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Requirements on the Integration 
Layer

• Performance
– The SQL must make use of stored procedures, prepared 

statements, indexes and so on.

– Good knowledge about the database and the DBMS is 
required.

– The O/R mapping technology (e.g. JPA) must be 
configured to use caches, lazy loading etc in an 
efficient way.

– DBMS tuning is not included in this course.

– JPA tuning is mentioned very briefly below.
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Requirements on the Integration 
Layer

• Concurrency
– Must behave correct even if the same entity is updated 

concurrently by different threads.
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Requirements on the Integration 
Layer

• Low coupling between business and resource
– The very purpose of the integration layer is to separate 

business and resource.

– The definition is adapted to the needs of the business 
layer and the implementation to the data store.

– Shall it be possible to change DBMS without updating 
the business logic?
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Requirements on the Integration 
Layer

• O/R-mapping
– Conversion between rows in the database and objects in 

Java.

– How are relations, inheritance and other object oriented 
paradigms mapped to the database?
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Requirements on the Integration 
Layer

• Primary keys
– When and by who are they generated?

– How do we ensure that they are unique?
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Requirements on the Integration 
Layer (cont) 

• What data shall be used for communication with 
business?
– Not primitive data since that would lead to very long 

and complicated method signatures.

– May the business logic objects themselves be used?
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The Database Access Object, DAO 
Pattern

• The responsibility of a DAO is to handle database 
calls.

• It should have no dependencies on the business 
layer and should contain no business logic.

• Its public interface is designed to meet the needs 
of the business layer.
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DAO, an example

public class ProductDao {

    @PersistenceContext(unitName = "productPU")
    private EntityManager em;

    public Collection loadProductsByCategory(String category) {
       Query query = em.createQuery(
           "from Product as p where p.category = :category");
       query.setParameter("category", category);
       return query.getResultList(); 
    }

    //Other database access methods.

}
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Frameworks for the Integration 
Layer

• Java Persistence API (JPA) (Sun, part of Java EE)

• Hibernate (JBoss)



Java EE architecture, part three

A Comparison

• JPA and Hibernate have very similar architecture 
and functionality.

• Since JPA is part of Java EE and quite easy to use 
it should be the default choice.

• Choose Hibernate if there are specific reasons, like 
existing applications, developer knowledge or 
some particular feature.
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A Comparison (cont)

• JPA contains only definitions, it does not contain 
the implementation (provider) that makes the 
actual database calls.
– Hibernate contains both definition and implementation.

• When using JPA a provider is needed. Java EE 
ships with EclipseLink (Oracle).
– Another idea is to use Hibernate as provider.
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JPA: Java Persistence API

JPA Home Page:
http://www.oracle.com/technetwork/java/

javaee/tech/persistence-jsp-140049.html

Specification: 
http://www.jcp.org/en/jsr/detail?id=220
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JPA Architecture

• Configured with annotations

• Easy to call from both Spring and EJB.

• Transactions are propagated from calling 
framework.

• Entities are plain java objects.

• Reads entity's byte code and uses post compilation 
when needed.
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• Persistent object
– Typically in the model.

• Typically (but not necessarily) one entity per table and one 
instance per row in that table.

• Either fields or properties (JavaBeans style) are persisted.
– If fields or properties are persisted is decided either explicitly by 

the  Access annotation or implicitly by the location of other 
annotations (close to fields or properties).

• Object/Relational (O/R) mapping with annotations to map 
objects to underlying relational data store.

Entity
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Requirements for Entity Classes

• Annotated with the javax.persistence.Entity 
annotation.

• public or protected, no-argument constructor.
– May have other constructors as well.

• Must not be declared final. Nor methods or 
persistent instance variables may be declared 
final.
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Requirements for Entity Classes (cont)

• Persistent instance variables must be declared 
private, protected, or package-private, and can 
only be accessed directly by the entity class's 
methods.

• Instance variables must not be accessed by clients 
of the entity.
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Requirements for Entity Classes (cont)

• Persistent fields or properties may be of the following types:
• Any primitive type

• Time specification classes, that is java.util.Date or 
java.util.Calendar

• Any Serializable type

• Enums

• Any entity type

• Collections (java.util.Collection, java.util.List, 
java.util.Set or java.util.Map) of entities.

• Embeddable classes (explained below).
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Persistent Fields

• Persistence runtime accesses entity class instance 
variables directly.

