
Java EE architecture, part three

Java EE Architecture, Part Three

Java EE architecture, part three

Content

• Requirements on the Integration layer
• The Database Access Object, DAO Pattern
• Frameworks for the Integration layer

Java EE architecture, part three

Requirements on the Integration
Layer

• Performance
– The SQL must make use of stored procedures, prepared

statements, indexes and so on.

– Good knowledge about the database and the DBMS is
required.

– The O/R mapping technology (e.g. JPA) must be
configured to use caches, lazy loading etc in an
efficient way.

– DBMS tuning is not included in this course.

– JPA tuning is mentioned very briefly below.

Java EE architecture, part three

Requirements on the Integration
Layer

• Concurrency
– Must behave correct even if the same entity is updated

concurrently by different threads.

Java EE architecture, part three

Requirements on the Integration
Layer

• Low coupling between business and resource
– The very purpose of the integration layer is to separate

business and resource.

– The definition is adapted to the needs of the business
layer and the implementation to the data store.

– Shall it be possible to change DBMS without updating
the business logic?

Java EE architecture, part three

Requirements on the Integration
Layer

• O/R-mapping
– Conversion between rows in the database and objects in

Java.

– How are relations, inheritance and other object oriented
paradigms mapped to the database?

Java EE architecture, part three

Requirements on the Integration
Layer

• Primary keys
– When and by who are they generated?

– How do we ensure that they are unique?

Java EE architecture, part three

Requirements on the Integration
Layer (cont)

• What data shall be used for communication with
business?
– Not primitive data since that would lead to very long

and complicated method signatures.

– May the business logic objects themselves be used?

Java EE architecture, part three

The Database Access Object, DAO
Pattern

• The responsibility of a DAO is to handle database
calls.

• It should have no dependencies on the business
layer and should contain no business logic.

• Its public interface is designed to meet the needs
of the business layer.

Java EE architecture, part three

DAO, an example

public class ProductDao {

 @PersistenceContext(unitName = "productPU")
 private EntityManager em;

 public Collection loadProductsByCategory(String category) {
 Query query = em.createQuery(
 "from Product as p where p.category = :category");
 query.setParameter("category", category);
 return query.getResultList();
 }

 //Other database access methods.

}

Java EE architecture, part three

Frameworks for the Integration
Layer

• Java Persistence API (JPA) (Sun, part of Java EE)

• Hibernate (JBoss)

Java EE architecture, part three

A Comparison

• JPA and Hibernate have very similar architecture
and functionality.

• Since JPA is part of Java EE and quite easy to use
it should be the default choice.

• Choose Hibernate if there are specific reasons, like
existing applications, developer knowledge or
some particular feature.

Java EE architecture, part three

A Comparison (cont)

• JPA contains only definitions, it does not contain
the implementation (provider) that makes the
actual database calls.
– Hibernate contains both definition and implementation.

• When using JPA a provider is needed. Java EE
ships with EclipseLink (Oracle).
– Another idea is to use Hibernate as provider.

Java EE architecture, part three 14

JPA: Java Persistence API

JPA Home Page:
http://www.oracle.com/technetwork/java/

javaee/tech/persistence-jsp-140049.html

Specification:
http://www.jcp.org/en/jsr/detail?id=220

Java EE architecture, part three

JPA Architecture

• Configured with annotations

• Easy to call from both Spring and EJB.

• Transactions are propagated from calling
framework.

• Entities are plain java objects.

• Reads entity's byte code and uses post compilation
when needed.

Java EE architecture, part three 16

• Persistent object
– Typically in the model.

• Typically (but not necessarily) one entity per table and one
instance per row in that table.

• Either fields or properties (JavaBeans style) are persisted.
– If fields or properties are persisted is decided either explicitly by

the Access annotation or implicitly by the location of other
annotations (close to fields or properties).

• Object/Relational (O/R) mapping with annotations to map
objects to underlying relational data store.

Entity

Java EE architecture, part three 17

Requirements for Entity Classes

• Annotated with the javax.persistence.Entity
annotation.

• public or protected, no-argument constructor.
– May have other constructors as well.

• Must not be declared final. Nor methods or
persistent instance variables may be declared
final.

Java EE architecture, part three 18

Requirements for Entity Classes (cont)

• Persistent instance variables must be declared
private, protected, or package-private, and can
only be accessed directly by the entity class's
methods.

• Instance variables must not be accessed by clients
of the entity.

Java EE architecture, part three 19

Requirements for Entity Classes (cont)

• Persistent fields or properties may be of the following types:
• Any primitive type

• Time specification classes, that is java.util.Date or
java.util.Calendar

• Any Serializable type

• Enums

• Any entity type

• Collections (java.util.Collection, java.util.List,
java.util.Set or java.util.Map) of entities.

• Embeddable classes (explained below).

