTML in a servlet!!

• Bad cohesion since the servlet would handle both input,
output and probably also act as controller.

• Bad cohesion to mix languages (Java and HTML).

• Difficult to maintain since there might be different
developers for Java and HTML.

• Very messy with all line breaks in strings.

• Impossible to use HTML editors

• JSF is designed for this and contains many helpful
features.

30

Request
• Instances of the
javax.servlet.http.HttpServletRequest

class are used to represent HTTP requests sent to
the servlet.

– Passed to doGet/doPost.

31

Request, Cont'd
• HttpServletRequest can be used to:

– Get HTTP parameters.

– Store and read Java objects (attributes).

– Get the URL of the request.

– Get information about the client like ip address or
browser version.

– Get HTTP headers.

– Get cookies.

– Get session related data.

32

Request, Cont'd
• When the following form is submitted there will

be three HTTP parameters, email, name and

action.
<form action="MyServlet" method="post">
 <input type="text" name="email"/>
 <input type="text" name="name"/>
 <input type="submit" value="action"/>
</form>

33

Request, Cont'd
• These parameters can be read like this in a servlet:
public void doPost(HttpServletRequest req,
 HttpServletResponse resp) {

 String email = request.getParameter("email");

 String name = request.getParameter("name");

 String action = request.getParameter("action");

}

34

Request, Cont'd
• Any Java object can be used as an attribute.

• Attributes are both stored and read by servlets.

• Used to pass objects from one servlet to another
when requests are forwarded.

• The getAttribute/setAttribute methods

in HttpServletRequest are used for this.

35

Response
• Instances of the
javax.servlet.http.HttpServletResponse

class are used to represent HTTP answers from the
servlet.

– Passed to doGet/doPost.

36

Sessions
• HTTP is stateless, sessions are used to introduce

state.

• A client is identified with a cookie or some
extension to the url (url rewriting). Some data on
the server is associated with the session.

37

Sessions, Cont'd

• The method request.getSession is used to

create a session.

• The method session.invalidate is used to

destroy a session.

• It is a good idea to set a time out after which a
session is destroyed.

38

Sessions, Cont'd

• Data is stored in the session object with the

setAttribute method and read with

getAttribute.

• Data in the session object is NOT thread safe since
the same session is shared between all windows of
the same browser on the same computer.

– Avoid instance variables in the session object and in
objects stored as attributes in the session object.

– Try not to use synchronized since it will reduce

performance.

Lecture 10: Overview of Java EE; JNDI; Servlets 39

Filters

• A web resource can be filtered by a chain of filters

in a specific order specified on deployment.

• A filter is an object that can transform the header

and content (or both) of a request or response:
– Query the request and act accordingly;
– Block the request-and-response pair from passing any

further;
– Modify the request headers and data;
– Modify the response headers and data.

40

Filters, Cont'd
● A filter class is defined by implementing the Filter

interface and providing the @WebFilter annotation as

shown below.
@WebFilter("/*")
public class MyFilter implements Filter

● The doFilter method is called before and after a resource

processing any URL that matches the URL pattern specified

in the @WebFilter annotation.

41

Listeners
• Define listener classes of listeners that will receive

and handle life-cycle events issued by the Web
container (Web context or session or request).

• For example, a Web context listener, often used to
initialize singletons used by servlets.
@WebListener
public final class ContextListener implements ServletContextListener {

 private ServletContext context = null;
 public void contextInitialized(ServletContextEvent event) {
 context = event.getServletContext();
 try {

 BookDAO bookDB = new BookDAO();
 context.setAttribute("bookDB", bookDB);

 } catch (Exception ex) { e.printStackTrace();}
 }

 public void contextDestroyed(ServletContextEvent event) {
 context = event.getServletContext();
 BookDAO bookDB = (BookDAO) context.getAttribute("bookDB");
 bookDB.remove();
 context.removeAttribute("bookDB");

 }
 }

42

Listeners, Cont'd

Source Event Listener Interface

Web context Initialization and destruction javax.servlet.
ServletContextListener

Attribute added, removed, or
replaced

javax.servlet.
ServletContextAttributeListener

Session Creation, invalidation, activation,
passivation, and timeout

javax.servlet.http.
HttpSessionListener,
javax.servlet.http.
HttpSessionActivationListener,

Attribute added, removed, or
replaced

javax.servlet.http.
HttpSessionAttributeListener

Request
A servlet request has started being
processed by web components

javax.servlet.
ServletRequestListener

Attribute added, removed, or
replaced

javax.servlet.
ServletRequestAttributeListener

43

Accessing the Web Context
• The context in which web components execute, i.e. the web container
• To get the context, call the getServletContext method on the servlet.
• The context object implements the ServletContext interface.
• The web context provides methods for accessing:

– Initialization parameters,
– Resources associated with the web context,
– Attributes,
– Logging capabilities.

• For example, retrieving an attribute set by a Context listener, see slide 41:

public class CatalogServlet extends HttpServlet {
private BookDAO bookDB;
public void init() throws ServletException {

bookDB = (BookDAO)getServletContext().getAttribute("bookDB");
if (bookDB == null)
 throw new UnavailableException("Couldn't get database.");

}
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