• All fields not declared transient and not 
annotated Transient will be persisted.
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Persistent Properties

• Persistence runtime accesses entity state via the 
property accessor methods.

• All properties not annotated Transient will be 
persisted.

• Property accessor methods must be public or 
protected.
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Persistent Properties (cont)

• The following accessor methods must exist for 
each property:
– Type getProperty()

– void setProperty(Type type) 
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Primary Keys

• Each entity has a unique object identifier, a 
primary key.

• A simple (non-composite) primary key must 
correspond to a single persistent field or property 
of the entity class. 
– The Id annotation is used to denote a simple primary 

key.
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Composite Primary Keys

• Typically used when mapping from databases 
where the primary key is comprised of several 
columns.

• Composite primary keys must be defined in a 
primary key class.  
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Composite Primary Keys (cont)

• Composite primary keys must correspond to either 
a single persistent property or field, or to a set of 
single persistent properties or fields in the primary 
key class.

• Composite primary keys are defined using the 
javax.persistence.EmbeddedId and 
javax.persistence.IdClass annotations.
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package account;

import java.io.Serializable;

import javax.persistence.Entity;

import javax.persistence.GeneratedValue;

import javax.persistence.GenerationType;

import javax.persistence.Id;

@Entity

public class Account {

    @Id

    private int acctNo;

    private String firstName;

    private String lastName;

    private int balance;
26

An example
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An example (cont)
    public Account() {

    }

    public Account(int acctNo, String firstName, String lastName, 

                   int balance) {

        this.acctNo = acctNo;

        this.firstName = firstName;

        this.lastName = lastName;

        this.balance = balance;

    }

    public int getAcctNo() {

        return acctNo;

    }

// More business methods.
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Context

• A persistence context is a set of managed entity 
instances that exist in a particular data store.

• A context is the scope under which entity 
instances exist.
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EntityManager

• The EntityManager interface defines the 
methods that are used to interact with the context, 
for example create, remove and find.

• Each EntityManager instance is associated 
with a single context.

29
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EntityManager (cont)

• Applications that are container-managed (for example 
EJB applications) can obtain entity managers with 
injection:

@PersistenceContext

EntityManager em; 

– The container will create an entity manager instance and 

store it in the em field.

• The container will assure that all entity managers used 

in the same transaction will handle the same context.

30
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Persistence Unit

• Applications that are not container-managed (for 
example servlet application and Java SE 
applications) must call EntityManagerFactory to have 
an entity manager created:

@PersistenceUnit

EntityManagerFactory emf; 

EntityManager em = emf.createEntityManager(); 

31
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Persistence Unit (cont)

• Persistence Unit

– Defines the entities that are managed by an entity 

manager.

– Defines where to store the entities persistently.

32
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Entity Instance's Life cycle

• The life cycle of an entity instance is managed by 
the EntityManager.

• Entity instances are in one of four states: new, 
managed, detached, or removed.
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Entity Instance's Life cycle (cont)

• New entity instances have no persistent identity 
and are not yet associated with a persistence 
context.

• Managed entity instances have a persistent 
identity and are associated with a persistence 
context.
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Entity Instance's Life cycle (cont)

• Detached entity instances have a persistent 
identify and are not currently associated with a 
persistence context.

• Removed entity instances have a persistent 
identity, are associated with a persistent context, 
and are scheduled for removal from the data store.
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Entity Instance's Life cycle (cont)

   @PersistenceContext
EntityManager em;
...
public LineItem createLineItem(Order order, Product product, int 
quantity) {
    LineItem li = new LineItem(order, product, quantity); // new
    order.getLineItems().add(li);
    em.persist(li); // managed
} 

• The entity (li) is new after this statement.

• The entity is managed after this statement.
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Entity Instance's Life cycle (cont)

public void removeOrder(Integer orderId) {
try {
   Order order = em.find(Order.class, orderId);
   em.remove(order);
} 

• Entities are looked up with the EntityManager 
method find (more on queries below).

• Entities are removed with the EntityManager method 
remove.
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Entity Instance's Life cycle (cont)

• The state of persistent entities is synchronized to 
the database when the transaction with which the 
entity is associated commits.

• To force synchronization of the managed entity to 
the database, invoke the flush method of the 
EntityManager.

38
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Transactions

• Container-managed

– The preferred way.

– Can only be used when JPA entities stays in a 

transaction aware container (e.g EJB or Spring)

– Transactions propagate from the calling container and 

are not handled by JPA code.