Java EE architecture, part three 20

Persistent Fields

• Persistence runtime accesses entity class instance
variables directly.

• All fields not declared transient and not
annotated Transient will be persisted.

Java EE architecture, part three 21

Persistent Properties

• Persistence runtime accesses entity state via the
property accessor methods.

• All properties not annotated Transient will be
persisted.

• Property accessor methods must be public or
protected.

Java EE architecture, part three 22

Persistent Properties (cont)

• The following accessor methods must exist for
each property:
– Type getProperty()

– void setProperty(Type type)

Java EE architecture, part three 23

Primary Keys

• Each entity has a unique object identifier, a
primary key.

• A simple (non-composite) primary key must
correspond to a single persistent field or property
of the entity class.
– The Id annotation is used to denote a simple primary

key.

Java EE architecture, part three 24

Composite Primary Keys

• Typically used when mapping from databases
where the primary key is comprised of several
columns.

• Composite primary keys must be defined in a
primary key class.

Java EE architecture, part three 25

Composite Primary Keys (cont)

• Composite primary keys must correspond to either
a single persistent property or field, or to a set of
single persistent properties or fields in the primary
key class.

• Composite primary keys are defined using the
javax.persistence.EmbeddedId and
javax.persistence.IdClass annotations.

Java EE architecture, part three

package account;

import java.io.Serializable;

import javax.persistence.Entity;

import javax.persistence.GeneratedValue;

import javax.persistence.GenerationType;

import javax.persistence.Id;

@Entity

public class Account {

 @Id

 private int acctNo;

 private String firstName;

 private String lastName;

 private int balance;
26

An example

Java EE architecture, part three 27

An example (cont)
 public Account() {

 }

 public Account(int acctNo, String firstName, String lastName,

 int balance) {

 this.acctNo = acctNo;

 this.firstName = firstName;

 this.lastName = lastName;

 this.balance = balance;

 }

 public int getAcctNo() {

 return acctNo;

 }

// More business methods.

Java EE architecture, part three 28

Context

• A persistence context is a set of managed entity
instances that exist in a particular data store.

• A context is the scope under which entity
instances exist.

Java EE architecture, part three

EntityManager

• The EntityManager interface defines the
methods that are used to interact with the context,
for example create, remove and find.

• Each EntityManager instance is associated
with a single context.

29

Java EE architecture, part three

EntityManager (cont)

• Applications that are container-managed (for example
EJB applications) can obtain entity managers with
injection:

@PersistenceContext

EntityManager em;

– The container will create an entity manager instance and

store it in the em field.

• The container will assure that all entity managers used

in the same transaction will handle the same context.

30

Java EE architecture, part three

Persistence Unit

• Applications that are not container-managed (for
example servlet application and Java SE
applications) must call EntityManagerFactory to have
an entity manager created:

@PersistenceUnit

EntityManagerFactory emf;

EntityManager em = emf.createEntityManager();

31

Java EE architecture, part three

Persistence Unit (cont)

• Persistence Unit

– Defines the entities that are managed by an entity

manager.

– Defines where to store the entities persistently.

32

Java EE architecture, part three 33

Entity Instance's Life cycle

• The life cycle of an entity instance is managed by
the EntityManager.

• Entity instances are in one of four states: new,
managed, detached, or removed.

Java EE architecture, part three 34

Entity Instance's Life cycle (cont)

• New entity instances have no persistent identity
and are not yet associated with a persistence
context.

• Managed entity instances have a persistent
identity and are associated with a persistence
context.

Java EE architecture, part three 35

Entity Instance's Life cycle (cont)

• Detached entity instances have a persistent
identify and are not currently associated with a
persistence context.

• Removed entity instances have a persistent
identity, are associated with a persistent context,
and are scheduled for removal from the data store.

Java EE architecture, part three 36

Entity Instance's Life cycle (cont)

 @PersistenceContext
EntityManager em;
...
public LineItem createLineItem(Order order, Product product, int
quantity) {
 LineItem li = new LineItem(order, product, quantity); // new
 order.getLineItems().add(li);
 em.persist(li); // managed
}

• The entity (li) is new after this statement.

• The entity is managed after this statement.

Java EE architecture, part three 37

Entity Instance's Life cycle (cont)

public void removeOrder(Integer orderId) {
try {
 Order order = em.find(Order.class, orderId);
 em.remove(order);
}

• Entities are looked up with the EntityManager
method find (more on queries below).

• Entities are removed with the EntityManager method
remove.

Java EE architecture, part three

Entity Instance's Life cycle (cont)

• The state of persistent entities is synchronized to
the database when the transaction with which the
entity is associated commits.

• To force synchronization of the managed entity to
the database, invoke the flush method of the
EntityManager.

38

Java EE architecture, part three

Transactions

• Container-managed

– The preferred way.