– Use declarative transaction demarcation in the 

container.

39
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Transactions (cont)

• Application-managed

– The only choice if JPA is not used inside a transaction 

aware container.

– Typically used when JPA is called from a standalone 

Java program or from a Servlet container.

– Transaction must be started and stopped 

programmatically through the EntityTransaction 

interface.

– Easy to make mistakes!

40
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Embeddable classes

• Ordinary java class that is a persistent property or field of 
an entity.

• Have no identity and can not be shared between entities.

• Follow the same rules as entities (no-arg constructor, not 
final etc) except that they are annotated 
@Embeddable instead of @Entity.

• Its persistent fields/properties may be primitive types, 
other embeddable classes, entities or collections of these 
three kinds.
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• Relationships are persistent.

• Can be between two entities or between an entity 
and an embeddable class.

• Can be unidirectional or bidirectional.

• Can be one-to-one, one-to-many, many-to-one or 
many-to-many

• Changes cascade (if so is specified) when saved to 
the database.

Relationships
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Relationships, example
@Entity
public class Employee {
  private Cubicle assignedCubicle;

  @OneToOne
  public Cubicle getAssignedCubicle() {
    return assignedCubicle;
  }

  public void setAssignedCubicle(
Cubicle cubicle) {

        assignedCubicle = cubicle;
  }
    ...
}

@Entity
public class Cubicle {
private Employee residentEmployee;
    
@OneToOne(mappedBy="assignedCubicle")
public Employee getResidentEmployee() {
    return residentEmployee;
}

public void setResidentEmployee(
Employee employee) {

        residentEmployee = employee;
}
    ...
}
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• Unidirectional relationships can only be navigated 
in one way.
– Cascading updates

– Searches

• Have relationship annotation only on one side.

Relationships, direction
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• Bidirectional relationships can be navigated in both 
ways.

• Have relationship annotations on both sides.

• Inverse (not owning) side specifies that it is mapped by 
the property or field on the owning side.

@OneToOne(mappedBy="assignedCubicl
e")

Relationships, direction (cont)
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• The relationship itself is persisted based on the 
owning side.

• The owning side has the foreign key.

Relationships, direction (cont)
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• The following annotations exist:

– OneToOne

– OneToMany

– ManyToOne

– ManyToMany

• For OneToOne and ManyToMany 

relationships any side may be the owning side.

Relationships, multiplicity
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Relationships, multiplicity (cont)

@Entity
public class Employee {
    private Department department;

    @ManyToOne
    public Department getDepartment() {
        return department;
    }

    public void setDepartment(Department department) {
        this.department = department;
    }
    ...
}
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@Entity
public class Department {
    private Collection<Employee> employees = new HashSet();

    @OneToMany(mappedBy="department")
    public Collection<Employee> getEmployees() {
        return employees;
    }

    public void setEmployees(Collection<Employee> employees) {
        this.employees = employees;
    }
    ...
}

49

Relationships, multiplicity (cont)
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Relationships, cascading updates

• Updates to the database may cascade along 
relationships.
– Specified by the cascade element of the 

relationships annotations.

– ALL, Cascade all operations

– MERGE, Cascade merge operation

– PERSIST, Cascade persist operation

– REFRESH, Cascade refresh operation

– REMOVE, Cascade remove operation
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Relationships, cascading updates 
(cont)

Example:

@OneToMany(cascade=REMOVE, mappedBy="customer")
public Set<Order> getOrders() { 
    return orders; 
} 
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Queries

• Query methods are in EntityManager.

• The find method can be used to find instances by 
primary key.

em.find(Order.class, orderId);

52
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Queries (cont)
• The createQuery method is used to create dynamic queries, queries 

that are defined directly within an application's business logic.

53

@PersistenceContext

public EntityManager em;

...

public List findWithName(String name) {

    Query query =  em.createQuery(

        "SELECT c FROM Customer c WHERE c.name LIKE 
:custName");

    query.setParameter("custName", name);

    return query.getResultList();

}
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Queries (cont)
• The createNamedQuery method is used to create static queries, queries 

that are defined in meta data using the NamedQuery annotation.

54

@NamedQuery(
    name="findAllCustomersWithName",
    query="SELECT c FROM Customer c WHERE c.name LIKE :custName"
) 

@PersistenceContext
public EntityManager em;
...
Query query = em.createNamedQuery("findAllCustomersWithName");
query.setParameter("custName", "Smith");
customers = query.getResultList(); 
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Java Persistence Query Language, JPQL

• The two preceding slides use Java Persistence 
query language.

– SQL-like language.

– See for example the Java EE tutorial or the 

specification.

55
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• The criteria API provides a way to generate queries in an 
object-oriented way with ordinary method calls, as 
opposed to the string manipulation used by JPQL.

• The advantage over JPQL is that it is type safe and that it 
is not required to know field names at compile time.

• The disadvantage is that notably more code is required to 
generate queries and that it is harder to read the queries.

Criteria API
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• The JPA specification includes optional support for caching in 
the JPA provider (e.g. EclipseLink).
– EclipseLink provides such a cache.

• This is called second-level cache, as opposed to the first-level 
cache which is maintained by the persistence context . 

Cache
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• Cache tuning is one of the topics that are 
important for database performance.

• Information about JPA and EclipseLink caches 
can be found at the following URLs.
– http://weblogs.java.net/blog/archive/
2009/08/21/jpa-caching

– http://wiki.eclipse.org/Introduction_
to_Cache_%28ELUG%29

Cache, Cont'd
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• As can be seen below, multiple transactions might be 
using the same entity instance in the L1 cache, the L2 
cache and the database.

• Therefore, locking is required.

Locks
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• The most used locking mechanism is optimistic 
locking.
– Allows concurrent accesses but detects them.

– If concurrent access are detected the transaction is rolled 
back and an exception is thrown.

• Optimistic locking is the best alternative when 
conflicts are not so frequent, i.e. when updates are 
not frequent.

Locks, Cont'd
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• Optimistic locking is implemented using a version 
number for the data (entity).
– Whenever an entity instance is read, its current version 

number is also read.

– When the instance is stored, the version in the database 
is compared to the Java object's version.

– If the version numbers differ it means someone else 
updated the database and there is a conflict.

Locks, Cont'd
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• In the entities, add a version field.
    @Version
    @Column(name="OPTLOCK")
    private int versionNum;

• In the quires, specify the the found entities shall be optimistically 
locked.
    @NamedQuery(
        name = "findAccountWithName",
        query = "SELECT acct FROM Account acct WHERE 
acct.owner.name LIKE :ownerName",
        lockMode = LockModeType.OPTIMISTIC_FORCE_INCREMENT)

Optimistic Lock Example
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• Optimistic locking can also be specified in the entity 
manager using the lock or find methods.

Optimistic Lock Example, Cont'd
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• http://blogs.sun.com/carolmcdonald/entry/
jpa_2_0_concurrency_and

More information on Locking
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• Say that we have two entities, A and B, and that A 
has a reference to B. When A is loaded, B will also 
be loaded and it will be possible to access B writing 
something similar to a.getB(), provided that a is 
an instance of A.

• If entity B is never accessed in the program, then it 
was a waste of resources to read the B instance from 
the database.

Lazy Loading
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• To avoid this unnecessary read, we can specify that B 
should be lazy loaded.

• This means that the instance of B will not be read from the 
database when the A instance is read, but when the B 
instance is accessed, that is when a.getB() is called.

• The opposite, that the B instance is read from the database 
when the A instance is read, is called eager loading.

Lazy Loading, Cont'd



Java EE architecture, part three 67

• If we always use eager loading we might suffer severe 
performance penalties by loading (lots of) unused objects.

• Also lazy loading can bring performance penalties if used the 
wrong way. 

– Suppose that we load entity A, which has a one to many relation to B. 

– Also suppose that we will iterate through all B instances referenced by the 
A instance. 

– This means that there will be one separate database call for each instance 
of B instead of loading them all in the same call, which would be the case 
if eager load was used for B.

Lazy Loading, Cont'd
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• Which loading strategy that is used can be specified 
in all relationship annotations, i.e OneToOne, 
OneToMany, ManyToOne and ManyToMany.

• More information about loading strategies can be 
found at
http://blogs.sun.com/carolmcdonald/
entry/jpa_performance_don_t_ignore

Lazy Loading, Cont'd
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• As seen from this very brief overview there are lots of 
properties related to performance of JPA and of the JPA 
provider.

• Also the DBMS itself provides caching, locking and lots of 
other configuration possibilities that are important for 
performance.

• The bottom line is that good knowledge about the O/R 
mapping technology and the DBMS is necessary to be able 
to write an efficient application.

– However, this is not a mandatory part of this course.

Performance Conclusion
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