– Can only be used when JPA entities stays in a

transaction aware container (e.g EJB or Spring)

– Transactions propagate from the calling container and

are not handled by JPA code.

– Use declarative transaction demarcation in the

container.

39

Java EE architecture, part three

Transactions (cont)

• Application-managed

– The only choice if JPA is not used inside a transaction

aware container.

– Typically used when JPA is called from a standalone

Java program or from a Servlet container.

– Transaction must be started and stopped

programmatically through the EntityTransaction

interface.

– Easy to make mistakes!

40

Java EE architecture, part three 41

Embeddable classes

• Ordinary java class that is a persistent property or field of
an entity.

• Have no identity and can not be shared between entities.

• Follow the same rules as entities (no-arg constructor, not
final etc) except that they are annotated
@Embeddable instead of @Entity.

• Its persistent fields/properties may be primitive types,
other embeddable classes, entities or collections of these
three kinds.

Java EE architecture, part three 42

• Relationships are persistent.

• Can be between two entities or between an entity
and an embeddable class.

• Can be unidirectional or bidirectional.

• Can be one-to-one, one-to-many, many-to-one or
many-to-many

• Changes cascade (if so is specified) when saved to
the database.

Relationships

Java EE architecture, part three 43

Relationships, example
@Entity
public class Employee {
 private Cubicle assignedCubicle;

 @OneToOne
 public Cubicle getAssignedCubicle() {
 return assignedCubicle;
 }

 public void setAssignedCubicle(
Cubicle cubicle) {

 assignedCubicle = cubicle;
 }
 ...
}

@Entity
public class Cubicle {
private Employee residentEmployee;

@OneToOne(mappedBy="assignedCubicle")
public Employee getResidentEmployee() {
 return residentEmployee;
}

public void setResidentEmployee(
Employee employee) {

 residentEmployee = employee;
}
 ...
}

Java EE architecture, part three 44

• Unidirectional relationships can only be navigated
in one way.
– Cascading updates

– Searches

• Have relationship annotation only on one side.

Relationships, direction

Java EE architecture, part three 45

• Bidirectional relationships can be navigated in both
ways.

• Have relationship annotations on both sides.

• Inverse (not owning) side specifies that it is mapped by
the property or field on the owning side.

@OneToOne(mappedBy="assignedCubicl
e")

Relationships, direction (cont)

Java EE architecture, part three 46

• The relationship itself is persisted based on the
owning side.

• The owning side has the foreign key.

Relationships, direction (cont)

Java EE architecture, part three 47

• The following annotations exist:

– OneToOne

– OneToMany

– ManyToOne

– ManyToMany

• For OneToOne and ManyToMany

relationships any side may be the owning side.

Relationships, multiplicity

Java EE architecture, part three 48

Relationships, multiplicity (cont)

@Entity
public class Employee {
 private Department department;

 @ManyToOne
 public Department getDepartment() {
 return department;
 }

 public void setDepartment(Department department) {
 this.department = department;
 }
 ...
}

Java EE architecture, part three

@Entity
public class Department {
 private Collection<Employee> employees = new HashSet();

 @OneToMany(mappedBy="department")
 public Collection<Employee> getEmployees() {
 return employees;
 }

 public void setEmployees(Collection<Employee> employees) {
 this.employees = employees;
 }
 ...
}

49

Relationships, multiplicity (cont)

Java EE architecture, part three 50

Relationships, cascading updates

• Updates to the database may cascade along
relationships.
– Specified by the cascade element of the

relationships annotations.

– ALL, Cascade all operations

– MERGE, Cascade merge operation

– PERSIST, Cascade persist operation

– REFRESH, Cascade refresh operation

– REMOVE, Cascade remove operation

Java EE architecture, part three 51

Relationships, cascading updates
(cont)

Example:

@OneToMany(cascade=REMOVE, mappedBy="customer")
public Set<Order> getOrders() {
 return orders;
}

Java EE architecture, part three

Queries

• Query methods are in EntityManager.

• The find method can be used to find instances by
primary key.

em.find(Order.class, orderId);

52

Java EE architecture, part three

Queries (cont)
• The createQuery method is used to create dynamic queries, queries

that are defined directly within an application's business logic.

53

@PersistenceContext

public EntityManager em;

...

public List findWithName(String name) {

 Query query = em.createQuery(

 "SELECT c FROM Customer c WHERE c.name LIKE
:custName");

 query.setParameter("custName", name);

 return query.getResultList();

}

Java EE architecture, part three

Queries (cont)
• The createNamedQuery method is used to create static queries, queries

that are defined in meta data using the NamedQuery annotation.

54

@NamedQuery(
 name="findAllCustomersWithName",
 query="SELECT c FROM Customer c WHERE c.name LIKE :custName"
)

@PersistenceContext
public EntityManager em;
...
Query query = em.createNamedQuery("findAllCustomersWithName");
query.setParameter("custName", "Smith");
customers = query.getResultList();

Java EE architecture, part three

Java Persistence Query Language, JPQL

• The two preceding slides use Java Persistence
query language.

– SQL-like language.

– See for example the Java EE tutorial or the

specification.

55

Java EE architecture, part three 56

• The criteria API provides a way to generate queries in an
object-oriented way with ordinary method calls, as
opposed to the string manipulation used by JPQL.

• The advantage over JPQL is that it is type safe and that it
is not required to know field names at compile time.

• The disadvantage is that notably more code is required to
generate queries and that it is harder to read the queries.

Criteria API

Java EE architecture, part three 57

• The JPA specification includes optional support for caching in
the JPA provider (e.g. EclipseLink).
– EclipseLink provides such a cache.

• This is called second-level cache, as opposed to the first-level
cache which is maintained by the persistence context .

Cache

Java EE architecture, part three 58

• Cache tuning is one of the topics that are
important for database performance.

• Information about JPA and EclipseLink caches
can be found at the following URLs.
– http://weblogs.java.net/blog/archive/
2009/08/21/jpa-caching

– http://wiki.eclipse.org/Introduction_
to_Cache_%28ELUG%29

Cache, Cont'd

Java EE architecture, part three 59

• As can be seen below, multiple transactions might be
using the same entity instance in the L1 cache, the L2
cache and the database.

• Therefore, locking is required.

Locks

Java EE architecture, part three 60

• The most used locking mechanism is optimistic
locking.
– Allows concurrent accesses but detects them.

– If concurrent access are detected the transaction is rolled
back and an exception is thrown.

• Optimistic locking is the best alternative when
conflicts are not so frequent, i.e. when updates are
not frequent.

Locks, Cont'd

Java EE architecture, part three 61

• Optimistic locking is implemented using a version
number for the data (entity).
– Whenever an entity instance is read, its current version

number is also read.

– When the instance is stored, the version in the database
is compared to the Java object's version.

– If the version numbers differ it means someone else
updated the database and there is a conflict.

Locks, Cont'd

Java EE architecture, part three 62

• In the entities, add a version field.
 @Version
 @Column(name="OPTLOCK")
 private int versionNum;

• In the quires, specify the the found entities shall be optimistically
locked.
 @NamedQuery(
 name = "findAccountWithName",
 query = "SELECT acct FROM Account acct WHERE
acct.owner.name LIKE :ownerName",
 lockMode = LockModeType.OPTIMISTIC_FORCE_INCREMENT)

Optimistic Lock Example

Java EE architecture, part three 63

• Optimistic locking can also be specified in the entity
manager using the lock or find methods.

Optimistic Lock Example, Cont'd

Java EE architecture, part three 64

• http://blogs.sun.com/carolmcdonald/entry/
jpa_2_0_concurrency_and

More information on Locking

Java EE architecture, part three 65

• Say that we have two entities, A and B, and that A
has a reference to B. When A is loaded, B will also
be loaded and it will be possible to access B writing
something similar to a.getB(), provided that a is
an instance of A.

• If entity B is never accessed in the program, then it
was a waste of resources to read the B instance from
the database.

Lazy Loading

Java EE architecture, part three 66

• To avoid this unnecessary read, we can specify that B
should be lazy loaded.

• This means that the instance of B will not be read from the
database when the A instance is read, but when the B
instance is accessed, that is when a.getB() is called.

• The opposite, that the B instance is read from the database
when the A instance is read, is called eager loading.

Lazy Loading, Cont'd

Java EE architecture, part three 67

• If we always use eager loading we might suffer severe
performance penalties by loading (lots of) unused objects.

• Also lazy loading can bring performance penalties if used the
wrong way.

– Suppose that we load entity A, which has a one to many relation to B.

– Also suppose that we will iterate through all B instances referenced by the
A instance.

– This means that there will be one separate database call for each instance
of B instead of loading them all in the same call, which would be the case
if eager load was used for B.

Lazy Loading, Cont'd

Java EE architecture, part three 68

• Which loading strategy that is used can be specified
in all relationship annotations, i.e OneToOne,
OneToMany, ManyToOne and ManyToMany.

• More information about loading strategies can be
found at
http://blogs.sun.com/carolmcdonald/
entry/jpa_performance_don_t_ignore

Lazy Loading, Cont'd

Java EE architecture, part three 69

• As seen from this very brief overview there are lots of
properties related to performance of JPA and of the JPA
provider.

• Also the DBMS itself provides caching, locking and lots of
other configuration possibilities that are important for
performance.

• The bottom line is that good knowledge about the O/R
mapping technology and the DBMS is necessary to be able
to write an efficient application.

– However, this is not a mandatory part of this course.

Performance Conclusion

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

